00001
00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTIONGOAL_H
00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "actionlib_msgs/GoalID.h"
00015 #include "object_recognition_gui/ObjectRecognitionGuiGoal.h"
00016
00017 namespace object_recognition_gui
00018 {
00019 template <class ContainerAllocator>
00020 struct ObjectRecognitionGuiActionGoal_ : public ros::Message
00021 {
00022 typedef ObjectRecognitionGuiActionGoal_<ContainerAllocator> Type;
00023
00024 ObjectRecognitionGuiActionGoal_()
00025 : header()
00026 , goal_id()
00027 , goal()
00028 {
00029 }
00030
00031 ObjectRecognitionGuiActionGoal_(const ContainerAllocator& _alloc)
00032 : header(_alloc)
00033 , goal_id(_alloc)
00034 , goal(_alloc)
00035 {
00036 }
00037
00038 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00039 ::std_msgs::Header_<ContainerAllocator> header;
00040
00041 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00042 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00043
00044 typedef ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> _goal_type;
00045 ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> goal;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_recognition_gui/ObjectRecognitionGuiActionGoal"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "e9351c4dd7bd646f1f371db4c7fd13af"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 Header header\n\
00066 actionlib_msgs/GoalID goal_id\n\
00067 ObjectRecognitionGuiGoal goal\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: std_msgs/Header\n\
00071 # Standard metadata for higher-level stamped data types.\n\
00072 # This is generally used to communicate timestamped data \n\
00073 # in a particular coordinate frame.\n\
00074 # \n\
00075 # sequence ID: consecutively increasing ID \n\
00076 uint32 seq\n\
00077 #Two-integer timestamp that is expressed as:\n\
00078 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00079 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00080 # time-handling sugar is provided by the client library\n\
00081 time stamp\n\
00082 #Frame this data is associated with\n\
00083 # 0: no frame\n\
00084 # 1: global frame\n\
00085 string frame_id\n\
00086 \n\
00087 ================================================================================\n\
00088 MSG: actionlib_msgs/GoalID\n\
00089 # The stamp should store the time at which this goal was requested.\n\
00090 # It is used by an action server when it tries to preempt all\n\
00091 # goals that were requested before a certain time\n\
00092 time stamp\n\
00093 \n\
00094 # The id provides a way to associate feedback and\n\
00095 # result message with specific goal requests. The id\n\
00096 # specified must be unique.\n\
00097 string id\n\
00098 \n\
00099 \n\
00100 ================================================================================\n\
00101 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\
00102 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00103 \n\
00104 #the original sensor data (depth/disparity image)\n\
00105 sensor_msgs/Image image\n\
00106 sensor_msgs/CameraInfo camera_info\n\
00107 \n\
00108 #list of mesh/pose hypotheses for each recognized point cluster\n\
00109 ModelHypothesisList[] model_hypotheses\n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: sensor_msgs/Image\n\
00113 # This message contains an uncompressed image\n\
00114 # (0, 0) is at top-left corner of image\n\
00115 #\n\
00116 \n\
00117 Header header # Header timestamp should be acquisition time of image\n\
00118 # Header frame_id should be optical frame of camera\n\
00119 # origin of frame should be optical center of cameara\n\
00120 # +x should point to the right in the image\n\
00121 # +y should point down in the image\n\
00122 # +z should point into to plane of the image\n\
00123 # If the frame_id here and the frame_id of the CameraInfo\n\
00124 # message associated with the image conflict\n\
00125 # the behavior is undefined\n\
00126 \n\
00127 uint32 height # image height, that is, number of rows\n\
00128 uint32 width # image width, that is, number of columns\n\
00129 \n\
00130 # The legal values for encoding are in file src/image_encodings.cpp\n\
00131 # If you want to standardize a new string format, join\n\
00132 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00133 \n\
00134 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00135 # taken from the list of strings in src/image_encodings.cpp\n\
00136 \n\
00137 uint8 is_bigendian # is this data bigendian?\n\
00138 uint32 step # Full row length in bytes\n\
00139 uint8[] data # actual matrix data, size is (step * rows)\n\
00140 \n\
00141 ================================================================================\n\
00142 MSG: sensor_msgs/CameraInfo\n\
00143 # This message defines meta information for a camera. It should be in a\n\
00144 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00145 # image topics named:\n\
00146 #\n\
00147 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00148 # image - monochrome, distorted\n\
00149 # image_color - color, distorted\n\
00150 # image_rect - monochrome, rectified\n\
00151 # image_rect_color - color, rectified\n\
00152 #\n\
00153 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00154 # for producing the four processed image topics from image_raw and\n\
00155 # camera_info. The meaning of the camera parameters are described in\n\
00156 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00157 #\n\
00158 # The image_geometry package provides a user-friendly interface to\n\
00159 # common operations using this meta information. If you want to, e.g.,\n\
00160 # project a 3d point into image coordinates, we strongly recommend\n\
00161 # using image_geometry.\n\
00162 #\n\
00163 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00164 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00165 # indicates an uncalibrated camera.\n\
00166 \n\
00167 #######################################################################\n\
00168 # Image acquisition info #\n\
00169 #######################################################################\n\
00170 \n\
00171 # Time of image acquisition, camera coordinate frame ID\n\
00172 Header header # Header timestamp should be acquisition time of image\n\
00173 # Header frame_id should be optical frame of camera\n\
00174 # origin of frame should be optical center of camera\n\
00175 # +x should point to the right in the image\n\
00176 # +y should point down in the image\n\
00177 # +z should point into the plane of the image\n\
00178 \n\
00179 \n\
00180 #######################################################################\n\
00181 # Calibration Parameters #\n\
00182 #######################################################################\n\
00183 # These are fixed during camera calibration. Their values will be the #\n\
00184 # same in all messages until the camera is recalibrated. Note that #\n\
00185 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00186 # #\n\
00187 # The internal parameters can be used to warp a raw (distorted) image #\n\
00188 # to: #\n\
00189 # 1. An undistorted image (requires D and K) #\n\
00190 # 2. A rectified image (requires D, K, R) #\n\
00191 # The projection matrix P projects 3D points into the rectified image.#\n\
00192 #######################################################################\n\
00193 \n\
00194 # The image dimensions with which the camera was calibrated. Normally\n\
00195 # this will be the full camera resolution in pixels.\n\
00196 uint32 height\n\
00197 uint32 width\n\
00198 \n\
00199 # The distortion model used. Supported models are listed in\n\
00200 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00201 # simple model of radial and tangential distortion - is sufficent.\n\
00202 string distortion_model\n\
00203 \n\
00204 # The distortion parameters, size depending on the distortion model.\n\
00205 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00206 float64[] D\n\
00207 \n\
00208 # Intrinsic camera matrix for the raw (distorted) images.\n\
00209 # [fx 0 cx]\n\
00210 # K = [ 0 fy cy]\n\
00211 # [ 0 0 1]\n\
00212 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00213 # coordinates using the focal lengths (fx, fy) and principal point\n\
00214 # (cx, cy).\n\
00215 float64[9] K # 3x3 row-major matrix\n\
00216 \n\
00217 # Rectification matrix (stereo cameras only)\n\
00218 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00219 # stereo image plane so that epipolar lines in both stereo images are\n\
00220 # parallel.\n\
00221 float64[9] R # 3x3 row-major matrix\n\
00222 \n\
00223 # Projection/camera matrix\n\
00224 # [fx' 0 cx' Tx]\n\
00225 # P = [ 0 fy' cy' Ty]\n\
00226 # [ 0 0 1 0]\n\
00227 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00228 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00229 # is the normal camera intrinsic matrix for the rectified image.\n\
00230 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00231 # coordinates using the focal lengths (fx', fy') and principal point\n\
00232 # (cx', cy') - these may differ from the values in K.\n\
00233 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00234 # also have R = the identity and P[1:3,1:3] = K.\n\
00235 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00236 # position of the optical center of the second camera in the first\n\
00237 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00238 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00239 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00240 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00241 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00242 # the rectified image is given by:\n\
00243 # [u v w]' = P * [X Y Z 1]'\n\
00244 # x = u / w\n\
00245 # y = v / w\n\
00246 # This holds for both images of a stereo pair.\n\
00247 float64[12] P # 3x4 row-major matrix\n\
00248 \n\
00249 \n\
00250 #######################################################################\n\
00251 # Operational Parameters #\n\
00252 #######################################################################\n\
00253 # These define the image region actually captured by the camera #\n\
00254 # driver. Although they affect the geometry of the output image, they #\n\
00255 # may be changed freely without recalibrating the camera. #\n\
00256 #######################################################################\n\
00257 \n\
00258 # Binning refers here to any camera setting which combines rectangular\n\
00259 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00260 # resolution of the output image to\n\
00261 # (width / binning_x) x (height / binning_y).\n\
00262 # The default values binning_x = binning_y = 0 is considered the same\n\
00263 # as binning_x = binning_y = 1 (no subsampling).\n\
00264 uint32 binning_x\n\
00265 uint32 binning_y\n\
00266 \n\
00267 # Region of interest (subwindow of full camera resolution), given in\n\
00268 # full resolution (unbinned) image coordinates. A particular ROI\n\
00269 # always denotes the same window of pixels on the camera sensor,\n\
00270 # regardless of binning settings.\n\
00271 # The default setting of roi (all values 0) is considered the same as\n\
00272 # full resolution (roi.width = width, roi.height = height).\n\
00273 RegionOfInterest roi\n\
00274 \n\
00275 ================================================================================\n\
00276 MSG: sensor_msgs/RegionOfInterest\n\
00277 # This message is used to specify a region of interest within an image.\n\
00278 #\n\
00279 # When used to specify the ROI setting of the camera when the image was\n\
00280 # taken, the height and width fields should either match the height and\n\
00281 # width fields for the associated image; or height = width = 0\n\
00282 # indicates that the full resolution image was captured.\n\
00283 \n\
00284 uint32 x_offset # Leftmost pixel of the ROI\n\
00285 # (0 if the ROI includes the left edge of the image)\n\
00286 uint32 y_offset # Topmost pixel of the ROI\n\
00287 # (0 if the ROI includes the top edge of the image)\n\
00288 uint32 height # Height of ROI\n\
00289 uint32 width # Width of ROI\n\
00290 \n\
00291 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00292 # ROI in this message. Typically this should be False if the full image\n\
00293 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00294 # used).\n\
00295 bool do_rectify\n\
00296 \n\
00297 ================================================================================\n\
00298 MSG: object_recognition_gui/ModelHypothesisList\n\
00299 ModelHypothesis[] hypotheses\n\
00300 \n\
00301 #initial guess if this can be a correct recognition result at all\n\
00302 bool accept\n\
00303 ================================================================================\n\
00304 MSG: object_recognition_gui/ModelHypothesis\n\
00305 #describes a hypothesis about a recognized object (mesh+pose)\n\
00306 \n\
00307 geometric_shapes_msgs/Shape mesh\n\
00308 geometry_msgs/PoseStamped pose\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: geometric_shapes_msgs/Shape\n\
00312 byte SPHERE=0\n\
00313 byte BOX=1\n\
00314 byte CYLINDER=2\n\
00315 byte MESH=3\n\
00316 \n\
00317 byte type\n\
00318 \n\
00319 \n\
00320 #### define sphere, box, cylinder ####\n\
00321 # the origin of each shape is considered at the shape's center\n\
00322 \n\
00323 # for sphere\n\
00324 # radius := dimensions[0]\n\
00325 \n\
00326 # for cylinder\n\
00327 # radius := dimensions[0]\n\
00328 # length := dimensions[1]\n\
00329 # the length is along the Z axis\n\
00330 \n\
00331 # for box\n\
00332 # size_x := dimensions[0]\n\
00333 # size_y := dimensions[1]\n\
00334 # size_z := dimensions[2]\n\
00335 float64[] dimensions\n\
00336 \n\
00337 \n\
00338 #### define mesh ####\n\
00339 \n\
00340 # list of triangles; triangle k is defined by tre vertices located\n\
00341 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00342 int32[] triangles\n\
00343 geometry_msgs/Point[] vertices\n\
00344 \n\
00345 ================================================================================\n\
00346 MSG: geometry_msgs/Point\n\
00347 # This contains the position of a point in free space\n\
00348 float64 x\n\
00349 float64 y\n\
00350 float64 z\n\
00351 \n\
00352 ================================================================================\n\
00353 MSG: geometry_msgs/PoseStamped\n\
00354 # A Pose with reference coordinate frame and timestamp\n\
00355 Header header\n\
00356 Pose pose\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: geometry_msgs/Pose\n\
00360 # A representation of pose in free space, composed of postion and orientation. \n\
00361 Point position\n\
00362 Quaternion orientation\n\
00363 \n\
00364 ================================================================================\n\
00365 MSG: geometry_msgs/Quaternion\n\
00366 # This represents an orientation in free space in quaternion form.\n\
00367 \n\
00368 float64 x\n\
00369 float64 y\n\
00370 float64 z\n\
00371 float64 w\n\
00372 \n\
00373 "; }
00374 public:
00375 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00376
00377 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00378
00379 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00380 {
00381 ros::serialization::OStream stream(write_ptr, 1000000000);
00382 ros::serialization::serialize(stream, header);
00383 ros::serialization::serialize(stream, goal_id);
00384 ros::serialization::serialize(stream, goal);
00385 return stream.getData();
00386 }
00387
00388 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00389 {
00390 ros::serialization::IStream stream(read_ptr, 1000000000);
00391 ros::serialization::deserialize(stream, header);
00392 ros::serialization::deserialize(stream, goal_id);
00393 ros::serialization::deserialize(stream, goal);
00394 return stream.getData();
00395 }
00396
00397 ROS_DEPRECATED virtual uint32_t serializationLength() const
00398 {
00399 uint32_t size = 0;
00400 size += ros::serialization::serializationLength(header);
00401 size += ros::serialization::serializationLength(goal_id);
00402 size += ros::serialization::serializationLength(goal);
00403 return size;
00404 }
00405
00406 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > Ptr;
00407 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> const> ConstPtr;
00408 };
00409 typedef ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<std::allocator<void> > ObjectRecognitionGuiActionGoal;
00410
00411 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal> ObjectRecognitionGuiActionGoalPtr;
00412 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal const> ObjectRecognitionGuiActionGoalConstPtr;
00413
00414
00415 template<typename ContainerAllocator>
00416 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> & v)
00417 {
00418 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> >::stream(s, "", v);
00419 return s;}
00420
00421 }
00422
00423 namespace ros
00424 {
00425 namespace message_traits
00426 {
00427 template<class ContainerAllocator>
00428 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > {
00429 static const char* value()
00430 {
00431 return "e9351c4dd7bd646f1f371db4c7fd13af";
00432 }
00433
00434 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> &) { return value(); }
00435 static const uint64_t static_value1 = 0xe9351c4dd7bd646fULL;
00436 static const uint64_t static_value2 = 0x1f371db4c7fd13afULL;
00437 };
00438
00439 template<class ContainerAllocator>
00440 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > {
00441 static const char* value()
00442 {
00443 return "object_recognition_gui/ObjectRecognitionGuiActionGoal";
00444 }
00445
00446 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> &) { return value(); }
00447 };
00448
00449 template<class ContainerAllocator>
00450 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > {
00451 static const char* value()
00452 {
00453 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00454 \n\
00455 Header header\n\
00456 actionlib_msgs/GoalID goal_id\n\
00457 ObjectRecognitionGuiGoal goal\n\
00458 \n\
00459 ================================================================================\n\
00460 MSG: std_msgs/Header\n\
00461 # Standard metadata for higher-level stamped data types.\n\
00462 # This is generally used to communicate timestamped data \n\
00463 # in a particular coordinate frame.\n\
00464 # \n\
00465 # sequence ID: consecutively increasing ID \n\
00466 uint32 seq\n\
00467 #Two-integer timestamp that is expressed as:\n\
00468 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00469 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00470 # time-handling sugar is provided by the client library\n\
00471 time stamp\n\
00472 #Frame this data is associated with\n\
00473 # 0: no frame\n\
00474 # 1: global frame\n\
00475 string frame_id\n\
00476 \n\
00477 ================================================================================\n\
00478 MSG: actionlib_msgs/GoalID\n\
00479 # The stamp should store the time at which this goal was requested.\n\
00480 # It is used by an action server when it tries to preempt all\n\
00481 # goals that were requested before a certain time\n\
00482 time stamp\n\
00483 \n\
00484 # The id provides a way to associate feedback and\n\
00485 # result message with specific goal requests. The id\n\
00486 # specified must be unique.\n\
00487 string id\n\
00488 \n\
00489 \n\
00490 ================================================================================\n\
00491 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\
00492 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00493 \n\
00494 #the original sensor data (depth/disparity image)\n\
00495 sensor_msgs/Image image\n\
00496 sensor_msgs/CameraInfo camera_info\n\
00497 \n\
00498 #list of mesh/pose hypotheses for each recognized point cluster\n\
00499 ModelHypothesisList[] model_hypotheses\n\
00500 \n\
00501 ================================================================================\n\
00502 MSG: sensor_msgs/Image\n\
00503 # This message contains an uncompressed image\n\
00504 # (0, 0) is at top-left corner of image\n\
00505 #\n\
00506 \n\
00507 Header header # Header timestamp should be acquisition time of image\n\
00508 # Header frame_id should be optical frame of camera\n\
00509 # origin of frame should be optical center of cameara\n\
00510 # +x should point to the right in the image\n\
00511 # +y should point down in the image\n\
00512 # +z should point into to plane of the image\n\
00513 # If the frame_id here and the frame_id of the CameraInfo\n\
00514 # message associated with the image conflict\n\
00515 # the behavior is undefined\n\
00516 \n\
00517 uint32 height # image height, that is, number of rows\n\
00518 uint32 width # image width, that is, number of columns\n\
00519 \n\
00520 # The legal values for encoding are in file src/image_encodings.cpp\n\
00521 # If you want to standardize a new string format, join\n\
00522 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00523 \n\
00524 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00525 # taken from the list of strings in src/image_encodings.cpp\n\
00526 \n\
00527 uint8 is_bigendian # is this data bigendian?\n\
00528 uint32 step # Full row length in bytes\n\
00529 uint8[] data # actual matrix data, size is (step * rows)\n\
00530 \n\
00531 ================================================================================\n\
00532 MSG: sensor_msgs/CameraInfo\n\
00533 # This message defines meta information for a camera. It should be in a\n\
00534 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00535 # image topics named:\n\
00536 #\n\
00537 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00538 # image - monochrome, distorted\n\
00539 # image_color - color, distorted\n\
00540 # image_rect - monochrome, rectified\n\
00541 # image_rect_color - color, rectified\n\
00542 #\n\
00543 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00544 # for producing the four processed image topics from image_raw and\n\
00545 # camera_info. The meaning of the camera parameters are described in\n\
00546 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00547 #\n\
00548 # The image_geometry package provides a user-friendly interface to\n\
00549 # common operations using this meta information. If you want to, e.g.,\n\
00550 # project a 3d point into image coordinates, we strongly recommend\n\
00551 # using image_geometry.\n\
00552 #\n\
00553 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00554 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00555 # indicates an uncalibrated camera.\n\
00556 \n\
00557 #######################################################################\n\
00558 # Image acquisition info #\n\
00559 #######################################################################\n\
00560 \n\
00561 # Time of image acquisition, camera coordinate frame ID\n\
00562 Header header # Header timestamp should be acquisition time of image\n\
00563 # Header frame_id should be optical frame of camera\n\
00564 # origin of frame should be optical center of camera\n\
00565 # +x should point to the right in the image\n\
00566 # +y should point down in the image\n\
00567 # +z should point into the plane of the image\n\
00568 \n\
00569 \n\
00570 #######################################################################\n\
00571 # Calibration Parameters #\n\
00572 #######################################################################\n\
00573 # These are fixed during camera calibration. Their values will be the #\n\
00574 # same in all messages until the camera is recalibrated. Note that #\n\
00575 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00576 # #\n\
00577 # The internal parameters can be used to warp a raw (distorted) image #\n\
00578 # to: #\n\
00579 # 1. An undistorted image (requires D and K) #\n\
00580 # 2. A rectified image (requires D, K, R) #\n\
00581 # The projection matrix P projects 3D points into the rectified image.#\n\
00582 #######################################################################\n\
00583 \n\
00584 # The image dimensions with which the camera was calibrated. Normally\n\
00585 # this will be the full camera resolution in pixels.\n\
00586 uint32 height\n\
00587 uint32 width\n\
00588 \n\
00589 # The distortion model used. Supported models are listed in\n\
00590 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00591 # simple model of radial and tangential distortion - is sufficent.\n\
00592 string distortion_model\n\
00593 \n\
00594 # The distortion parameters, size depending on the distortion model.\n\
00595 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00596 float64[] D\n\
00597 \n\
00598 # Intrinsic camera matrix for the raw (distorted) images.\n\
00599 # [fx 0 cx]\n\
00600 # K = [ 0 fy cy]\n\
00601 # [ 0 0 1]\n\
00602 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00603 # coordinates using the focal lengths (fx, fy) and principal point\n\
00604 # (cx, cy).\n\
00605 float64[9] K # 3x3 row-major matrix\n\
00606 \n\
00607 # Rectification matrix (stereo cameras only)\n\
00608 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00609 # stereo image plane so that epipolar lines in both stereo images are\n\
00610 # parallel.\n\
00611 float64[9] R # 3x3 row-major matrix\n\
00612 \n\
00613 # Projection/camera matrix\n\
00614 # [fx' 0 cx' Tx]\n\
00615 # P = [ 0 fy' cy' Ty]\n\
00616 # [ 0 0 1 0]\n\
00617 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00618 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00619 # is the normal camera intrinsic matrix for the rectified image.\n\
00620 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00621 # coordinates using the focal lengths (fx', fy') and principal point\n\
00622 # (cx', cy') - these may differ from the values in K.\n\
00623 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00624 # also have R = the identity and P[1:3,1:3] = K.\n\
00625 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00626 # position of the optical center of the second camera in the first\n\
00627 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00628 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00629 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00630 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00631 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00632 # the rectified image is given by:\n\
00633 # [u v w]' = P * [X Y Z 1]'\n\
00634 # x = u / w\n\
00635 # y = v / w\n\
00636 # This holds for both images of a stereo pair.\n\
00637 float64[12] P # 3x4 row-major matrix\n\
00638 \n\
00639 \n\
00640 #######################################################################\n\
00641 # Operational Parameters #\n\
00642 #######################################################################\n\
00643 # These define the image region actually captured by the camera #\n\
00644 # driver. Although they affect the geometry of the output image, they #\n\
00645 # may be changed freely without recalibrating the camera. #\n\
00646 #######################################################################\n\
00647 \n\
00648 # Binning refers here to any camera setting which combines rectangular\n\
00649 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00650 # resolution of the output image to\n\
00651 # (width / binning_x) x (height / binning_y).\n\
00652 # The default values binning_x = binning_y = 0 is considered the same\n\
00653 # as binning_x = binning_y = 1 (no subsampling).\n\
00654 uint32 binning_x\n\
00655 uint32 binning_y\n\
00656 \n\
00657 # Region of interest (subwindow of full camera resolution), given in\n\
00658 # full resolution (unbinned) image coordinates. A particular ROI\n\
00659 # always denotes the same window of pixels on the camera sensor,\n\
00660 # regardless of binning settings.\n\
00661 # The default setting of roi (all values 0) is considered the same as\n\
00662 # full resolution (roi.width = width, roi.height = height).\n\
00663 RegionOfInterest roi\n\
00664 \n\
00665 ================================================================================\n\
00666 MSG: sensor_msgs/RegionOfInterest\n\
00667 # This message is used to specify a region of interest within an image.\n\
00668 #\n\
00669 # When used to specify the ROI setting of the camera when the image was\n\
00670 # taken, the height and width fields should either match the height and\n\
00671 # width fields for the associated image; or height = width = 0\n\
00672 # indicates that the full resolution image was captured.\n\
00673 \n\
00674 uint32 x_offset # Leftmost pixel of the ROI\n\
00675 # (0 if the ROI includes the left edge of the image)\n\
00676 uint32 y_offset # Topmost pixel of the ROI\n\
00677 # (0 if the ROI includes the top edge of the image)\n\
00678 uint32 height # Height of ROI\n\
00679 uint32 width # Width of ROI\n\
00680 \n\
00681 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00682 # ROI in this message. Typically this should be False if the full image\n\
00683 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00684 # used).\n\
00685 bool do_rectify\n\
00686 \n\
00687 ================================================================================\n\
00688 MSG: object_recognition_gui/ModelHypothesisList\n\
00689 ModelHypothesis[] hypotheses\n\
00690 \n\
00691 #initial guess if this can be a correct recognition result at all\n\
00692 bool accept\n\
00693 ================================================================================\n\
00694 MSG: object_recognition_gui/ModelHypothesis\n\
00695 #describes a hypothesis about a recognized object (mesh+pose)\n\
00696 \n\
00697 geometric_shapes_msgs/Shape mesh\n\
00698 geometry_msgs/PoseStamped pose\n\
00699 \n\
00700 ================================================================================\n\
00701 MSG: geometric_shapes_msgs/Shape\n\
00702 byte SPHERE=0\n\
00703 byte BOX=1\n\
00704 byte CYLINDER=2\n\
00705 byte MESH=3\n\
00706 \n\
00707 byte type\n\
00708 \n\
00709 \n\
00710 #### define sphere, box, cylinder ####\n\
00711 # the origin of each shape is considered at the shape's center\n\
00712 \n\
00713 # for sphere\n\
00714 # radius := dimensions[0]\n\
00715 \n\
00716 # for cylinder\n\
00717 # radius := dimensions[0]\n\
00718 # length := dimensions[1]\n\
00719 # the length is along the Z axis\n\
00720 \n\
00721 # for box\n\
00722 # size_x := dimensions[0]\n\
00723 # size_y := dimensions[1]\n\
00724 # size_z := dimensions[2]\n\
00725 float64[] dimensions\n\
00726 \n\
00727 \n\
00728 #### define mesh ####\n\
00729 \n\
00730 # list of triangles; triangle k is defined by tre vertices located\n\
00731 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00732 int32[] triangles\n\
00733 geometry_msgs/Point[] vertices\n\
00734 \n\
00735 ================================================================================\n\
00736 MSG: geometry_msgs/Point\n\
00737 # This contains the position of a point in free space\n\
00738 float64 x\n\
00739 float64 y\n\
00740 float64 z\n\
00741 \n\
00742 ================================================================================\n\
00743 MSG: geometry_msgs/PoseStamped\n\
00744 # A Pose with reference coordinate frame and timestamp\n\
00745 Header header\n\
00746 Pose pose\n\
00747 \n\
00748 ================================================================================\n\
00749 MSG: geometry_msgs/Pose\n\
00750 # A representation of pose in free space, composed of postion and orientation. \n\
00751 Point position\n\
00752 Quaternion orientation\n\
00753 \n\
00754 ================================================================================\n\
00755 MSG: geometry_msgs/Quaternion\n\
00756 # This represents an orientation in free space in quaternion form.\n\
00757 \n\
00758 float64 x\n\
00759 float64 y\n\
00760 float64 z\n\
00761 float64 w\n\
00762 \n\
00763 ";
00764 }
00765
00766 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> &) { return value(); }
00767 };
00768
00769 template<class ContainerAllocator> struct HasHeader< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00770 template<class ContainerAllocator> struct HasHeader< const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00771 }
00772 }
00773
00774 namespace ros
00775 {
00776 namespace serialization
00777 {
00778
00779 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> >
00780 {
00781 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00782 {
00783 stream.next(m.header);
00784 stream.next(m.goal_id);
00785 stream.next(m.goal);
00786 }
00787
00788 ROS_DECLARE_ALLINONE_SERIALIZER;
00789 };
00790 }
00791 }
00792
00793 namespace ros
00794 {
00795 namespace message_operations
00796 {
00797
00798 template<class ContainerAllocator>
00799 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> >
00800 {
00801 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> & v)
00802 {
00803 s << indent << "header: ";
00804 s << std::endl;
00805 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00806 s << indent << "goal_id: ";
00807 s << std::endl;
00808 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
00809 s << indent << "goal: ";
00810 s << std::endl;
00811 Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
00812 }
00813 };
00814
00815
00816 }
00817 }
00818
00819 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTIONGOAL_H
00820