00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "sensor_msgs/PointCloud2.h"
00014 #include "sensor_msgs/Image.h"
00015 #include "sensor_msgs/Image.h"
00016 #include "sensor_msgs/CameraInfo.h"
00017
00018 namespace object_manipulation_msgs
00019 {
00020 template <class ContainerAllocator>
00021 struct SceneRegion_ : public ros::Message
00022 {
00023 typedef SceneRegion_<ContainerAllocator> Type;
00024
00025 SceneRegion_()
00026 : cloud()
00027 , mask()
00028 , image()
00029 , disparity_image()
00030 , cam_info()
00031 {
00032 }
00033
00034 SceneRegion_(const ContainerAllocator& _alloc)
00035 : cloud(_alloc)
00036 , mask(_alloc)
00037 , image(_alloc)
00038 , disparity_image(_alloc)
00039 , cam_info(_alloc)
00040 {
00041 }
00042
00043 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _cloud_type;
00044 ::sensor_msgs::PointCloud2_<ContainerAllocator> cloud;
00045
00046 typedef std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > _mask_type;
00047 std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > mask;
00048
00049 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00050 ::sensor_msgs::Image_<ContainerAllocator> image;
00051
00052 typedef ::sensor_msgs::Image_<ContainerAllocator> _disparity_image_type;
00053 ::sensor_msgs::Image_<ContainerAllocator> disparity_image;
00054
00055 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type;
00056 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info;
00057
00058
00059 ROS_DEPRECATED uint32_t get_mask_size() const { return (uint32_t)mask.size(); }
00060 ROS_DEPRECATED void set_mask_size(uint32_t size) { mask.resize((size_t)size); }
00061 ROS_DEPRECATED void get_mask_vec(std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > & vec) const { vec = this->mask; }
00062 ROS_DEPRECATED void set_mask_vec(const std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > & vec) { this->mask = vec; }
00063 private:
00064 static const char* __s_getDataType_() { return "object_manipulation_msgs/SceneRegion"; }
00065 public:
00066 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00067
00068 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00069
00070 private:
00071 static const char* __s_getMD5Sum_() { return "5cf8210531851d9a98f7d3766ec39ce2"; }
00072 public:
00073 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00074
00075 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00076
00077 private:
00078 static const char* __s_getMessageDefinition_() { return "# Point cloud\n\
00079 sensor_msgs/PointCloud2 cloud\n\
00080 \n\
00081 # Indices for the region of interest\n\
00082 int32[] mask\n\
00083 \n\
00084 # One of the corresponding 2D images, if applicable\n\
00085 sensor_msgs/Image image\n\
00086 \n\
00087 # The disparity image, if applicable\n\
00088 sensor_msgs/Image disparity_image\n\
00089 \n\
00090 # Camera info for the camera that took the image\n\
00091 sensor_msgs/CameraInfo cam_info\n\
00092 \n\
00093 ================================================================================\n\
00094 MSG: sensor_msgs/PointCloud2\n\
00095 # This message holds a collection of N-dimensional points, which may\n\
00096 # contain additional information such as normals, intensity, etc. The\n\
00097 # point data is stored as a binary blob, its layout described by the\n\
00098 # contents of the \"fields\" array.\n\
00099 \n\
00100 # The point cloud data may be organized 2d (image-like) or 1d\n\
00101 # (unordered). Point clouds organized as 2d images may be produced by\n\
00102 # camera depth sensors such as stereo or time-of-flight.\n\
00103 \n\
00104 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00105 # points).\n\
00106 Header header\n\
00107 \n\
00108 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00109 # 1 and width is the length of the point cloud.\n\
00110 uint32 height\n\
00111 uint32 width\n\
00112 \n\
00113 # Describes the channels and their layout in the binary data blob.\n\
00114 PointField[] fields\n\
00115 \n\
00116 bool is_bigendian # Is this data bigendian?\n\
00117 uint32 point_step # Length of a point in bytes\n\
00118 uint32 row_step # Length of a row in bytes\n\
00119 uint8[] data # Actual point data, size is (row_step*height)\n\
00120 \n\
00121 bool is_dense # True if there are no invalid points\n\
00122 \n\
00123 ================================================================================\n\
00124 MSG: std_msgs/Header\n\
00125 # Standard metadata for higher-level stamped data types.\n\
00126 # This is generally used to communicate timestamped data \n\
00127 # in a particular coordinate frame.\n\
00128 # \n\
00129 # sequence ID: consecutively increasing ID \n\
00130 uint32 seq\n\
00131 #Two-integer timestamp that is expressed as:\n\
00132 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00133 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00134 # time-handling sugar is provided by the client library\n\
00135 time stamp\n\
00136 #Frame this data is associated with\n\
00137 # 0: no frame\n\
00138 # 1: global frame\n\
00139 string frame_id\n\
00140 \n\
00141 ================================================================================\n\
00142 MSG: sensor_msgs/PointField\n\
00143 # This message holds the description of one point entry in the\n\
00144 # PointCloud2 message format.\n\
00145 uint8 INT8 = 1\n\
00146 uint8 UINT8 = 2\n\
00147 uint8 INT16 = 3\n\
00148 uint8 UINT16 = 4\n\
00149 uint8 INT32 = 5\n\
00150 uint8 UINT32 = 6\n\
00151 uint8 FLOAT32 = 7\n\
00152 uint8 FLOAT64 = 8\n\
00153 \n\
00154 string name # Name of field\n\
00155 uint32 offset # Offset from start of point struct\n\
00156 uint8 datatype # Datatype enumeration, see above\n\
00157 uint32 count # How many elements in the field\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: sensor_msgs/Image\n\
00161 # This message contains an uncompressed image\n\
00162 # (0, 0) is at top-left corner of image\n\
00163 #\n\
00164 \n\
00165 Header header # Header timestamp should be acquisition time of image\n\
00166 # Header frame_id should be optical frame of camera\n\
00167 # origin of frame should be optical center of cameara\n\
00168 # +x should point to the right in the image\n\
00169 # +y should point down in the image\n\
00170 # +z should point into to plane of the image\n\
00171 # If the frame_id here and the frame_id of the CameraInfo\n\
00172 # message associated with the image conflict\n\
00173 # the behavior is undefined\n\
00174 \n\
00175 uint32 height # image height, that is, number of rows\n\
00176 uint32 width # image width, that is, number of columns\n\
00177 \n\
00178 # The legal values for encoding are in file src/image_encodings.cpp\n\
00179 # If you want to standardize a new string format, join\n\
00180 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00181 \n\
00182 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00183 # taken from the list of strings in src/image_encodings.cpp\n\
00184 \n\
00185 uint8 is_bigendian # is this data bigendian?\n\
00186 uint32 step # Full row length in bytes\n\
00187 uint8[] data # actual matrix data, size is (step * rows)\n\
00188 \n\
00189 ================================================================================\n\
00190 MSG: sensor_msgs/CameraInfo\n\
00191 # This message defines meta information for a camera. It should be in a\n\
00192 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00193 # image topics named:\n\
00194 #\n\
00195 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00196 # image - monochrome, distorted\n\
00197 # image_color - color, distorted\n\
00198 # image_rect - monochrome, rectified\n\
00199 # image_rect_color - color, rectified\n\
00200 #\n\
00201 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00202 # for producing the four processed image topics from image_raw and\n\
00203 # camera_info. The meaning of the camera parameters are described in\n\
00204 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00205 #\n\
00206 # The image_geometry package provides a user-friendly interface to\n\
00207 # common operations using this meta information. If you want to, e.g.,\n\
00208 # project a 3d point into image coordinates, we strongly recommend\n\
00209 # using image_geometry.\n\
00210 #\n\
00211 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00212 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00213 # indicates an uncalibrated camera.\n\
00214 \n\
00215 #######################################################################\n\
00216 # Image acquisition info #\n\
00217 #######################################################################\n\
00218 \n\
00219 # Time of image acquisition, camera coordinate frame ID\n\
00220 Header header # Header timestamp should be acquisition time of image\n\
00221 # Header frame_id should be optical frame of camera\n\
00222 # origin of frame should be optical center of camera\n\
00223 # +x should point to the right in the image\n\
00224 # +y should point down in the image\n\
00225 # +z should point into the plane of the image\n\
00226 \n\
00227 \n\
00228 #######################################################################\n\
00229 # Calibration Parameters #\n\
00230 #######################################################################\n\
00231 # These are fixed during camera calibration. Their values will be the #\n\
00232 # same in all messages until the camera is recalibrated. Note that #\n\
00233 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00234 # #\n\
00235 # The internal parameters can be used to warp a raw (distorted) image #\n\
00236 # to: #\n\
00237 # 1. An undistorted image (requires D and K) #\n\
00238 # 2. A rectified image (requires D, K, R) #\n\
00239 # The projection matrix P projects 3D points into the rectified image.#\n\
00240 #######################################################################\n\
00241 \n\
00242 # The image dimensions with which the camera was calibrated. Normally\n\
00243 # this will be the full camera resolution in pixels.\n\
00244 uint32 height\n\
00245 uint32 width\n\
00246 \n\
00247 # The distortion model used. Supported models are listed in\n\
00248 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00249 # simple model of radial and tangential distortion - is sufficent.\n\
00250 string distortion_model\n\
00251 \n\
00252 # The distortion parameters, size depending on the distortion model.\n\
00253 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00254 float64[] D\n\
00255 \n\
00256 # Intrinsic camera matrix for the raw (distorted) images.\n\
00257 # [fx 0 cx]\n\
00258 # K = [ 0 fy cy]\n\
00259 # [ 0 0 1]\n\
00260 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00261 # coordinates using the focal lengths (fx, fy) and principal point\n\
00262 # (cx, cy).\n\
00263 float64[9] K # 3x3 row-major matrix\n\
00264 \n\
00265 # Rectification matrix (stereo cameras only)\n\
00266 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00267 # stereo image plane so that epipolar lines in both stereo images are\n\
00268 # parallel.\n\
00269 float64[9] R # 3x3 row-major matrix\n\
00270 \n\
00271 # Projection/camera matrix\n\
00272 # [fx' 0 cx' Tx]\n\
00273 # P = [ 0 fy' cy' Ty]\n\
00274 # [ 0 0 1 0]\n\
00275 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00276 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00277 # is the normal camera intrinsic matrix for the rectified image.\n\
00278 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00279 # coordinates using the focal lengths (fx', fy') and principal point\n\
00280 # (cx', cy') - these may differ from the values in K.\n\
00281 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00282 # also have R = the identity and P[1:3,1:3] = K.\n\
00283 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00284 # position of the optical center of the second camera in the first\n\
00285 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00286 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00287 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00288 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00289 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00290 # the rectified image is given by:\n\
00291 # [u v w]' = P * [X Y Z 1]'\n\
00292 # x = u / w\n\
00293 # y = v / w\n\
00294 # This holds for both images of a stereo pair.\n\
00295 float64[12] P # 3x4 row-major matrix\n\
00296 \n\
00297 \n\
00298 #######################################################################\n\
00299 # Operational Parameters #\n\
00300 #######################################################################\n\
00301 # These define the image region actually captured by the camera #\n\
00302 # driver. Although they affect the geometry of the output image, they #\n\
00303 # may be changed freely without recalibrating the camera. #\n\
00304 #######################################################################\n\
00305 \n\
00306 # Binning refers here to any camera setting which combines rectangular\n\
00307 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00308 # resolution of the output image to\n\
00309 # (width / binning_x) x (height / binning_y).\n\
00310 # The default values binning_x = binning_y = 0 is considered the same\n\
00311 # as binning_x = binning_y = 1 (no subsampling).\n\
00312 uint32 binning_x\n\
00313 uint32 binning_y\n\
00314 \n\
00315 # Region of interest (subwindow of full camera resolution), given in\n\
00316 # full resolution (unbinned) image coordinates. A particular ROI\n\
00317 # always denotes the same window of pixels on the camera sensor,\n\
00318 # regardless of binning settings.\n\
00319 # The default setting of roi (all values 0) is considered the same as\n\
00320 # full resolution (roi.width = width, roi.height = height).\n\
00321 RegionOfInterest roi\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: sensor_msgs/RegionOfInterest\n\
00325 # This message is used to specify a region of interest within an image.\n\
00326 #\n\
00327 # When used to specify the ROI setting of the camera when the image was\n\
00328 # taken, the height and width fields should either match the height and\n\
00329 # width fields for the associated image; or height = width = 0\n\
00330 # indicates that the full resolution image was captured.\n\
00331 \n\
00332 uint32 x_offset # Leftmost pixel of the ROI\n\
00333 # (0 if the ROI includes the left edge of the image)\n\
00334 uint32 y_offset # Topmost pixel of the ROI\n\
00335 # (0 if the ROI includes the top edge of the image)\n\
00336 uint32 height # Height of ROI\n\
00337 uint32 width # Width of ROI\n\
00338 \n\
00339 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00340 # ROI in this message. Typically this should be False if the full image\n\
00341 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00342 # used).\n\
00343 bool do_rectify\n\
00344 \n\
00345 "; }
00346 public:
00347 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00348
00349 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00350
00351 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00352 {
00353 ros::serialization::OStream stream(write_ptr, 1000000000);
00354 ros::serialization::serialize(stream, cloud);
00355 ros::serialization::serialize(stream, mask);
00356 ros::serialization::serialize(stream, image);
00357 ros::serialization::serialize(stream, disparity_image);
00358 ros::serialization::serialize(stream, cam_info);
00359 return stream.getData();
00360 }
00361
00362 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00363 {
00364 ros::serialization::IStream stream(read_ptr, 1000000000);
00365 ros::serialization::deserialize(stream, cloud);
00366 ros::serialization::deserialize(stream, mask);
00367 ros::serialization::deserialize(stream, image);
00368 ros::serialization::deserialize(stream, disparity_image);
00369 ros::serialization::deserialize(stream, cam_info);
00370 return stream.getData();
00371 }
00372
00373 ROS_DEPRECATED virtual uint32_t serializationLength() const
00374 {
00375 uint32_t size = 0;
00376 size += ros::serialization::serializationLength(cloud);
00377 size += ros::serialization::serializationLength(mask);
00378 size += ros::serialization::serializationLength(image);
00379 size += ros::serialization::serializationLength(disparity_image);
00380 size += ros::serialization::serializationLength(cam_info);
00381 return size;
00382 }
00383
00384 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > Ptr;
00385 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> const> ConstPtr;
00386 };
00387 typedef ::object_manipulation_msgs::SceneRegion_<std::allocator<void> > SceneRegion;
00388
00389 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion> SceneRegionPtr;
00390 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion const> SceneRegionConstPtr;
00391
00392
00393 template<typename ContainerAllocator>
00394 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v)
00395 {
00396 ros::message_operations::Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, "", v);
00397 return s;}
00398
00399 }
00400
00401 namespace ros
00402 {
00403 namespace message_traits
00404 {
00405 template<class ContainerAllocator>
00406 struct MD5Sum< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00407 static const char* value()
00408 {
00409 return "5cf8210531851d9a98f7d3766ec39ce2";
00410 }
00411
00412 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); }
00413 static const uint64_t static_value1 = 0x5cf8210531851d9aULL;
00414 static const uint64_t static_value2 = 0x98f7d3766ec39ce2ULL;
00415 };
00416
00417 template<class ContainerAllocator>
00418 struct DataType< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00419 static const char* value()
00420 {
00421 return "object_manipulation_msgs/SceneRegion";
00422 }
00423
00424 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); }
00425 };
00426
00427 template<class ContainerAllocator>
00428 struct Definition< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00429 static const char* value()
00430 {
00431 return "# Point cloud\n\
00432 sensor_msgs/PointCloud2 cloud\n\
00433 \n\
00434 # Indices for the region of interest\n\
00435 int32[] mask\n\
00436 \n\
00437 # One of the corresponding 2D images, if applicable\n\
00438 sensor_msgs/Image image\n\
00439 \n\
00440 # The disparity image, if applicable\n\
00441 sensor_msgs/Image disparity_image\n\
00442 \n\
00443 # Camera info for the camera that took the image\n\
00444 sensor_msgs/CameraInfo cam_info\n\
00445 \n\
00446 ================================================================================\n\
00447 MSG: sensor_msgs/PointCloud2\n\
00448 # This message holds a collection of N-dimensional points, which may\n\
00449 # contain additional information such as normals, intensity, etc. The\n\
00450 # point data is stored as a binary blob, its layout described by the\n\
00451 # contents of the \"fields\" array.\n\
00452 \n\
00453 # The point cloud data may be organized 2d (image-like) or 1d\n\
00454 # (unordered). Point clouds organized as 2d images may be produced by\n\
00455 # camera depth sensors such as stereo or time-of-flight.\n\
00456 \n\
00457 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00458 # points).\n\
00459 Header header\n\
00460 \n\
00461 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00462 # 1 and width is the length of the point cloud.\n\
00463 uint32 height\n\
00464 uint32 width\n\
00465 \n\
00466 # Describes the channels and their layout in the binary data blob.\n\
00467 PointField[] fields\n\
00468 \n\
00469 bool is_bigendian # Is this data bigendian?\n\
00470 uint32 point_step # Length of a point in bytes\n\
00471 uint32 row_step # Length of a row in bytes\n\
00472 uint8[] data # Actual point data, size is (row_step*height)\n\
00473 \n\
00474 bool is_dense # True if there are no invalid points\n\
00475 \n\
00476 ================================================================================\n\
00477 MSG: std_msgs/Header\n\
00478 # Standard metadata for higher-level stamped data types.\n\
00479 # This is generally used to communicate timestamped data \n\
00480 # in a particular coordinate frame.\n\
00481 # \n\
00482 # sequence ID: consecutively increasing ID \n\
00483 uint32 seq\n\
00484 #Two-integer timestamp that is expressed as:\n\
00485 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00486 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00487 # time-handling sugar is provided by the client library\n\
00488 time stamp\n\
00489 #Frame this data is associated with\n\
00490 # 0: no frame\n\
00491 # 1: global frame\n\
00492 string frame_id\n\
00493 \n\
00494 ================================================================================\n\
00495 MSG: sensor_msgs/PointField\n\
00496 # This message holds the description of one point entry in the\n\
00497 # PointCloud2 message format.\n\
00498 uint8 INT8 = 1\n\
00499 uint8 UINT8 = 2\n\
00500 uint8 INT16 = 3\n\
00501 uint8 UINT16 = 4\n\
00502 uint8 INT32 = 5\n\
00503 uint8 UINT32 = 6\n\
00504 uint8 FLOAT32 = 7\n\
00505 uint8 FLOAT64 = 8\n\
00506 \n\
00507 string name # Name of field\n\
00508 uint32 offset # Offset from start of point struct\n\
00509 uint8 datatype # Datatype enumeration, see above\n\
00510 uint32 count # How many elements in the field\n\
00511 \n\
00512 ================================================================================\n\
00513 MSG: sensor_msgs/Image\n\
00514 # This message contains an uncompressed image\n\
00515 # (0, 0) is at top-left corner of image\n\
00516 #\n\
00517 \n\
00518 Header header # Header timestamp should be acquisition time of image\n\
00519 # Header frame_id should be optical frame of camera\n\
00520 # origin of frame should be optical center of cameara\n\
00521 # +x should point to the right in the image\n\
00522 # +y should point down in the image\n\
00523 # +z should point into to plane of the image\n\
00524 # If the frame_id here and the frame_id of the CameraInfo\n\
00525 # message associated with the image conflict\n\
00526 # the behavior is undefined\n\
00527 \n\
00528 uint32 height # image height, that is, number of rows\n\
00529 uint32 width # image width, that is, number of columns\n\
00530 \n\
00531 # The legal values for encoding are in file src/image_encodings.cpp\n\
00532 # If you want to standardize a new string format, join\n\
00533 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00534 \n\
00535 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00536 # taken from the list of strings in src/image_encodings.cpp\n\
00537 \n\
00538 uint8 is_bigendian # is this data bigendian?\n\
00539 uint32 step # Full row length in bytes\n\
00540 uint8[] data # actual matrix data, size is (step * rows)\n\
00541 \n\
00542 ================================================================================\n\
00543 MSG: sensor_msgs/CameraInfo\n\
00544 # This message defines meta information for a camera. It should be in a\n\
00545 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00546 # image topics named:\n\
00547 #\n\
00548 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00549 # image - monochrome, distorted\n\
00550 # image_color - color, distorted\n\
00551 # image_rect - monochrome, rectified\n\
00552 # image_rect_color - color, rectified\n\
00553 #\n\
00554 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00555 # for producing the four processed image topics from image_raw and\n\
00556 # camera_info. The meaning of the camera parameters are described in\n\
00557 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00558 #\n\
00559 # The image_geometry package provides a user-friendly interface to\n\
00560 # common operations using this meta information. If you want to, e.g.,\n\
00561 # project a 3d point into image coordinates, we strongly recommend\n\
00562 # using image_geometry.\n\
00563 #\n\
00564 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00565 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00566 # indicates an uncalibrated camera.\n\
00567 \n\
00568 #######################################################################\n\
00569 # Image acquisition info #\n\
00570 #######################################################################\n\
00571 \n\
00572 # Time of image acquisition, camera coordinate frame ID\n\
00573 Header header # Header timestamp should be acquisition time of image\n\
00574 # Header frame_id should be optical frame of camera\n\
00575 # origin of frame should be optical center of camera\n\
00576 # +x should point to the right in the image\n\
00577 # +y should point down in the image\n\
00578 # +z should point into the plane of the image\n\
00579 \n\
00580 \n\
00581 #######################################################################\n\
00582 # Calibration Parameters #\n\
00583 #######################################################################\n\
00584 # These are fixed during camera calibration. Their values will be the #\n\
00585 # same in all messages until the camera is recalibrated. Note that #\n\
00586 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00587 # #\n\
00588 # The internal parameters can be used to warp a raw (distorted) image #\n\
00589 # to: #\n\
00590 # 1. An undistorted image (requires D and K) #\n\
00591 # 2. A rectified image (requires D, K, R) #\n\
00592 # The projection matrix P projects 3D points into the rectified image.#\n\
00593 #######################################################################\n\
00594 \n\
00595 # The image dimensions with which the camera was calibrated. Normally\n\
00596 # this will be the full camera resolution in pixels.\n\
00597 uint32 height\n\
00598 uint32 width\n\
00599 \n\
00600 # The distortion model used. Supported models are listed in\n\
00601 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00602 # simple model of radial and tangential distortion - is sufficent.\n\
00603 string distortion_model\n\
00604 \n\
00605 # The distortion parameters, size depending on the distortion model.\n\
00606 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00607 float64[] D\n\
00608 \n\
00609 # Intrinsic camera matrix for the raw (distorted) images.\n\
00610 # [fx 0 cx]\n\
00611 # K = [ 0 fy cy]\n\
00612 # [ 0 0 1]\n\
00613 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00614 # coordinates using the focal lengths (fx, fy) and principal point\n\
00615 # (cx, cy).\n\
00616 float64[9] K # 3x3 row-major matrix\n\
00617 \n\
00618 # Rectification matrix (stereo cameras only)\n\
00619 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00620 # stereo image plane so that epipolar lines in both stereo images are\n\
00621 # parallel.\n\
00622 float64[9] R # 3x3 row-major matrix\n\
00623 \n\
00624 # Projection/camera matrix\n\
00625 # [fx' 0 cx' Tx]\n\
00626 # P = [ 0 fy' cy' Ty]\n\
00627 # [ 0 0 1 0]\n\
00628 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00629 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00630 # is the normal camera intrinsic matrix for the rectified image.\n\
00631 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00632 # coordinates using the focal lengths (fx', fy') and principal point\n\
00633 # (cx', cy') - these may differ from the values in K.\n\
00634 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00635 # also have R = the identity and P[1:3,1:3] = K.\n\
00636 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00637 # position of the optical center of the second camera in the first\n\
00638 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00639 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00640 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00641 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00642 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00643 # the rectified image is given by:\n\
00644 # [u v w]' = P * [X Y Z 1]'\n\
00645 # x = u / w\n\
00646 # y = v / w\n\
00647 # This holds for both images of a stereo pair.\n\
00648 float64[12] P # 3x4 row-major matrix\n\
00649 \n\
00650 \n\
00651 #######################################################################\n\
00652 # Operational Parameters #\n\
00653 #######################################################################\n\
00654 # These define the image region actually captured by the camera #\n\
00655 # driver. Although they affect the geometry of the output image, they #\n\
00656 # may be changed freely without recalibrating the camera. #\n\
00657 #######################################################################\n\
00658 \n\
00659 # Binning refers here to any camera setting which combines rectangular\n\
00660 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00661 # resolution of the output image to\n\
00662 # (width / binning_x) x (height / binning_y).\n\
00663 # The default values binning_x = binning_y = 0 is considered the same\n\
00664 # as binning_x = binning_y = 1 (no subsampling).\n\
00665 uint32 binning_x\n\
00666 uint32 binning_y\n\
00667 \n\
00668 # Region of interest (subwindow of full camera resolution), given in\n\
00669 # full resolution (unbinned) image coordinates. A particular ROI\n\
00670 # always denotes the same window of pixels on the camera sensor,\n\
00671 # regardless of binning settings.\n\
00672 # The default setting of roi (all values 0) is considered the same as\n\
00673 # full resolution (roi.width = width, roi.height = height).\n\
00674 RegionOfInterest roi\n\
00675 \n\
00676 ================================================================================\n\
00677 MSG: sensor_msgs/RegionOfInterest\n\
00678 # This message is used to specify a region of interest within an image.\n\
00679 #\n\
00680 # When used to specify the ROI setting of the camera when the image was\n\
00681 # taken, the height and width fields should either match the height and\n\
00682 # width fields for the associated image; or height = width = 0\n\
00683 # indicates that the full resolution image was captured.\n\
00684 \n\
00685 uint32 x_offset # Leftmost pixel of the ROI\n\
00686 # (0 if the ROI includes the left edge of the image)\n\
00687 uint32 y_offset # Topmost pixel of the ROI\n\
00688 # (0 if the ROI includes the top edge of the image)\n\
00689 uint32 height # Height of ROI\n\
00690 uint32 width # Width of ROI\n\
00691 \n\
00692 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00693 # ROI in this message. Typically this should be False if the full image\n\
00694 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00695 # used).\n\
00696 bool do_rectify\n\
00697 \n\
00698 ";
00699 }
00700
00701 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); }
00702 };
00703
00704 }
00705 }
00706
00707 namespace ros
00708 {
00709 namespace serialization
00710 {
00711
00712 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >
00713 {
00714 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00715 {
00716 stream.next(m.cloud);
00717 stream.next(m.mask);
00718 stream.next(m.image);
00719 stream.next(m.disparity_image);
00720 stream.next(m.cam_info);
00721 }
00722
00723 ROS_DECLARE_ALLINONE_SERIALIZER;
00724 };
00725 }
00726 }
00727
00728 namespace ros
00729 {
00730 namespace message_operations
00731 {
00732
00733 template<class ContainerAllocator>
00734 struct Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >
00735 {
00736 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v)
00737 {
00738 s << indent << "cloud: ";
00739 s << std::endl;
00740 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.cloud);
00741 s << indent << "mask[]" << std::endl;
00742 for (size_t i = 0; i < v.mask.size(); ++i)
00743 {
00744 s << indent << " mask[" << i << "]: ";
00745 Printer<int32_t>::stream(s, indent + " ", v.mask[i]);
00746 }
00747 s << indent << "image: ";
00748 s << std::endl;
00749 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00750 s << indent << "disparity_image: ";
00751 s << std::endl;
00752 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.disparity_image);
00753 s << indent << "cam_info: ";
00754 s << std::endl;
00755 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info);
00756 }
00757 };
00758
00759
00760 }
00761 }
00762
00763 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00764