00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/GraspableObject.h"
00014 #include "object_manipulation_msgs/GripperTranslation.h"
00015 #include "trajectory_msgs/JointTrajectory.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct ReactiveLiftGoal_ : public ros::Message
00021 {
00022 typedef ReactiveLiftGoal_<ContainerAllocator> Type;
00023
00024 ReactiveLiftGoal_()
00025 : arm_name()
00026 , target()
00027 , lift()
00028 , trajectory()
00029 , collision_support_surface_name()
00030 {
00031 }
00032
00033 ReactiveLiftGoal_(const ContainerAllocator& _alloc)
00034 : arm_name(_alloc)
00035 , target(_alloc)
00036 , lift(_alloc)
00037 , trajectory(_alloc)
00038 , collision_support_surface_name(_alloc)
00039 {
00040 }
00041
00042 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00043 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00044
00045 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00046 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00047
00048 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type;
00049 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift;
00050
00051 typedef ::trajectory_msgs::JointTrajectory_<ContainerAllocator> _trajectory_type;
00052 ::trajectory_msgs::JointTrajectory_<ContainerAllocator> trajectory;
00053
00054 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00055 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00056
00057
00058 private:
00059 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftGoal"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00062
00063 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00064
00065 private:
00066 static const char* __s_getMD5Sum_() { return "c5d7dd2610fb62ca9947651273fb77c1"; }
00067 public:
00068 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00069
00070 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00071
00072 private:
00073 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00074 \n\
00075 # the name of the arm being used\n\
00076 string arm_name\n\
00077 \n\
00078 # the object to be grasped\n\
00079 GraspableObject target\n\
00080 \n\
00081 # How the object should be lifted \n\
00082 GripperTranslation lift\n\
00083 \n\
00084 # the joint trajectory to use for the approach (if available)\n\
00085 # this trajectory is expected to start at the current pose of the gripper\n\
00086 # and end at the desired grasp pose\n\
00087 trajectory_msgs/JointTrajectory trajectory\n\
00088 \n\
00089 # the name of the support surface in the collision environment, if any\n\
00090 string collision_support_surface_name\n\
00091 \n\
00092 \n\
00093 ================================================================================\n\
00094 MSG: object_manipulation_msgs/GraspableObject\n\
00095 # an object that the object_manipulator can work on\n\
00096 \n\
00097 # a graspable object can be represented in multiple ways. This message\n\
00098 # can contain all of them. Which one is actually used is up to the receiver\n\
00099 # of this message. When adding new representations, one must be careful that\n\
00100 # they have reasonable lightweight defaults indicating that that particular\n\
00101 # representation is not available.\n\
00102 \n\
00103 # the tf frame to be used as a reference frame when combining information from\n\
00104 # the different representations below\n\
00105 string reference_frame_id\n\
00106 \n\
00107 # potential recognition results from a database of models\n\
00108 # all poses are relative to the object reference pose\n\
00109 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00110 \n\
00111 # the point cloud itself\n\
00112 sensor_msgs/PointCloud cluster\n\
00113 \n\
00114 # a region of a PointCloud2 of interest\n\
00115 object_manipulation_msgs/SceneRegion region\n\
00116 \n\
00117 \n\
00118 ================================================================================\n\
00119 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00120 # Informs that a specific model from the Model Database has been \n\
00121 # identified at a certain location\n\
00122 \n\
00123 # the database id of the model\n\
00124 int32 model_id\n\
00125 \n\
00126 # the pose that it can be found in\n\
00127 geometry_msgs/PoseStamped pose\n\
00128 \n\
00129 # a measure of the confidence level in this detection result\n\
00130 float32 confidence\n\
00131 ================================================================================\n\
00132 MSG: geometry_msgs/PoseStamped\n\
00133 # A Pose with reference coordinate frame and timestamp\n\
00134 Header header\n\
00135 Pose pose\n\
00136 \n\
00137 ================================================================================\n\
00138 MSG: std_msgs/Header\n\
00139 # Standard metadata for higher-level stamped data types.\n\
00140 # This is generally used to communicate timestamped data \n\
00141 # in a particular coordinate frame.\n\
00142 # \n\
00143 # sequence ID: consecutively increasing ID \n\
00144 uint32 seq\n\
00145 #Two-integer timestamp that is expressed as:\n\
00146 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00147 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00148 # time-handling sugar is provided by the client library\n\
00149 time stamp\n\
00150 #Frame this data is associated with\n\
00151 # 0: no frame\n\
00152 # 1: global frame\n\
00153 string frame_id\n\
00154 \n\
00155 ================================================================================\n\
00156 MSG: geometry_msgs/Pose\n\
00157 # A representation of pose in free space, composed of postion and orientation. \n\
00158 Point position\n\
00159 Quaternion orientation\n\
00160 \n\
00161 ================================================================================\n\
00162 MSG: geometry_msgs/Point\n\
00163 # This contains the position of a point in free space\n\
00164 float64 x\n\
00165 float64 y\n\
00166 float64 z\n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: geometry_msgs/Quaternion\n\
00170 # This represents an orientation in free space in quaternion form.\n\
00171 \n\
00172 float64 x\n\
00173 float64 y\n\
00174 float64 z\n\
00175 float64 w\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: sensor_msgs/PointCloud\n\
00179 # This message holds a collection of 3d points, plus optional additional\n\
00180 # information about each point.\n\
00181 \n\
00182 # Time of sensor data acquisition, coordinate frame ID.\n\
00183 Header header\n\
00184 \n\
00185 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00186 # in the frame given in the header.\n\
00187 geometry_msgs/Point32[] points\n\
00188 \n\
00189 # Each channel should have the same number of elements as points array,\n\
00190 # and the data in each channel should correspond 1:1 with each point.\n\
00191 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00192 ChannelFloat32[] channels\n\
00193 \n\
00194 ================================================================================\n\
00195 MSG: geometry_msgs/Point32\n\
00196 # This contains the position of a point in free space(with 32 bits of precision).\n\
00197 # It is recommeded to use Point wherever possible instead of Point32. \n\
00198 # \n\
00199 # This recommendation is to promote interoperability. \n\
00200 #\n\
00201 # This message is designed to take up less space when sending\n\
00202 # lots of points at once, as in the case of a PointCloud. \n\
00203 \n\
00204 float32 x\n\
00205 float32 y\n\
00206 float32 z\n\
00207 ================================================================================\n\
00208 MSG: sensor_msgs/ChannelFloat32\n\
00209 # This message is used by the PointCloud message to hold optional data\n\
00210 # associated with each point in the cloud. The length of the values\n\
00211 # array should be the same as the length of the points array in the\n\
00212 # PointCloud, and each value should be associated with the corresponding\n\
00213 # point.\n\
00214 \n\
00215 # Channel names in existing practice include:\n\
00216 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00217 # This is opposite to usual conventions but remains for\n\
00218 # historical reasons. The newer PointCloud2 message has no\n\
00219 # such problem.\n\
00220 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00221 # (R,G,B) values packed into the least significant 24 bits,\n\
00222 # in order.\n\
00223 # \"intensity\" - laser or pixel intensity.\n\
00224 # \"distance\"\n\
00225 \n\
00226 # The channel name should give semantics of the channel (e.g.\n\
00227 # \"intensity\" instead of \"value\").\n\
00228 string name\n\
00229 \n\
00230 # The values array should be 1-1 with the elements of the associated\n\
00231 # PointCloud.\n\
00232 float32[] values\n\
00233 \n\
00234 ================================================================================\n\
00235 MSG: object_manipulation_msgs/SceneRegion\n\
00236 # Point cloud\n\
00237 sensor_msgs/PointCloud2 cloud\n\
00238 \n\
00239 # Indices for the region of interest\n\
00240 int32[] mask\n\
00241 \n\
00242 # One of the corresponding 2D images, if applicable\n\
00243 sensor_msgs/Image image\n\
00244 \n\
00245 # The disparity image, if applicable\n\
00246 sensor_msgs/Image disparity_image\n\
00247 \n\
00248 # Camera info for the camera that took the image\n\
00249 sensor_msgs/CameraInfo cam_info\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: sensor_msgs/PointCloud2\n\
00253 # This message holds a collection of N-dimensional points, which may\n\
00254 # contain additional information such as normals, intensity, etc. The\n\
00255 # point data is stored as a binary blob, its layout described by the\n\
00256 # contents of the \"fields\" array.\n\
00257 \n\
00258 # The point cloud data may be organized 2d (image-like) or 1d\n\
00259 # (unordered). Point clouds organized as 2d images may be produced by\n\
00260 # camera depth sensors such as stereo or time-of-flight.\n\
00261 \n\
00262 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00263 # points).\n\
00264 Header header\n\
00265 \n\
00266 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00267 # 1 and width is the length of the point cloud.\n\
00268 uint32 height\n\
00269 uint32 width\n\
00270 \n\
00271 # Describes the channels and their layout in the binary data blob.\n\
00272 PointField[] fields\n\
00273 \n\
00274 bool is_bigendian # Is this data bigendian?\n\
00275 uint32 point_step # Length of a point in bytes\n\
00276 uint32 row_step # Length of a row in bytes\n\
00277 uint8[] data # Actual point data, size is (row_step*height)\n\
00278 \n\
00279 bool is_dense # True if there are no invalid points\n\
00280 \n\
00281 ================================================================================\n\
00282 MSG: sensor_msgs/PointField\n\
00283 # This message holds the description of one point entry in the\n\
00284 # PointCloud2 message format.\n\
00285 uint8 INT8 = 1\n\
00286 uint8 UINT8 = 2\n\
00287 uint8 INT16 = 3\n\
00288 uint8 UINT16 = 4\n\
00289 uint8 INT32 = 5\n\
00290 uint8 UINT32 = 6\n\
00291 uint8 FLOAT32 = 7\n\
00292 uint8 FLOAT64 = 8\n\
00293 \n\
00294 string name # Name of field\n\
00295 uint32 offset # Offset from start of point struct\n\
00296 uint8 datatype # Datatype enumeration, see above\n\
00297 uint32 count # How many elements in the field\n\
00298 \n\
00299 ================================================================================\n\
00300 MSG: sensor_msgs/Image\n\
00301 # This message contains an uncompressed image\n\
00302 # (0, 0) is at top-left corner of image\n\
00303 #\n\
00304 \n\
00305 Header header # Header timestamp should be acquisition time of image\n\
00306 # Header frame_id should be optical frame of camera\n\
00307 # origin of frame should be optical center of cameara\n\
00308 # +x should point to the right in the image\n\
00309 # +y should point down in the image\n\
00310 # +z should point into to plane of the image\n\
00311 # If the frame_id here and the frame_id of the CameraInfo\n\
00312 # message associated with the image conflict\n\
00313 # the behavior is undefined\n\
00314 \n\
00315 uint32 height # image height, that is, number of rows\n\
00316 uint32 width # image width, that is, number of columns\n\
00317 \n\
00318 # The legal values for encoding are in file src/image_encodings.cpp\n\
00319 # If you want to standardize a new string format, join\n\
00320 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00321 \n\
00322 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00323 # taken from the list of strings in src/image_encodings.cpp\n\
00324 \n\
00325 uint8 is_bigendian # is this data bigendian?\n\
00326 uint32 step # Full row length in bytes\n\
00327 uint8[] data # actual matrix data, size is (step * rows)\n\
00328 \n\
00329 ================================================================================\n\
00330 MSG: sensor_msgs/CameraInfo\n\
00331 # This message defines meta information for a camera. It should be in a\n\
00332 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00333 # image topics named:\n\
00334 #\n\
00335 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00336 # image - monochrome, distorted\n\
00337 # image_color - color, distorted\n\
00338 # image_rect - monochrome, rectified\n\
00339 # image_rect_color - color, rectified\n\
00340 #\n\
00341 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00342 # for producing the four processed image topics from image_raw and\n\
00343 # camera_info. The meaning of the camera parameters are described in\n\
00344 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00345 #\n\
00346 # The image_geometry package provides a user-friendly interface to\n\
00347 # common operations using this meta information. If you want to, e.g.,\n\
00348 # project a 3d point into image coordinates, we strongly recommend\n\
00349 # using image_geometry.\n\
00350 #\n\
00351 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00352 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00353 # indicates an uncalibrated camera.\n\
00354 \n\
00355 #######################################################################\n\
00356 # Image acquisition info #\n\
00357 #######################################################################\n\
00358 \n\
00359 # Time of image acquisition, camera coordinate frame ID\n\
00360 Header header # Header timestamp should be acquisition time of image\n\
00361 # Header frame_id should be optical frame of camera\n\
00362 # origin of frame should be optical center of camera\n\
00363 # +x should point to the right in the image\n\
00364 # +y should point down in the image\n\
00365 # +z should point into the plane of the image\n\
00366 \n\
00367 \n\
00368 #######################################################################\n\
00369 # Calibration Parameters #\n\
00370 #######################################################################\n\
00371 # These are fixed during camera calibration. Their values will be the #\n\
00372 # same in all messages until the camera is recalibrated. Note that #\n\
00373 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00374 # #\n\
00375 # The internal parameters can be used to warp a raw (distorted) image #\n\
00376 # to: #\n\
00377 # 1. An undistorted image (requires D and K) #\n\
00378 # 2. A rectified image (requires D, K, R) #\n\
00379 # The projection matrix P projects 3D points into the rectified image.#\n\
00380 #######################################################################\n\
00381 \n\
00382 # The image dimensions with which the camera was calibrated. Normally\n\
00383 # this will be the full camera resolution in pixels.\n\
00384 uint32 height\n\
00385 uint32 width\n\
00386 \n\
00387 # The distortion model used. Supported models are listed in\n\
00388 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00389 # simple model of radial and tangential distortion - is sufficent.\n\
00390 string distortion_model\n\
00391 \n\
00392 # The distortion parameters, size depending on the distortion model.\n\
00393 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00394 float64[] D\n\
00395 \n\
00396 # Intrinsic camera matrix for the raw (distorted) images.\n\
00397 # [fx 0 cx]\n\
00398 # K = [ 0 fy cy]\n\
00399 # [ 0 0 1]\n\
00400 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00401 # coordinates using the focal lengths (fx, fy) and principal point\n\
00402 # (cx, cy).\n\
00403 float64[9] K # 3x3 row-major matrix\n\
00404 \n\
00405 # Rectification matrix (stereo cameras only)\n\
00406 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00407 # stereo image plane so that epipolar lines in both stereo images are\n\
00408 # parallel.\n\
00409 float64[9] R # 3x3 row-major matrix\n\
00410 \n\
00411 # Projection/camera matrix\n\
00412 # [fx' 0 cx' Tx]\n\
00413 # P = [ 0 fy' cy' Ty]\n\
00414 # [ 0 0 1 0]\n\
00415 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00416 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00417 # is the normal camera intrinsic matrix for the rectified image.\n\
00418 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00419 # coordinates using the focal lengths (fx', fy') and principal point\n\
00420 # (cx', cy') - these may differ from the values in K.\n\
00421 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00422 # also have R = the identity and P[1:3,1:3] = K.\n\
00423 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00424 # position of the optical center of the second camera in the first\n\
00425 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00426 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00427 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00428 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00429 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00430 # the rectified image is given by:\n\
00431 # [u v w]' = P * [X Y Z 1]'\n\
00432 # x = u / w\n\
00433 # y = v / w\n\
00434 # This holds for both images of a stereo pair.\n\
00435 float64[12] P # 3x4 row-major matrix\n\
00436 \n\
00437 \n\
00438 #######################################################################\n\
00439 # Operational Parameters #\n\
00440 #######################################################################\n\
00441 # These define the image region actually captured by the camera #\n\
00442 # driver. Although they affect the geometry of the output image, they #\n\
00443 # may be changed freely without recalibrating the camera. #\n\
00444 #######################################################################\n\
00445 \n\
00446 # Binning refers here to any camera setting which combines rectangular\n\
00447 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00448 # resolution of the output image to\n\
00449 # (width / binning_x) x (height / binning_y).\n\
00450 # The default values binning_x = binning_y = 0 is considered the same\n\
00451 # as binning_x = binning_y = 1 (no subsampling).\n\
00452 uint32 binning_x\n\
00453 uint32 binning_y\n\
00454 \n\
00455 # Region of interest (subwindow of full camera resolution), given in\n\
00456 # full resolution (unbinned) image coordinates. A particular ROI\n\
00457 # always denotes the same window of pixels on the camera sensor,\n\
00458 # regardless of binning settings.\n\
00459 # The default setting of roi (all values 0) is considered the same as\n\
00460 # full resolution (roi.width = width, roi.height = height).\n\
00461 RegionOfInterest roi\n\
00462 \n\
00463 ================================================================================\n\
00464 MSG: sensor_msgs/RegionOfInterest\n\
00465 # This message is used to specify a region of interest within an image.\n\
00466 #\n\
00467 # When used to specify the ROI setting of the camera when the image was\n\
00468 # taken, the height and width fields should either match the height and\n\
00469 # width fields for the associated image; or height = width = 0\n\
00470 # indicates that the full resolution image was captured.\n\
00471 \n\
00472 uint32 x_offset # Leftmost pixel of the ROI\n\
00473 # (0 if the ROI includes the left edge of the image)\n\
00474 uint32 y_offset # Topmost pixel of the ROI\n\
00475 # (0 if the ROI includes the top edge of the image)\n\
00476 uint32 height # Height of ROI\n\
00477 uint32 width # Width of ROI\n\
00478 \n\
00479 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00480 # ROI in this message. Typically this should be False if the full image\n\
00481 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00482 # used).\n\
00483 bool do_rectify\n\
00484 \n\
00485 ================================================================================\n\
00486 MSG: object_manipulation_msgs/GripperTranslation\n\
00487 # defines a translation for the gripper, used in pickup or place tasks\n\
00488 # for example for lifting an object off a table or approaching the table for placing\n\
00489 \n\
00490 # the direction of the translation\n\
00491 geometry_msgs/Vector3Stamped direction\n\
00492 \n\
00493 # the desired translation distance\n\
00494 float32 desired_distance\n\
00495 \n\
00496 # the min distance that must be considered feasible before the\n\
00497 # grasp is even attempted\n\
00498 float32 min_distance\n\
00499 ================================================================================\n\
00500 MSG: geometry_msgs/Vector3Stamped\n\
00501 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00502 Header header\n\
00503 Vector3 vector\n\
00504 \n\
00505 ================================================================================\n\
00506 MSG: geometry_msgs/Vector3\n\
00507 # This represents a vector in free space. \n\
00508 \n\
00509 float64 x\n\
00510 float64 y\n\
00511 float64 z\n\
00512 ================================================================================\n\
00513 MSG: trajectory_msgs/JointTrajectory\n\
00514 Header header\n\
00515 string[] joint_names\n\
00516 JointTrajectoryPoint[] points\n\
00517 ================================================================================\n\
00518 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00519 float64[] positions\n\
00520 float64[] velocities\n\
00521 float64[] accelerations\n\
00522 duration time_from_start\n\
00523 "; }
00524 public:
00525 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00526
00527 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00528
00529 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00530 {
00531 ros::serialization::OStream stream(write_ptr, 1000000000);
00532 ros::serialization::serialize(stream, arm_name);
00533 ros::serialization::serialize(stream, target);
00534 ros::serialization::serialize(stream, lift);
00535 ros::serialization::serialize(stream, trajectory);
00536 ros::serialization::serialize(stream, collision_support_surface_name);
00537 return stream.getData();
00538 }
00539
00540 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00541 {
00542 ros::serialization::IStream stream(read_ptr, 1000000000);
00543 ros::serialization::deserialize(stream, arm_name);
00544 ros::serialization::deserialize(stream, target);
00545 ros::serialization::deserialize(stream, lift);
00546 ros::serialization::deserialize(stream, trajectory);
00547 ros::serialization::deserialize(stream, collision_support_surface_name);
00548 return stream.getData();
00549 }
00550
00551 ROS_DEPRECATED virtual uint32_t serializationLength() const
00552 {
00553 uint32_t size = 0;
00554 size += ros::serialization::serializationLength(arm_name);
00555 size += ros::serialization::serializationLength(target);
00556 size += ros::serialization::serializationLength(lift);
00557 size += ros::serialization::serializationLength(trajectory);
00558 size += ros::serialization::serializationLength(collision_support_surface_name);
00559 return size;
00560 }
00561
00562 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > Ptr;
00563 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> const> ConstPtr;
00564 };
00565 typedef ::object_manipulation_msgs::ReactiveLiftGoal_<std::allocator<void> > ReactiveLiftGoal;
00566
00567 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal> ReactiveLiftGoalPtr;
00568 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal const> ReactiveLiftGoalConstPtr;
00569
00570
00571 template<typename ContainerAllocator>
00572 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v)
00573 {
00574 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, "", v);
00575 return s;}
00576
00577 }
00578
00579 namespace ros
00580 {
00581 namespace message_traits
00582 {
00583 template<class ContainerAllocator>
00584 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00585 static const char* value()
00586 {
00587 return "c5d7dd2610fb62ca9947651273fb77c1";
00588 }
00589
00590 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); }
00591 static const uint64_t static_value1 = 0xc5d7dd2610fb62caULL;
00592 static const uint64_t static_value2 = 0x9947651273fb77c1ULL;
00593 };
00594
00595 template<class ContainerAllocator>
00596 struct DataType< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00597 static const char* value()
00598 {
00599 return "object_manipulation_msgs/ReactiveLiftGoal";
00600 }
00601
00602 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); }
00603 };
00604
00605 template<class ContainerAllocator>
00606 struct Definition< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00607 static const char* value()
00608 {
00609 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00610 \n\
00611 # the name of the arm being used\n\
00612 string arm_name\n\
00613 \n\
00614 # the object to be grasped\n\
00615 GraspableObject target\n\
00616 \n\
00617 # How the object should be lifted \n\
00618 GripperTranslation lift\n\
00619 \n\
00620 # the joint trajectory to use for the approach (if available)\n\
00621 # this trajectory is expected to start at the current pose of the gripper\n\
00622 # and end at the desired grasp pose\n\
00623 trajectory_msgs/JointTrajectory trajectory\n\
00624 \n\
00625 # the name of the support surface in the collision environment, if any\n\
00626 string collision_support_surface_name\n\
00627 \n\
00628 \n\
00629 ================================================================================\n\
00630 MSG: object_manipulation_msgs/GraspableObject\n\
00631 # an object that the object_manipulator can work on\n\
00632 \n\
00633 # a graspable object can be represented in multiple ways. This message\n\
00634 # can contain all of them. Which one is actually used is up to the receiver\n\
00635 # of this message. When adding new representations, one must be careful that\n\
00636 # they have reasonable lightweight defaults indicating that that particular\n\
00637 # representation is not available.\n\
00638 \n\
00639 # the tf frame to be used as a reference frame when combining information from\n\
00640 # the different representations below\n\
00641 string reference_frame_id\n\
00642 \n\
00643 # potential recognition results from a database of models\n\
00644 # all poses are relative to the object reference pose\n\
00645 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00646 \n\
00647 # the point cloud itself\n\
00648 sensor_msgs/PointCloud cluster\n\
00649 \n\
00650 # a region of a PointCloud2 of interest\n\
00651 object_manipulation_msgs/SceneRegion region\n\
00652 \n\
00653 \n\
00654 ================================================================================\n\
00655 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00656 # Informs that a specific model from the Model Database has been \n\
00657 # identified at a certain location\n\
00658 \n\
00659 # the database id of the model\n\
00660 int32 model_id\n\
00661 \n\
00662 # the pose that it can be found in\n\
00663 geometry_msgs/PoseStamped pose\n\
00664 \n\
00665 # a measure of the confidence level in this detection result\n\
00666 float32 confidence\n\
00667 ================================================================================\n\
00668 MSG: geometry_msgs/PoseStamped\n\
00669 # A Pose with reference coordinate frame and timestamp\n\
00670 Header header\n\
00671 Pose pose\n\
00672 \n\
00673 ================================================================================\n\
00674 MSG: std_msgs/Header\n\
00675 # Standard metadata for higher-level stamped data types.\n\
00676 # This is generally used to communicate timestamped data \n\
00677 # in a particular coordinate frame.\n\
00678 # \n\
00679 # sequence ID: consecutively increasing ID \n\
00680 uint32 seq\n\
00681 #Two-integer timestamp that is expressed as:\n\
00682 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00683 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00684 # time-handling sugar is provided by the client library\n\
00685 time stamp\n\
00686 #Frame this data is associated with\n\
00687 # 0: no frame\n\
00688 # 1: global frame\n\
00689 string frame_id\n\
00690 \n\
00691 ================================================================================\n\
00692 MSG: geometry_msgs/Pose\n\
00693 # A representation of pose in free space, composed of postion and orientation. \n\
00694 Point position\n\
00695 Quaternion orientation\n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: geometry_msgs/Point\n\
00699 # This contains the position of a point in free space\n\
00700 float64 x\n\
00701 float64 y\n\
00702 float64 z\n\
00703 \n\
00704 ================================================================================\n\
00705 MSG: geometry_msgs/Quaternion\n\
00706 # This represents an orientation in free space in quaternion form.\n\
00707 \n\
00708 float64 x\n\
00709 float64 y\n\
00710 float64 z\n\
00711 float64 w\n\
00712 \n\
00713 ================================================================================\n\
00714 MSG: sensor_msgs/PointCloud\n\
00715 # This message holds a collection of 3d points, plus optional additional\n\
00716 # information about each point.\n\
00717 \n\
00718 # Time of sensor data acquisition, coordinate frame ID.\n\
00719 Header header\n\
00720 \n\
00721 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00722 # in the frame given in the header.\n\
00723 geometry_msgs/Point32[] points\n\
00724 \n\
00725 # Each channel should have the same number of elements as points array,\n\
00726 # and the data in each channel should correspond 1:1 with each point.\n\
00727 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00728 ChannelFloat32[] channels\n\
00729 \n\
00730 ================================================================================\n\
00731 MSG: geometry_msgs/Point32\n\
00732 # This contains the position of a point in free space(with 32 bits of precision).\n\
00733 # It is recommeded to use Point wherever possible instead of Point32. \n\
00734 # \n\
00735 # This recommendation is to promote interoperability. \n\
00736 #\n\
00737 # This message is designed to take up less space when sending\n\
00738 # lots of points at once, as in the case of a PointCloud. \n\
00739 \n\
00740 float32 x\n\
00741 float32 y\n\
00742 float32 z\n\
00743 ================================================================================\n\
00744 MSG: sensor_msgs/ChannelFloat32\n\
00745 # This message is used by the PointCloud message to hold optional data\n\
00746 # associated with each point in the cloud. The length of the values\n\
00747 # array should be the same as the length of the points array in the\n\
00748 # PointCloud, and each value should be associated with the corresponding\n\
00749 # point.\n\
00750 \n\
00751 # Channel names in existing practice include:\n\
00752 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00753 # This is opposite to usual conventions but remains for\n\
00754 # historical reasons. The newer PointCloud2 message has no\n\
00755 # such problem.\n\
00756 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00757 # (R,G,B) values packed into the least significant 24 bits,\n\
00758 # in order.\n\
00759 # \"intensity\" - laser or pixel intensity.\n\
00760 # \"distance\"\n\
00761 \n\
00762 # The channel name should give semantics of the channel (e.g.\n\
00763 # \"intensity\" instead of \"value\").\n\
00764 string name\n\
00765 \n\
00766 # The values array should be 1-1 with the elements of the associated\n\
00767 # PointCloud.\n\
00768 float32[] values\n\
00769 \n\
00770 ================================================================================\n\
00771 MSG: object_manipulation_msgs/SceneRegion\n\
00772 # Point cloud\n\
00773 sensor_msgs/PointCloud2 cloud\n\
00774 \n\
00775 # Indices for the region of interest\n\
00776 int32[] mask\n\
00777 \n\
00778 # One of the corresponding 2D images, if applicable\n\
00779 sensor_msgs/Image image\n\
00780 \n\
00781 # The disparity image, if applicable\n\
00782 sensor_msgs/Image disparity_image\n\
00783 \n\
00784 # Camera info for the camera that took the image\n\
00785 sensor_msgs/CameraInfo cam_info\n\
00786 \n\
00787 ================================================================================\n\
00788 MSG: sensor_msgs/PointCloud2\n\
00789 # This message holds a collection of N-dimensional points, which may\n\
00790 # contain additional information such as normals, intensity, etc. The\n\
00791 # point data is stored as a binary blob, its layout described by the\n\
00792 # contents of the \"fields\" array.\n\
00793 \n\
00794 # The point cloud data may be organized 2d (image-like) or 1d\n\
00795 # (unordered). Point clouds organized as 2d images may be produced by\n\
00796 # camera depth sensors such as stereo or time-of-flight.\n\
00797 \n\
00798 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00799 # points).\n\
00800 Header header\n\
00801 \n\
00802 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00803 # 1 and width is the length of the point cloud.\n\
00804 uint32 height\n\
00805 uint32 width\n\
00806 \n\
00807 # Describes the channels and their layout in the binary data blob.\n\
00808 PointField[] fields\n\
00809 \n\
00810 bool is_bigendian # Is this data bigendian?\n\
00811 uint32 point_step # Length of a point in bytes\n\
00812 uint32 row_step # Length of a row in bytes\n\
00813 uint8[] data # Actual point data, size is (row_step*height)\n\
00814 \n\
00815 bool is_dense # True if there are no invalid points\n\
00816 \n\
00817 ================================================================================\n\
00818 MSG: sensor_msgs/PointField\n\
00819 # This message holds the description of one point entry in the\n\
00820 # PointCloud2 message format.\n\
00821 uint8 INT8 = 1\n\
00822 uint8 UINT8 = 2\n\
00823 uint8 INT16 = 3\n\
00824 uint8 UINT16 = 4\n\
00825 uint8 INT32 = 5\n\
00826 uint8 UINT32 = 6\n\
00827 uint8 FLOAT32 = 7\n\
00828 uint8 FLOAT64 = 8\n\
00829 \n\
00830 string name # Name of field\n\
00831 uint32 offset # Offset from start of point struct\n\
00832 uint8 datatype # Datatype enumeration, see above\n\
00833 uint32 count # How many elements in the field\n\
00834 \n\
00835 ================================================================================\n\
00836 MSG: sensor_msgs/Image\n\
00837 # This message contains an uncompressed image\n\
00838 # (0, 0) is at top-left corner of image\n\
00839 #\n\
00840 \n\
00841 Header header # Header timestamp should be acquisition time of image\n\
00842 # Header frame_id should be optical frame of camera\n\
00843 # origin of frame should be optical center of cameara\n\
00844 # +x should point to the right in the image\n\
00845 # +y should point down in the image\n\
00846 # +z should point into to plane of the image\n\
00847 # If the frame_id here and the frame_id of the CameraInfo\n\
00848 # message associated with the image conflict\n\
00849 # the behavior is undefined\n\
00850 \n\
00851 uint32 height # image height, that is, number of rows\n\
00852 uint32 width # image width, that is, number of columns\n\
00853 \n\
00854 # The legal values for encoding are in file src/image_encodings.cpp\n\
00855 # If you want to standardize a new string format, join\n\
00856 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00857 \n\
00858 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00859 # taken from the list of strings in src/image_encodings.cpp\n\
00860 \n\
00861 uint8 is_bigendian # is this data bigendian?\n\
00862 uint32 step # Full row length in bytes\n\
00863 uint8[] data # actual matrix data, size is (step * rows)\n\
00864 \n\
00865 ================================================================================\n\
00866 MSG: sensor_msgs/CameraInfo\n\
00867 # This message defines meta information for a camera. It should be in a\n\
00868 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00869 # image topics named:\n\
00870 #\n\
00871 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00872 # image - monochrome, distorted\n\
00873 # image_color - color, distorted\n\
00874 # image_rect - monochrome, rectified\n\
00875 # image_rect_color - color, rectified\n\
00876 #\n\
00877 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00878 # for producing the four processed image topics from image_raw and\n\
00879 # camera_info. The meaning of the camera parameters are described in\n\
00880 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00881 #\n\
00882 # The image_geometry package provides a user-friendly interface to\n\
00883 # common operations using this meta information. If you want to, e.g.,\n\
00884 # project a 3d point into image coordinates, we strongly recommend\n\
00885 # using image_geometry.\n\
00886 #\n\
00887 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00888 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00889 # indicates an uncalibrated camera.\n\
00890 \n\
00891 #######################################################################\n\
00892 # Image acquisition info #\n\
00893 #######################################################################\n\
00894 \n\
00895 # Time of image acquisition, camera coordinate frame ID\n\
00896 Header header # Header timestamp should be acquisition time of image\n\
00897 # Header frame_id should be optical frame of camera\n\
00898 # origin of frame should be optical center of camera\n\
00899 # +x should point to the right in the image\n\
00900 # +y should point down in the image\n\
00901 # +z should point into the plane of the image\n\
00902 \n\
00903 \n\
00904 #######################################################################\n\
00905 # Calibration Parameters #\n\
00906 #######################################################################\n\
00907 # These are fixed during camera calibration. Their values will be the #\n\
00908 # same in all messages until the camera is recalibrated. Note that #\n\
00909 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00910 # #\n\
00911 # The internal parameters can be used to warp a raw (distorted) image #\n\
00912 # to: #\n\
00913 # 1. An undistorted image (requires D and K) #\n\
00914 # 2. A rectified image (requires D, K, R) #\n\
00915 # The projection matrix P projects 3D points into the rectified image.#\n\
00916 #######################################################################\n\
00917 \n\
00918 # The image dimensions with which the camera was calibrated. Normally\n\
00919 # this will be the full camera resolution in pixels.\n\
00920 uint32 height\n\
00921 uint32 width\n\
00922 \n\
00923 # The distortion model used. Supported models are listed in\n\
00924 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00925 # simple model of radial and tangential distortion - is sufficent.\n\
00926 string distortion_model\n\
00927 \n\
00928 # The distortion parameters, size depending on the distortion model.\n\
00929 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00930 float64[] D\n\
00931 \n\
00932 # Intrinsic camera matrix for the raw (distorted) images.\n\
00933 # [fx 0 cx]\n\
00934 # K = [ 0 fy cy]\n\
00935 # [ 0 0 1]\n\
00936 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00937 # coordinates using the focal lengths (fx, fy) and principal point\n\
00938 # (cx, cy).\n\
00939 float64[9] K # 3x3 row-major matrix\n\
00940 \n\
00941 # Rectification matrix (stereo cameras only)\n\
00942 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00943 # stereo image plane so that epipolar lines in both stereo images are\n\
00944 # parallel.\n\
00945 float64[9] R # 3x3 row-major matrix\n\
00946 \n\
00947 # Projection/camera matrix\n\
00948 # [fx' 0 cx' Tx]\n\
00949 # P = [ 0 fy' cy' Ty]\n\
00950 # [ 0 0 1 0]\n\
00951 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00952 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00953 # is the normal camera intrinsic matrix for the rectified image.\n\
00954 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00955 # coordinates using the focal lengths (fx', fy') and principal point\n\
00956 # (cx', cy') - these may differ from the values in K.\n\
00957 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00958 # also have R = the identity and P[1:3,1:3] = K.\n\
00959 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00960 # position of the optical center of the second camera in the first\n\
00961 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00962 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00963 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00964 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00965 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00966 # the rectified image is given by:\n\
00967 # [u v w]' = P * [X Y Z 1]'\n\
00968 # x = u / w\n\
00969 # y = v / w\n\
00970 # This holds for both images of a stereo pair.\n\
00971 float64[12] P # 3x4 row-major matrix\n\
00972 \n\
00973 \n\
00974 #######################################################################\n\
00975 # Operational Parameters #\n\
00976 #######################################################################\n\
00977 # These define the image region actually captured by the camera #\n\
00978 # driver. Although they affect the geometry of the output image, they #\n\
00979 # may be changed freely without recalibrating the camera. #\n\
00980 #######################################################################\n\
00981 \n\
00982 # Binning refers here to any camera setting which combines rectangular\n\
00983 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00984 # resolution of the output image to\n\
00985 # (width / binning_x) x (height / binning_y).\n\
00986 # The default values binning_x = binning_y = 0 is considered the same\n\
00987 # as binning_x = binning_y = 1 (no subsampling).\n\
00988 uint32 binning_x\n\
00989 uint32 binning_y\n\
00990 \n\
00991 # Region of interest (subwindow of full camera resolution), given in\n\
00992 # full resolution (unbinned) image coordinates. A particular ROI\n\
00993 # always denotes the same window of pixels on the camera sensor,\n\
00994 # regardless of binning settings.\n\
00995 # The default setting of roi (all values 0) is considered the same as\n\
00996 # full resolution (roi.width = width, roi.height = height).\n\
00997 RegionOfInterest roi\n\
00998 \n\
00999 ================================================================================\n\
01000 MSG: sensor_msgs/RegionOfInterest\n\
01001 # This message is used to specify a region of interest within an image.\n\
01002 #\n\
01003 # When used to specify the ROI setting of the camera when the image was\n\
01004 # taken, the height and width fields should either match the height and\n\
01005 # width fields for the associated image; or height = width = 0\n\
01006 # indicates that the full resolution image was captured.\n\
01007 \n\
01008 uint32 x_offset # Leftmost pixel of the ROI\n\
01009 # (0 if the ROI includes the left edge of the image)\n\
01010 uint32 y_offset # Topmost pixel of the ROI\n\
01011 # (0 if the ROI includes the top edge of the image)\n\
01012 uint32 height # Height of ROI\n\
01013 uint32 width # Width of ROI\n\
01014 \n\
01015 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01016 # ROI in this message. Typically this should be False if the full image\n\
01017 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01018 # used).\n\
01019 bool do_rectify\n\
01020 \n\
01021 ================================================================================\n\
01022 MSG: object_manipulation_msgs/GripperTranslation\n\
01023 # defines a translation for the gripper, used in pickup or place tasks\n\
01024 # for example for lifting an object off a table or approaching the table for placing\n\
01025 \n\
01026 # the direction of the translation\n\
01027 geometry_msgs/Vector3Stamped direction\n\
01028 \n\
01029 # the desired translation distance\n\
01030 float32 desired_distance\n\
01031 \n\
01032 # the min distance that must be considered feasible before the\n\
01033 # grasp is even attempted\n\
01034 float32 min_distance\n\
01035 ================================================================================\n\
01036 MSG: geometry_msgs/Vector3Stamped\n\
01037 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01038 Header header\n\
01039 Vector3 vector\n\
01040 \n\
01041 ================================================================================\n\
01042 MSG: geometry_msgs/Vector3\n\
01043 # This represents a vector in free space. \n\
01044 \n\
01045 float64 x\n\
01046 float64 y\n\
01047 float64 z\n\
01048 ================================================================================\n\
01049 MSG: trajectory_msgs/JointTrajectory\n\
01050 Header header\n\
01051 string[] joint_names\n\
01052 JointTrajectoryPoint[] points\n\
01053 ================================================================================\n\
01054 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01055 float64[] positions\n\
01056 float64[] velocities\n\
01057 float64[] accelerations\n\
01058 duration time_from_start\n\
01059 ";
01060 }
01061
01062 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); }
01063 };
01064
01065 }
01066 }
01067
01068 namespace ros
01069 {
01070 namespace serialization
01071 {
01072
01073 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >
01074 {
01075 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01076 {
01077 stream.next(m.arm_name);
01078 stream.next(m.target);
01079 stream.next(m.lift);
01080 stream.next(m.trajectory);
01081 stream.next(m.collision_support_surface_name);
01082 }
01083
01084 ROS_DECLARE_ALLINONE_SERIALIZER;
01085 };
01086 }
01087 }
01088
01089 namespace ros
01090 {
01091 namespace message_operations
01092 {
01093
01094 template<class ContainerAllocator>
01095 struct Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >
01096 {
01097 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v)
01098 {
01099 s << indent << "arm_name: ";
01100 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01101 s << indent << "target: ";
01102 s << std::endl;
01103 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
01104 s << indent << "lift: ";
01105 s << std::endl;
01106 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift);
01107 s << indent << "trajectory: ";
01108 s << std::endl;
01109 Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + " ", v.trajectory);
01110 s << indent << "collision_support_surface_name: ";
01111 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01112 }
01113 };
01114
01115
01116 }
01117 }
01118
01119 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
01120