00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/GraspableObject.h"
00014 #include "geometry_msgs/PoseStamped.h"
00015 #include "trajectory_msgs/JointTrajectory.h"
00016 #include "sensor_msgs/JointState.h"
00017 #include "sensor_msgs/JointState.h"
00018
00019 namespace object_manipulation_msgs
00020 {
00021 template <class ContainerAllocator>
00022 struct ReactiveGraspGoal_ : public ros::Message
00023 {
00024 typedef ReactiveGraspGoal_<ContainerAllocator> Type;
00025
00026 ReactiveGraspGoal_()
00027 : arm_name()
00028 , target()
00029 , final_grasp_pose()
00030 , trajectory()
00031 , collision_support_surface_name()
00032 , pre_grasp_posture()
00033 , grasp_posture()
00034 {
00035 }
00036
00037 ReactiveGraspGoal_(const ContainerAllocator& _alloc)
00038 : arm_name(_alloc)
00039 , target(_alloc)
00040 , final_grasp_pose(_alloc)
00041 , trajectory(_alloc)
00042 , collision_support_surface_name(_alloc)
00043 , pre_grasp_posture(_alloc)
00044 , grasp_posture(_alloc)
00045 {
00046 }
00047
00048 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00049 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00050
00051 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00052 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00053
00054 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _final_grasp_pose_type;
00055 ::geometry_msgs::PoseStamped_<ContainerAllocator> final_grasp_pose;
00056
00057 typedef ::trajectory_msgs::JointTrajectory_<ContainerAllocator> _trajectory_type;
00058 ::trajectory_msgs::JointTrajectory_<ContainerAllocator> trajectory;
00059
00060 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00061 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00062
00063 typedef ::sensor_msgs::JointState_<ContainerAllocator> _pre_grasp_posture_type;
00064 ::sensor_msgs::JointState_<ContainerAllocator> pre_grasp_posture;
00065
00066 typedef ::sensor_msgs::JointState_<ContainerAllocator> _grasp_posture_type;
00067 ::sensor_msgs::JointState_<ContainerAllocator> grasp_posture;
00068
00069
00070 private:
00071 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspGoal"; }
00072 public:
00073 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00074
00075 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00076
00077 private:
00078 static const char* __s_getMD5Sum_() { return "dbc13c9b0291c2714a2d6be91256673c"; }
00079 public:
00080 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00081
00082 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00083
00084 private:
00085 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00086 # an action for reactive grasping\n\
00087 # a reactive grasp starts from the current pose of the gripper and ends\n\
00088 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00089 \n\
00090 # the name of the arm being used\n\
00091 string arm_name\n\
00092 \n\
00093 # the object to be grasped\n\
00094 GraspableObject target\n\
00095 \n\
00096 # the desired grasp pose for the hand\n\
00097 geometry_msgs/PoseStamped final_grasp_pose\n\
00098 \n\
00099 # the joint trajectory to use for the approach (if available)\n\
00100 # this trajectory is expected to start at the current pose of the gripper\n\
00101 # and end at the desired grasp pose\n\
00102 trajectory_msgs/JointTrajectory trajectory\n\
00103 \n\
00104 # the name of the support surface in the collision environment, if any\n\
00105 string collision_support_surface_name\n\
00106 \n\
00107 # The internal posture of the hand for the pre-grasp\n\
00108 # only positions are used\n\
00109 sensor_msgs/JointState pre_grasp_posture\n\
00110 \n\
00111 # The internal posture of the hand for the grasp\n\
00112 # positions and efforts are used\n\
00113 sensor_msgs/JointState grasp_posture\n\
00114 \n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: object_manipulation_msgs/GraspableObject\n\
00118 # an object that the object_manipulator can work on\n\
00119 \n\
00120 # a graspable object can be represented in multiple ways. This message\n\
00121 # can contain all of them. Which one is actually used is up to the receiver\n\
00122 # of this message. When adding new representations, one must be careful that\n\
00123 # they have reasonable lightweight defaults indicating that that particular\n\
00124 # representation is not available.\n\
00125 \n\
00126 # the tf frame to be used as a reference frame when combining information from\n\
00127 # the different representations below\n\
00128 string reference_frame_id\n\
00129 \n\
00130 # potential recognition results from a database of models\n\
00131 # all poses are relative to the object reference pose\n\
00132 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00133 \n\
00134 # the point cloud itself\n\
00135 sensor_msgs/PointCloud cluster\n\
00136 \n\
00137 # a region of a PointCloud2 of interest\n\
00138 object_manipulation_msgs/SceneRegion region\n\
00139 \n\
00140 \n\
00141 ================================================================================\n\
00142 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00143 # Informs that a specific model from the Model Database has been \n\
00144 # identified at a certain location\n\
00145 \n\
00146 # the database id of the model\n\
00147 int32 model_id\n\
00148 \n\
00149 # the pose that it can be found in\n\
00150 geometry_msgs/PoseStamped pose\n\
00151 \n\
00152 # a measure of the confidence level in this detection result\n\
00153 float32 confidence\n\
00154 ================================================================================\n\
00155 MSG: geometry_msgs/PoseStamped\n\
00156 # A Pose with reference coordinate frame and timestamp\n\
00157 Header header\n\
00158 Pose pose\n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: std_msgs/Header\n\
00162 # Standard metadata for higher-level stamped data types.\n\
00163 # This is generally used to communicate timestamped data \n\
00164 # in a particular coordinate frame.\n\
00165 # \n\
00166 # sequence ID: consecutively increasing ID \n\
00167 uint32 seq\n\
00168 #Two-integer timestamp that is expressed as:\n\
00169 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00170 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00171 # time-handling sugar is provided by the client library\n\
00172 time stamp\n\
00173 #Frame this data is associated with\n\
00174 # 0: no frame\n\
00175 # 1: global frame\n\
00176 string frame_id\n\
00177 \n\
00178 ================================================================================\n\
00179 MSG: geometry_msgs/Pose\n\
00180 # A representation of pose in free space, composed of postion and orientation. \n\
00181 Point position\n\
00182 Quaternion orientation\n\
00183 \n\
00184 ================================================================================\n\
00185 MSG: geometry_msgs/Point\n\
00186 # This contains the position of a point in free space\n\
00187 float64 x\n\
00188 float64 y\n\
00189 float64 z\n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: geometry_msgs/Quaternion\n\
00193 # This represents an orientation in free space in quaternion form.\n\
00194 \n\
00195 float64 x\n\
00196 float64 y\n\
00197 float64 z\n\
00198 float64 w\n\
00199 \n\
00200 ================================================================================\n\
00201 MSG: sensor_msgs/PointCloud\n\
00202 # This message holds a collection of 3d points, plus optional additional\n\
00203 # information about each point.\n\
00204 \n\
00205 # Time of sensor data acquisition, coordinate frame ID.\n\
00206 Header header\n\
00207 \n\
00208 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00209 # in the frame given in the header.\n\
00210 geometry_msgs/Point32[] points\n\
00211 \n\
00212 # Each channel should have the same number of elements as points array,\n\
00213 # and the data in each channel should correspond 1:1 with each point.\n\
00214 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00215 ChannelFloat32[] channels\n\
00216 \n\
00217 ================================================================================\n\
00218 MSG: geometry_msgs/Point32\n\
00219 # This contains the position of a point in free space(with 32 bits of precision).\n\
00220 # It is recommeded to use Point wherever possible instead of Point32. \n\
00221 # \n\
00222 # This recommendation is to promote interoperability. \n\
00223 #\n\
00224 # This message is designed to take up less space when sending\n\
00225 # lots of points at once, as in the case of a PointCloud. \n\
00226 \n\
00227 float32 x\n\
00228 float32 y\n\
00229 float32 z\n\
00230 ================================================================================\n\
00231 MSG: sensor_msgs/ChannelFloat32\n\
00232 # This message is used by the PointCloud message to hold optional data\n\
00233 # associated with each point in the cloud. The length of the values\n\
00234 # array should be the same as the length of the points array in the\n\
00235 # PointCloud, and each value should be associated with the corresponding\n\
00236 # point.\n\
00237 \n\
00238 # Channel names in existing practice include:\n\
00239 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00240 # This is opposite to usual conventions but remains for\n\
00241 # historical reasons. The newer PointCloud2 message has no\n\
00242 # such problem.\n\
00243 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00244 # (R,G,B) values packed into the least significant 24 bits,\n\
00245 # in order.\n\
00246 # \"intensity\" - laser or pixel intensity.\n\
00247 # \"distance\"\n\
00248 \n\
00249 # The channel name should give semantics of the channel (e.g.\n\
00250 # \"intensity\" instead of \"value\").\n\
00251 string name\n\
00252 \n\
00253 # The values array should be 1-1 with the elements of the associated\n\
00254 # PointCloud.\n\
00255 float32[] values\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: object_manipulation_msgs/SceneRegion\n\
00259 # Point cloud\n\
00260 sensor_msgs/PointCloud2 cloud\n\
00261 \n\
00262 # Indices for the region of interest\n\
00263 int32[] mask\n\
00264 \n\
00265 # One of the corresponding 2D images, if applicable\n\
00266 sensor_msgs/Image image\n\
00267 \n\
00268 # The disparity image, if applicable\n\
00269 sensor_msgs/Image disparity_image\n\
00270 \n\
00271 # Camera info for the camera that took the image\n\
00272 sensor_msgs/CameraInfo cam_info\n\
00273 \n\
00274 ================================================================================\n\
00275 MSG: sensor_msgs/PointCloud2\n\
00276 # This message holds a collection of N-dimensional points, which may\n\
00277 # contain additional information such as normals, intensity, etc. The\n\
00278 # point data is stored as a binary blob, its layout described by the\n\
00279 # contents of the \"fields\" array.\n\
00280 \n\
00281 # The point cloud data may be organized 2d (image-like) or 1d\n\
00282 # (unordered). Point clouds organized as 2d images may be produced by\n\
00283 # camera depth sensors such as stereo or time-of-flight.\n\
00284 \n\
00285 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00286 # points).\n\
00287 Header header\n\
00288 \n\
00289 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00290 # 1 and width is the length of the point cloud.\n\
00291 uint32 height\n\
00292 uint32 width\n\
00293 \n\
00294 # Describes the channels and their layout in the binary data blob.\n\
00295 PointField[] fields\n\
00296 \n\
00297 bool is_bigendian # Is this data bigendian?\n\
00298 uint32 point_step # Length of a point in bytes\n\
00299 uint32 row_step # Length of a row in bytes\n\
00300 uint8[] data # Actual point data, size is (row_step*height)\n\
00301 \n\
00302 bool is_dense # True if there are no invalid points\n\
00303 \n\
00304 ================================================================================\n\
00305 MSG: sensor_msgs/PointField\n\
00306 # This message holds the description of one point entry in the\n\
00307 # PointCloud2 message format.\n\
00308 uint8 INT8 = 1\n\
00309 uint8 UINT8 = 2\n\
00310 uint8 INT16 = 3\n\
00311 uint8 UINT16 = 4\n\
00312 uint8 INT32 = 5\n\
00313 uint8 UINT32 = 6\n\
00314 uint8 FLOAT32 = 7\n\
00315 uint8 FLOAT64 = 8\n\
00316 \n\
00317 string name # Name of field\n\
00318 uint32 offset # Offset from start of point struct\n\
00319 uint8 datatype # Datatype enumeration, see above\n\
00320 uint32 count # How many elements in the field\n\
00321 \n\
00322 ================================================================================\n\
00323 MSG: sensor_msgs/Image\n\
00324 # This message contains an uncompressed image\n\
00325 # (0, 0) is at top-left corner of image\n\
00326 #\n\
00327 \n\
00328 Header header # Header timestamp should be acquisition time of image\n\
00329 # Header frame_id should be optical frame of camera\n\
00330 # origin of frame should be optical center of cameara\n\
00331 # +x should point to the right in the image\n\
00332 # +y should point down in the image\n\
00333 # +z should point into to plane of the image\n\
00334 # If the frame_id here and the frame_id of the CameraInfo\n\
00335 # message associated with the image conflict\n\
00336 # the behavior is undefined\n\
00337 \n\
00338 uint32 height # image height, that is, number of rows\n\
00339 uint32 width # image width, that is, number of columns\n\
00340 \n\
00341 # The legal values for encoding are in file src/image_encodings.cpp\n\
00342 # If you want to standardize a new string format, join\n\
00343 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00344 \n\
00345 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00346 # taken from the list of strings in src/image_encodings.cpp\n\
00347 \n\
00348 uint8 is_bigendian # is this data bigendian?\n\
00349 uint32 step # Full row length in bytes\n\
00350 uint8[] data # actual matrix data, size is (step * rows)\n\
00351 \n\
00352 ================================================================================\n\
00353 MSG: sensor_msgs/CameraInfo\n\
00354 # This message defines meta information for a camera. It should be in a\n\
00355 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00356 # image topics named:\n\
00357 #\n\
00358 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00359 # image - monochrome, distorted\n\
00360 # image_color - color, distorted\n\
00361 # image_rect - monochrome, rectified\n\
00362 # image_rect_color - color, rectified\n\
00363 #\n\
00364 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00365 # for producing the four processed image topics from image_raw and\n\
00366 # camera_info. The meaning of the camera parameters are described in\n\
00367 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00368 #\n\
00369 # The image_geometry package provides a user-friendly interface to\n\
00370 # common operations using this meta information. If you want to, e.g.,\n\
00371 # project a 3d point into image coordinates, we strongly recommend\n\
00372 # using image_geometry.\n\
00373 #\n\
00374 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00375 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00376 # indicates an uncalibrated camera.\n\
00377 \n\
00378 #######################################################################\n\
00379 # Image acquisition info #\n\
00380 #######################################################################\n\
00381 \n\
00382 # Time of image acquisition, camera coordinate frame ID\n\
00383 Header header # Header timestamp should be acquisition time of image\n\
00384 # Header frame_id should be optical frame of camera\n\
00385 # origin of frame should be optical center of camera\n\
00386 # +x should point to the right in the image\n\
00387 # +y should point down in the image\n\
00388 # +z should point into the plane of the image\n\
00389 \n\
00390 \n\
00391 #######################################################################\n\
00392 # Calibration Parameters #\n\
00393 #######################################################################\n\
00394 # These are fixed during camera calibration. Their values will be the #\n\
00395 # same in all messages until the camera is recalibrated. Note that #\n\
00396 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00397 # #\n\
00398 # The internal parameters can be used to warp a raw (distorted) image #\n\
00399 # to: #\n\
00400 # 1. An undistorted image (requires D and K) #\n\
00401 # 2. A rectified image (requires D, K, R) #\n\
00402 # The projection matrix P projects 3D points into the rectified image.#\n\
00403 #######################################################################\n\
00404 \n\
00405 # The image dimensions with which the camera was calibrated. Normally\n\
00406 # this will be the full camera resolution in pixels.\n\
00407 uint32 height\n\
00408 uint32 width\n\
00409 \n\
00410 # The distortion model used. Supported models are listed in\n\
00411 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00412 # simple model of radial and tangential distortion - is sufficent.\n\
00413 string distortion_model\n\
00414 \n\
00415 # The distortion parameters, size depending on the distortion model.\n\
00416 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00417 float64[] D\n\
00418 \n\
00419 # Intrinsic camera matrix for the raw (distorted) images.\n\
00420 # [fx 0 cx]\n\
00421 # K = [ 0 fy cy]\n\
00422 # [ 0 0 1]\n\
00423 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00424 # coordinates using the focal lengths (fx, fy) and principal point\n\
00425 # (cx, cy).\n\
00426 float64[9] K # 3x3 row-major matrix\n\
00427 \n\
00428 # Rectification matrix (stereo cameras only)\n\
00429 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00430 # stereo image plane so that epipolar lines in both stereo images are\n\
00431 # parallel.\n\
00432 float64[9] R # 3x3 row-major matrix\n\
00433 \n\
00434 # Projection/camera matrix\n\
00435 # [fx' 0 cx' Tx]\n\
00436 # P = [ 0 fy' cy' Ty]\n\
00437 # [ 0 0 1 0]\n\
00438 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00439 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00440 # is the normal camera intrinsic matrix for the rectified image.\n\
00441 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00442 # coordinates using the focal lengths (fx', fy') and principal point\n\
00443 # (cx', cy') - these may differ from the values in K.\n\
00444 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00445 # also have R = the identity and P[1:3,1:3] = K.\n\
00446 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00447 # position of the optical center of the second camera in the first\n\
00448 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00449 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00450 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00451 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00452 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00453 # the rectified image is given by:\n\
00454 # [u v w]' = P * [X Y Z 1]'\n\
00455 # x = u / w\n\
00456 # y = v / w\n\
00457 # This holds for both images of a stereo pair.\n\
00458 float64[12] P # 3x4 row-major matrix\n\
00459 \n\
00460 \n\
00461 #######################################################################\n\
00462 # Operational Parameters #\n\
00463 #######################################################################\n\
00464 # These define the image region actually captured by the camera #\n\
00465 # driver. Although they affect the geometry of the output image, they #\n\
00466 # may be changed freely without recalibrating the camera. #\n\
00467 #######################################################################\n\
00468 \n\
00469 # Binning refers here to any camera setting which combines rectangular\n\
00470 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00471 # resolution of the output image to\n\
00472 # (width / binning_x) x (height / binning_y).\n\
00473 # The default values binning_x = binning_y = 0 is considered the same\n\
00474 # as binning_x = binning_y = 1 (no subsampling).\n\
00475 uint32 binning_x\n\
00476 uint32 binning_y\n\
00477 \n\
00478 # Region of interest (subwindow of full camera resolution), given in\n\
00479 # full resolution (unbinned) image coordinates. A particular ROI\n\
00480 # always denotes the same window of pixels on the camera sensor,\n\
00481 # regardless of binning settings.\n\
00482 # The default setting of roi (all values 0) is considered the same as\n\
00483 # full resolution (roi.width = width, roi.height = height).\n\
00484 RegionOfInterest roi\n\
00485 \n\
00486 ================================================================================\n\
00487 MSG: sensor_msgs/RegionOfInterest\n\
00488 # This message is used to specify a region of interest within an image.\n\
00489 #\n\
00490 # When used to specify the ROI setting of the camera when the image was\n\
00491 # taken, the height and width fields should either match the height and\n\
00492 # width fields for the associated image; or height = width = 0\n\
00493 # indicates that the full resolution image was captured.\n\
00494 \n\
00495 uint32 x_offset # Leftmost pixel of the ROI\n\
00496 # (0 if the ROI includes the left edge of the image)\n\
00497 uint32 y_offset # Topmost pixel of the ROI\n\
00498 # (0 if the ROI includes the top edge of the image)\n\
00499 uint32 height # Height of ROI\n\
00500 uint32 width # Width of ROI\n\
00501 \n\
00502 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00503 # ROI in this message. Typically this should be False if the full image\n\
00504 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00505 # used).\n\
00506 bool do_rectify\n\
00507 \n\
00508 ================================================================================\n\
00509 MSG: trajectory_msgs/JointTrajectory\n\
00510 Header header\n\
00511 string[] joint_names\n\
00512 JointTrajectoryPoint[] points\n\
00513 ================================================================================\n\
00514 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00515 float64[] positions\n\
00516 float64[] velocities\n\
00517 float64[] accelerations\n\
00518 duration time_from_start\n\
00519 ================================================================================\n\
00520 MSG: sensor_msgs/JointState\n\
00521 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00522 #\n\
00523 # The state of each joint (revolute or prismatic) is defined by:\n\
00524 # * the position of the joint (rad or m),\n\
00525 # * the velocity of the joint (rad/s or m/s) and \n\
00526 # * the effort that is applied in the joint (Nm or N).\n\
00527 #\n\
00528 # Each joint is uniquely identified by its name\n\
00529 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00530 # in one message have to be recorded at the same time.\n\
00531 #\n\
00532 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00533 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00534 # effort associated with them, you can leave the effort array empty. \n\
00535 #\n\
00536 # All arrays in this message should have the same size, or be empty.\n\
00537 # This is the only way to uniquely associate the joint name with the correct\n\
00538 # states.\n\
00539 \n\
00540 \n\
00541 Header header\n\
00542 \n\
00543 string[] name\n\
00544 float64[] position\n\
00545 float64[] velocity\n\
00546 float64[] effort\n\
00547 \n\
00548 "; }
00549 public:
00550 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00551
00552 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00553
00554 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00555 {
00556 ros::serialization::OStream stream(write_ptr, 1000000000);
00557 ros::serialization::serialize(stream, arm_name);
00558 ros::serialization::serialize(stream, target);
00559 ros::serialization::serialize(stream, final_grasp_pose);
00560 ros::serialization::serialize(stream, trajectory);
00561 ros::serialization::serialize(stream, collision_support_surface_name);
00562 ros::serialization::serialize(stream, pre_grasp_posture);
00563 ros::serialization::serialize(stream, grasp_posture);
00564 return stream.getData();
00565 }
00566
00567 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00568 {
00569 ros::serialization::IStream stream(read_ptr, 1000000000);
00570 ros::serialization::deserialize(stream, arm_name);
00571 ros::serialization::deserialize(stream, target);
00572 ros::serialization::deserialize(stream, final_grasp_pose);
00573 ros::serialization::deserialize(stream, trajectory);
00574 ros::serialization::deserialize(stream, collision_support_surface_name);
00575 ros::serialization::deserialize(stream, pre_grasp_posture);
00576 ros::serialization::deserialize(stream, grasp_posture);
00577 return stream.getData();
00578 }
00579
00580 ROS_DEPRECATED virtual uint32_t serializationLength() const
00581 {
00582 uint32_t size = 0;
00583 size += ros::serialization::serializationLength(arm_name);
00584 size += ros::serialization::serializationLength(target);
00585 size += ros::serialization::serializationLength(final_grasp_pose);
00586 size += ros::serialization::serializationLength(trajectory);
00587 size += ros::serialization::serializationLength(collision_support_surface_name);
00588 size += ros::serialization::serializationLength(pre_grasp_posture);
00589 size += ros::serialization::serializationLength(grasp_posture);
00590 return size;
00591 }
00592
00593 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > Ptr;
00594 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> const> ConstPtr;
00595 };
00596 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<std::allocator<void> > ReactiveGraspGoal;
00597
00598 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal> ReactiveGraspGoalPtr;
00599 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal const> ReactiveGraspGoalConstPtr;
00600
00601
00602 template<typename ContainerAllocator>
00603 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v)
00604 {
00605 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, "", v);
00606 return s;}
00607
00608 }
00609
00610 namespace ros
00611 {
00612 namespace message_traits
00613 {
00614 template<class ContainerAllocator>
00615 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00616 static const char* value()
00617 {
00618 return "dbc13c9b0291c2714a2d6be91256673c";
00619 }
00620
00621 static const char* value(const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); }
00622 static const uint64_t static_value1 = 0xdbc13c9b0291c271ULL;
00623 static const uint64_t static_value2 = 0x4a2d6be91256673cULL;
00624 };
00625
00626 template<class ContainerAllocator>
00627 struct DataType< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00628 static const char* value()
00629 {
00630 return "object_manipulation_msgs/ReactiveGraspGoal";
00631 }
00632
00633 static const char* value(const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); }
00634 };
00635
00636 template<class ContainerAllocator>
00637 struct Definition< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00638 static const char* value()
00639 {
00640 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00641 # an action for reactive grasping\n\
00642 # a reactive grasp starts from the current pose of the gripper and ends\n\
00643 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00644 \n\
00645 # the name of the arm being used\n\
00646 string arm_name\n\
00647 \n\
00648 # the object to be grasped\n\
00649 GraspableObject target\n\
00650 \n\
00651 # the desired grasp pose for the hand\n\
00652 geometry_msgs/PoseStamped final_grasp_pose\n\
00653 \n\
00654 # the joint trajectory to use for the approach (if available)\n\
00655 # this trajectory is expected to start at the current pose of the gripper\n\
00656 # and end at the desired grasp pose\n\
00657 trajectory_msgs/JointTrajectory trajectory\n\
00658 \n\
00659 # the name of the support surface in the collision environment, if any\n\
00660 string collision_support_surface_name\n\
00661 \n\
00662 # The internal posture of the hand for the pre-grasp\n\
00663 # only positions are used\n\
00664 sensor_msgs/JointState pre_grasp_posture\n\
00665 \n\
00666 # The internal posture of the hand for the grasp\n\
00667 # positions and efforts are used\n\
00668 sensor_msgs/JointState grasp_posture\n\
00669 \n\
00670 \n\
00671 ================================================================================\n\
00672 MSG: object_manipulation_msgs/GraspableObject\n\
00673 # an object that the object_manipulator can work on\n\
00674 \n\
00675 # a graspable object can be represented in multiple ways. This message\n\
00676 # can contain all of them. Which one is actually used is up to the receiver\n\
00677 # of this message. When adding new representations, one must be careful that\n\
00678 # they have reasonable lightweight defaults indicating that that particular\n\
00679 # representation is not available.\n\
00680 \n\
00681 # the tf frame to be used as a reference frame when combining information from\n\
00682 # the different representations below\n\
00683 string reference_frame_id\n\
00684 \n\
00685 # potential recognition results from a database of models\n\
00686 # all poses are relative to the object reference pose\n\
00687 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00688 \n\
00689 # the point cloud itself\n\
00690 sensor_msgs/PointCloud cluster\n\
00691 \n\
00692 # a region of a PointCloud2 of interest\n\
00693 object_manipulation_msgs/SceneRegion region\n\
00694 \n\
00695 \n\
00696 ================================================================================\n\
00697 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00698 # Informs that a specific model from the Model Database has been \n\
00699 # identified at a certain location\n\
00700 \n\
00701 # the database id of the model\n\
00702 int32 model_id\n\
00703 \n\
00704 # the pose that it can be found in\n\
00705 geometry_msgs/PoseStamped pose\n\
00706 \n\
00707 # a measure of the confidence level in this detection result\n\
00708 float32 confidence\n\
00709 ================================================================================\n\
00710 MSG: geometry_msgs/PoseStamped\n\
00711 # A Pose with reference coordinate frame and timestamp\n\
00712 Header header\n\
00713 Pose pose\n\
00714 \n\
00715 ================================================================================\n\
00716 MSG: std_msgs/Header\n\
00717 # Standard metadata for higher-level stamped data types.\n\
00718 # This is generally used to communicate timestamped data \n\
00719 # in a particular coordinate frame.\n\
00720 # \n\
00721 # sequence ID: consecutively increasing ID \n\
00722 uint32 seq\n\
00723 #Two-integer timestamp that is expressed as:\n\
00724 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00725 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00726 # time-handling sugar is provided by the client library\n\
00727 time stamp\n\
00728 #Frame this data is associated with\n\
00729 # 0: no frame\n\
00730 # 1: global frame\n\
00731 string frame_id\n\
00732 \n\
00733 ================================================================================\n\
00734 MSG: geometry_msgs/Pose\n\
00735 # A representation of pose in free space, composed of postion and orientation. \n\
00736 Point position\n\
00737 Quaternion orientation\n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: geometry_msgs/Point\n\
00741 # This contains the position of a point in free space\n\
00742 float64 x\n\
00743 float64 y\n\
00744 float64 z\n\
00745 \n\
00746 ================================================================================\n\
00747 MSG: geometry_msgs/Quaternion\n\
00748 # This represents an orientation in free space in quaternion form.\n\
00749 \n\
00750 float64 x\n\
00751 float64 y\n\
00752 float64 z\n\
00753 float64 w\n\
00754 \n\
00755 ================================================================================\n\
00756 MSG: sensor_msgs/PointCloud\n\
00757 # This message holds a collection of 3d points, plus optional additional\n\
00758 # information about each point.\n\
00759 \n\
00760 # Time of sensor data acquisition, coordinate frame ID.\n\
00761 Header header\n\
00762 \n\
00763 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00764 # in the frame given in the header.\n\
00765 geometry_msgs/Point32[] points\n\
00766 \n\
00767 # Each channel should have the same number of elements as points array,\n\
00768 # and the data in each channel should correspond 1:1 with each point.\n\
00769 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00770 ChannelFloat32[] channels\n\
00771 \n\
00772 ================================================================================\n\
00773 MSG: geometry_msgs/Point32\n\
00774 # This contains the position of a point in free space(with 32 bits of precision).\n\
00775 # It is recommeded to use Point wherever possible instead of Point32. \n\
00776 # \n\
00777 # This recommendation is to promote interoperability. \n\
00778 #\n\
00779 # This message is designed to take up less space when sending\n\
00780 # lots of points at once, as in the case of a PointCloud. \n\
00781 \n\
00782 float32 x\n\
00783 float32 y\n\
00784 float32 z\n\
00785 ================================================================================\n\
00786 MSG: sensor_msgs/ChannelFloat32\n\
00787 # This message is used by the PointCloud message to hold optional data\n\
00788 # associated with each point in the cloud. The length of the values\n\
00789 # array should be the same as the length of the points array in the\n\
00790 # PointCloud, and each value should be associated with the corresponding\n\
00791 # point.\n\
00792 \n\
00793 # Channel names in existing practice include:\n\
00794 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00795 # This is opposite to usual conventions but remains for\n\
00796 # historical reasons. The newer PointCloud2 message has no\n\
00797 # such problem.\n\
00798 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00799 # (R,G,B) values packed into the least significant 24 bits,\n\
00800 # in order.\n\
00801 # \"intensity\" - laser or pixel intensity.\n\
00802 # \"distance\"\n\
00803 \n\
00804 # The channel name should give semantics of the channel (e.g.\n\
00805 # \"intensity\" instead of \"value\").\n\
00806 string name\n\
00807 \n\
00808 # The values array should be 1-1 with the elements of the associated\n\
00809 # PointCloud.\n\
00810 float32[] values\n\
00811 \n\
00812 ================================================================================\n\
00813 MSG: object_manipulation_msgs/SceneRegion\n\
00814 # Point cloud\n\
00815 sensor_msgs/PointCloud2 cloud\n\
00816 \n\
00817 # Indices for the region of interest\n\
00818 int32[] mask\n\
00819 \n\
00820 # One of the corresponding 2D images, if applicable\n\
00821 sensor_msgs/Image image\n\
00822 \n\
00823 # The disparity image, if applicable\n\
00824 sensor_msgs/Image disparity_image\n\
00825 \n\
00826 # Camera info for the camera that took the image\n\
00827 sensor_msgs/CameraInfo cam_info\n\
00828 \n\
00829 ================================================================================\n\
00830 MSG: sensor_msgs/PointCloud2\n\
00831 # This message holds a collection of N-dimensional points, which may\n\
00832 # contain additional information such as normals, intensity, etc. The\n\
00833 # point data is stored as a binary blob, its layout described by the\n\
00834 # contents of the \"fields\" array.\n\
00835 \n\
00836 # The point cloud data may be organized 2d (image-like) or 1d\n\
00837 # (unordered). Point clouds organized as 2d images may be produced by\n\
00838 # camera depth sensors such as stereo or time-of-flight.\n\
00839 \n\
00840 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00841 # points).\n\
00842 Header header\n\
00843 \n\
00844 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00845 # 1 and width is the length of the point cloud.\n\
00846 uint32 height\n\
00847 uint32 width\n\
00848 \n\
00849 # Describes the channels and their layout in the binary data blob.\n\
00850 PointField[] fields\n\
00851 \n\
00852 bool is_bigendian # Is this data bigendian?\n\
00853 uint32 point_step # Length of a point in bytes\n\
00854 uint32 row_step # Length of a row in bytes\n\
00855 uint8[] data # Actual point data, size is (row_step*height)\n\
00856 \n\
00857 bool is_dense # True if there are no invalid points\n\
00858 \n\
00859 ================================================================================\n\
00860 MSG: sensor_msgs/PointField\n\
00861 # This message holds the description of one point entry in the\n\
00862 # PointCloud2 message format.\n\
00863 uint8 INT8 = 1\n\
00864 uint8 UINT8 = 2\n\
00865 uint8 INT16 = 3\n\
00866 uint8 UINT16 = 4\n\
00867 uint8 INT32 = 5\n\
00868 uint8 UINT32 = 6\n\
00869 uint8 FLOAT32 = 7\n\
00870 uint8 FLOAT64 = 8\n\
00871 \n\
00872 string name # Name of field\n\
00873 uint32 offset # Offset from start of point struct\n\
00874 uint8 datatype # Datatype enumeration, see above\n\
00875 uint32 count # How many elements in the field\n\
00876 \n\
00877 ================================================================================\n\
00878 MSG: sensor_msgs/Image\n\
00879 # This message contains an uncompressed image\n\
00880 # (0, 0) is at top-left corner of image\n\
00881 #\n\
00882 \n\
00883 Header header # Header timestamp should be acquisition time of image\n\
00884 # Header frame_id should be optical frame of camera\n\
00885 # origin of frame should be optical center of cameara\n\
00886 # +x should point to the right in the image\n\
00887 # +y should point down in the image\n\
00888 # +z should point into to plane of the image\n\
00889 # If the frame_id here and the frame_id of the CameraInfo\n\
00890 # message associated with the image conflict\n\
00891 # the behavior is undefined\n\
00892 \n\
00893 uint32 height # image height, that is, number of rows\n\
00894 uint32 width # image width, that is, number of columns\n\
00895 \n\
00896 # The legal values for encoding are in file src/image_encodings.cpp\n\
00897 # If you want to standardize a new string format, join\n\
00898 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00899 \n\
00900 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00901 # taken from the list of strings in src/image_encodings.cpp\n\
00902 \n\
00903 uint8 is_bigendian # is this data bigendian?\n\
00904 uint32 step # Full row length in bytes\n\
00905 uint8[] data # actual matrix data, size is (step * rows)\n\
00906 \n\
00907 ================================================================================\n\
00908 MSG: sensor_msgs/CameraInfo\n\
00909 # This message defines meta information for a camera. It should be in a\n\
00910 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00911 # image topics named:\n\
00912 #\n\
00913 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00914 # image - monochrome, distorted\n\
00915 # image_color - color, distorted\n\
00916 # image_rect - monochrome, rectified\n\
00917 # image_rect_color - color, rectified\n\
00918 #\n\
00919 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00920 # for producing the four processed image topics from image_raw and\n\
00921 # camera_info. The meaning of the camera parameters are described in\n\
00922 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00923 #\n\
00924 # The image_geometry package provides a user-friendly interface to\n\
00925 # common operations using this meta information. If you want to, e.g.,\n\
00926 # project a 3d point into image coordinates, we strongly recommend\n\
00927 # using image_geometry.\n\
00928 #\n\
00929 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00930 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00931 # indicates an uncalibrated camera.\n\
00932 \n\
00933 #######################################################################\n\
00934 # Image acquisition info #\n\
00935 #######################################################################\n\
00936 \n\
00937 # Time of image acquisition, camera coordinate frame ID\n\
00938 Header header # Header timestamp should be acquisition time of image\n\
00939 # Header frame_id should be optical frame of camera\n\
00940 # origin of frame should be optical center of camera\n\
00941 # +x should point to the right in the image\n\
00942 # +y should point down in the image\n\
00943 # +z should point into the plane of the image\n\
00944 \n\
00945 \n\
00946 #######################################################################\n\
00947 # Calibration Parameters #\n\
00948 #######################################################################\n\
00949 # These are fixed during camera calibration. Their values will be the #\n\
00950 # same in all messages until the camera is recalibrated. Note that #\n\
00951 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00952 # #\n\
00953 # The internal parameters can be used to warp a raw (distorted) image #\n\
00954 # to: #\n\
00955 # 1. An undistorted image (requires D and K) #\n\
00956 # 2. A rectified image (requires D, K, R) #\n\
00957 # The projection matrix P projects 3D points into the rectified image.#\n\
00958 #######################################################################\n\
00959 \n\
00960 # The image dimensions with which the camera was calibrated. Normally\n\
00961 # this will be the full camera resolution in pixels.\n\
00962 uint32 height\n\
00963 uint32 width\n\
00964 \n\
00965 # The distortion model used. Supported models are listed in\n\
00966 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00967 # simple model of radial and tangential distortion - is sufficent.\n\
00968 string distortion_model\n\
00969 \n\
00970 # The distortion parameters, size depending on the distortion model.\n\
00971 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00972 float64[] D\n\
00973 \n\
00974 # Intrinsic camera matrix for the raw (distorted) images.\n\
00975 # [fx 0 cx]\n\
00976 # K = [ 0 fy cy]\n\
00977 # [ 0 0 1]\n\
00978 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00979 # coordinates using the focal lengths (fx, fy) and principal point\n\
00980 # (cx, cy).\n\
00981 float64[9] K # 3x3 row-major matrix\n\
00982 \n\
00983 # Rectification matrix (stereo cameras only)\n\
00984 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00985 # stereo image plane so that epipolar lines in both stereo images are\n\
00986 # parallel.\n\
00987 float64[9] R # 3x3 row-major matrix\n\
00988 \n\
00989 # Projection/camera matrix\n\
00990 # [fx' 0 cx' Tx]\n\
00991 # P = [ 0 fy' cy' Ty]\n\
00992 # [ 0 0 1 0]\n\
00993 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00994 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00995 # is the normal camera intrinsic matrix for the rectified image.\n\
00996 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00997 # coordinates using the focal lengths (fx', fy') and principal point\n\
00998 # (cx', cy') - these may differ from the values in K.\n\
00999 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01000 # also have R = the identity and P[1:3,1:3] = K.\n\
01001 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01002 # position of the optical center of the second camera in the first\n\
01003 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01004 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01005 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01006 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01007 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01008 # the rectified image is given by:\n\
01009 # [u v w]' = P * [X Y Z 1]'\n\
01010 # x = u / w\n\
01011 # y = v / w\n\
01012 # This holds for both images of a stereo pair.\n\
01013 float64[12] P # 3x4 row-major matrix\n\
01014 \n\
01015 \n\
01016 #######################################################################\n\
01017 # Operational Parameters #\n\
01018 #######################################################################\n\
01019 # These define the image region actually captured by the camera #\n\
01020 # driver. Although they affect the geometry of the output image, they #\n\
01021 # may be changed freely without recalibrating the camera. #\n\
01022 #######################################################################\n\
01023 \n\
01024 # Binning refers here to any camera setting which combines rectangular\n\
01025 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01026 # resolution of the output image to\n\
01027 # (width / binning_x) x (height / binning_y).\n\
01028 # The default values binning_x = binning_y = 0 is considered the same\n\
01029 # as binning_x = binning_y = 1 (no subsampling).\n\
01030 uint32 binning_x\n\
01031 uint32 binning_y\n\
01032 \n\
01033 # Region of interest (subwindow of full camera resolution), given in\n\
01034 # full resolution (unbinned) image coordinates. A particular ROI\n\
01035 # always denotes the same window of pixels on the camera sensor,\n\
01036 # regardless of binning settings.\n\
01037 # The default setting of roi (all values 0) is considered the same as\n\
01038 # full resolution (roi.width = width, roi.height = height).\n\
01039 RegionOfInterest roi\n\
01040 \n\
01041 ================================================================================\n\
01042 MSG: sensor_msgs/RegionOfInterest\n\
01043 # This message is used to specify a region of interest within an image.\n\
01044 #\n\
01045 # When used to specify the ROI setting of the camera when the image was\n\
01046 # taken, the height and width fields should either match the height and\n\
01047 # width fields for the associated image; or height = width = 0\n\
01048 # indicates that the full resolution image was captured.\n\
01049 \n\
01050 uint32 x_offset # Leftmost pixel of the ROI\n\
01051 # (0 if the ROI includes the left edge of the image)\n\
01052 uint32 y_offset # Topmost pixel of the ROI\n\
01053 # (0 if the ROI includes the top edge of the image)\n\
01054 uint32 height # Height of ROI\n\
01055 uint32 width # Width of ROI\n\
01056 \n\
01057 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01058 # ROI in this message. Typically this should be False if the full image\n\
01059 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01060 # used).\n\
01061 bool do_rectify\n\
01062 \n\
01063 ================================================================================\n\
01064 MSG: trajectory_msgs/JointTrajectory\n\
01065 Header header\n\
01066 string[] joint_names\n\
01067 JointTrajectoryPoint[] points\n\
01068 ================================================================================\n\
01069 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01070 float64[] positions\n\
01071 float64[] velocities\n\
01072 float64[] accelerations\n\
01073 duration time_from_start\n\
01074 ================================================================================\n\
01075 MSG: sensor_msgs/JointState\n\
01076 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01077 #\n\
01078 # The state of each joint (revolute or prismatic) is defined by:\n\
01079 # * the position of the joint (rad or m),\n\
01080 # * the velocity of the joint (rad/s or m/s) and \n\
01081 # * the effort that is applied in the joint (Nm or N).\n\
01082 #\n\
01083 # Each joint is uniquely identified by its name\n\
01084 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01085 # in one message have to be recorded at the same time.\n\
01086 #\n\
01087 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01088 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01089 # effort associated with them, you can leave the effort array empty. \n\
01090 #\n\
01091 # All arrays in this message should have the same size, or be empty.\n\
01092 # This is the only way to uniquely associate the joint name with the correct\n\
01093 # states.\n\
01094 \n\
01095 \n\
01096 Header header\n\
01097 \n\
01098 string[] name\n\
01099 float64[] position\n\
01100 float64[] velocity\n\
01101 float64[] effort\n\
01102 \n\
01103 ";
01104 }
01105
01106 static const char* value(const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); }
01107 };
01108
01109 }
01110 }
01111
01112 namespace ros
01113 {
01114 namespace serialization
01115 {
01116
01117 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
01118 {
01119 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01120 {
01121 stream.next(m.arm_name);
01122 stream.next(m.target);
01123 stream.next(m.final_grasp_pose);
01124 stream.next(m.trajectory);
01125 stream.next(m.collision_support_surface_name);
01126 stream.next(m.pre_grasp_posture);
01127 stream.next(m.grasp_posture);
01128 }
01129
01130 ROS_DECLARE_ALLINONE_SERIALIZER;
01131 };
01132 }
01133 }
01134
01135 namespace ros
01136 {
01137 namespace message_operations
01138 {
01139
01140 template<class ContainerAllocator>
01141 struct Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
01142 {
01143 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v)
01144 {
01145 s << indent << "arm_name: ";
01146 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01147 s << indent << "target: ";
01148 s << std::endl;
01149 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target);
01150 s << indent << "final_grasp_pose: ";
01151 s << std::endl;
01152 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.final_grasp_pose);
01153 s << indent << "trajectory: ";
01154 s << std::endl;
01155 Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + " ", v.trajectory);
01156 s << indent << "collision_support_surface_name: ";
01157 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
01158 s << indent << "pre_grasp_posture: ";
01159 s << std::endl;
01160 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.pre_grasp_posture);
01161 s << indent << "grasp_posture: ";
01162 s << std::endl;
01163 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_posture);
01164 }
01165 };
01166
01167
01168 }
01169 }
01170
01171 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
01172