00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/ReactiveGraspActionGoal.h"
00014 #include "object_manipulation_msgs/ReactiveGraspActionResult.h"
00015 #include "object_manipulation_msgs/ReactiveGraspActionFeedback.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct ReactiveGraspAction_ : public ros::Message
00021 {
00022 typedef ReactiveGraspAction_<ContainerAllocator> Type;
00023
00024 ReactiveGraspAction_()
00025 : action_goal()
00026 , action_result()
00027 , action_feedback()
00028 {
00029 }
00030
00031 ReactiveGraspAction_(const ContainerAllocator& _alloc)
00032 : action_goal(_alloc)
00033 , action_result(_alloc)
00034 , action_feedback(_alloc)
00035 {
00036 }
00037
00038 typedef ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> _action_goal_type;
00039 ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> action_goal;
00040
00041 typedef ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> _action_result_type;
00042 ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> action_result;
00043
00044 typedef ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> _action_feedback_type;
00045 ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> action_feedback;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspAction"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "a98e439d448e3a27be746925c86b6377"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 ReactiveGraspActionGoal action_goal\n\
00066 ReactiveGraspActionResult action_result\n\
00067 ReactiveGraspActionFeedback action_feedback\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: object_manipulation_msgs/ReactiveGraspActionGoal\n\
00071 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00072 \n\
00073 Header header\n\
00074 actionlib_msgs/GoalID goal_id\n\
00075 ReactiveGraspGoal goal\n\
00076 \n\
00077 ================================================================================\n\
00078 MSG: std_msgs/Header\n\
00079 # Standard metadata for higher-level stamped data types.\n\
00080 # This is generally used to communicate timestamped data \n\
00081 # in a particular coordinate frame.\n\
00082 # \n\
00083 # sequence ID: consecutively increasing ID \n\
00084 uint32 seq\n\
00085 #Two-integer timestamp that is expressed as:\n\
00086 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00087 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00088 # time-handling sugar is provided by the client library\n\
00089 time stamp\n\
00090 #Frame this data is associated with\n\
00091 # 0: no frame\n\
00092 # 1: global frame\n\
00093 string frame_id\n\
00094 \n\
00095 ================================================================================\n\
00096 MSG: actionlib_msgs/GoalID\n\
00097 # The stamp should store the time at which this goal was requested.\n\
00098 # It is used by an action server when it tries to preempt all\n\
00099 # goals that were requested before a certain time\n\
00100 time stamp\n\
00101 \n\
00102 # The id provides a way to associate feedback and\n\
00103 # result message with specific goal requests. The id\n\
00104 # specified must be unique.\n\
00105 string id\n\
00106 \n\
00107 \n\
00108 ================================================================================\n\
00109 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00110 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00111 # an action for reactive grasping\n\
00112 # a reactive grasp starts from the current pose of the gripper and ends\n\
00113 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00114 \n\
00115 # the name of the arm being used\n\
00116 string arm_name\n\
00117 \n\
00118 # the object to be grasped\n\
00119 GraspableObject target\n\
00120 \n\
00121 # the desired grasp pose for the hand\n\
00122 geometry_msgs/PoseStamped final_grasp_pose\n\
00123 \n\
00124 # the joint trajectory to use for the approach (if available)\n\
00125 # this trajectory is expected to start at the current pose of the gripper\n\
00126 # and end at the desired grasp pose\n\
00127 trajectory_msgs/JointTrajectory trajectory\n\
00128 \n\
00129 # the name of the support surface in the collision environment, if any\n\
00130 string collision_support_surface_name\n\
00131 \n\
00132 # The internal posture of the hand for the pre-grasp\n\
00133 # only positions are used\n\
00134 sensor_msgs/JointState pre_grasp_posture\n\
00135 \n\
00136 # The internal posture of the hand for the grasp\n\
00137 # positions and efforts are used\n\
00138 sensor_msgs/JointState grasp_posture\n\
00139 \n\
00140 \n\
00141 ================================================================================\n\
00142 MSG: object_manipulation_msgs/GraspableObject\n\
00143 # an object that the object_manipulator can work on\n\
00144 \n\
00145 # a graspable object can be represented in multiple ways. This message\n\
00146 # can contain all of them. Which one is actually used is up to the receiver\n\
00147 # of this message. When adding new representations, one must be careful that\n\
00148 # they have reasonable lightweight defaults indicating that that particular\n\
00149 # representation is not available.\n\
00150 \n\
00151 # the tf frame to be used as a reference frame when combining information from\n\
00152 # the different representations below\n\
00153 string reference_frame_id\n\
00154 \n\
00155 # potential recognition results from a database of models\n\
00156 # all poses are relative to the object reference pose\n\
00157 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00158 \n\
00159 # the point cloud itself\n\
00160 sensor_msgs/PointCloud cluster\n\
00161 \n\
00162 # a region of a PointCloud2 of interest\n\
00163 object_manipulation_msgs/SceneRegion region\n\
00164 \n\
00165 \n\
00166 ================================================================================\n\
00167 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00168 # Informs that a specific model from the Model Database has been \n\
00169 # identified at a certain location\n\
00170 \n\
00171 # the database id of the model\n\
00172 int32 model_id\n\
00173 \n\
00174 # the pose that it can be found in\n\
00175 geometry_msgs/PoseStamped pose\n\
00176 \n\
00177 # a measure of the confidence level in this detection result\n\
00178 float32 confidence\n\
00179 ================================================================================\n\
00180 MSG: geometry_msgs/PoseStamped\n\
00181 # A Pose with reference coordinate frame and timestamp\n\
00182 Header header\n\
00183 Pose pose\n\
00184 \n\
00185 ================================================================================\n\
00186 MSG: geometry_msgs/Pose\n\
00187 # A representation of pose in free space, composed of postion and orientation. \n\
00188 Point position\n\
00189 Quaternion orientation\n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: geometry_msgs/Point\n\
00193 # This contains the position of a point in free space\n\
00194 float64 x\n\
00195 float64 y\n\
00196 float64 z\n\
00197 \n\
00198 ================================================================================\n\
00199 MSG: geometry_msgs/Quaternion\n\
00200 # This represents an orientation in free space in quaternion form.\n\
00201 \n\
00202 float64 x\n\
00203 float64 y\n\
00204 float64 z\n\
00205 float64 w\n\
00206 \n\
00207 ================================================================================\n\
00208 MSG: sensor_msgs/PointCloud\n\
00209 # This message holds a collection of 3d points, plus optional additional\n\
00210 # information about each point.\n\
00211 \n\
00212 # Time of sensor data acquisition, coordinate frame ID.\n\
00213 Header header\n\
00214 \n\
00215 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00216 # in the frame given in the header.\n\
00217 geometry_msgs/Point32[] points\n\
00218 \n\
00219 # Each channel should have the same number of elements as points array,\n\
00220 # and the data in each channel should correspond 1:1 with each point.\n\
00221 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00222 ChannelFloat32[] channels\n\
00223 \n\
00224 ================================================================================\n\
00225 MSG: geometry_msgs/Point32\n\
00226 # This contains the position of a point in free space(with 32 bits of precision).\n\
00227 # It is recommeded to use Point wherever possible instead of Point32. \n\
00228 # \n\
00229 # This recommendation is to promote interoperability. \n\
00230 #\n\
00231 # This message is designed to take up less space when sending\n\
00232 # lots of points at once, as in the case of a PointCloud. \n\
00233 \n\
00234 float32 x\n\
00235 float32 y\n\
00236 float32 z\n\
00237 ================================================================================\n\
00238 MSG: sensor_msgs/ChannelFloat32\n\
00239 # This message is used by the PointCloud message to hold optional data\n\
00240 # associated with each point in the cloud. The length of the values\n\
00241 # array should be the same as the length of the points array in the\n\
00242 # PointCloud, and each value should be associated with the corresponding\n\
00243 # point.\n\
00244 \n\
00245 # Channel names in existing practice include:\n\
00246 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00247 # This is opposite to usual conventions but remains for\n\
00248 # historical reasons. The newer PointCloud2 message has no\n\
00249 # such problem.\n\
00250 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00251 # (R,G,B) values packed into the least significant 24 bits,\n\
00252 # in order.\n\
00253 # \"intensity\" - laser or pixel intensity.\n\
00254 # \"distance\"\n\
00255 \n\
00256 # The channel name should give semantics of the channel (e.g.\n\
00257 # \"intensity\" instead of \"value\").\n\
00258 string name\n\
00259 \n\
00260 # The values array should be 1-1 with the elements of the associated\n\
00261 # PointCloud.\n\
00262 float32[] values\n\
00263 \n\
00264 ================================================================================\n\
00265 MSG: object_manipulation_msgs/SceneRegion\n\
00266 # Point cloud\n\
00267 sensor_msgs/PointCloud2 cloud\n\
00268 \n\
00269 # Indices for the region of interest\n\
00270 int32[] mask\n\
00271 \n\
00272 # One of the corresponding 2D images, if applicable\n\
00273 sensor_msgs/Image image\n\
00274 \n\
00275 # The disparity image, if applicable\n\
00276 sensor_msgs/Image disparity_image\n\
00277 \n\
00278 # Camera info for the camera that took the image\n\
00279 sensor_msgs/CameraInfo cam_info\n\
00280 \n\
00281 ================================================================================\n\
00282 MSG: sensor_msgs/PointCloud2\n\
00283 # This message holds a collection of N-dimensional points, which may\n\
00284 # contain additional information such as normals, intensity, etc. The\n\
00285 # point data is stored as a binary blob, its layout described by the\n\
00286 # contents of the \"fields\" array.\n\
00287 \n\
00288 # The point cloud data may be organized 2d (image-like) or 1d\n\
00289 # (unordered). Point clouds organized as 2d images may be produced by\n\
00290 # camera depth sensors such as stereo or time-of-flight.\n\
00291 \n\
00292 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00293 # points).\n\
00294 Header header\n\
00295 \n\
00296 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00297 # 1 and width is the length of the point cloud.\n\
00298 uint32 height\n\
00299 uint32 width\n\
00300 \n\
00301 # Describes the channels and their layout in the binary data blob.\n\
00302 PointField[] fields\n\
00303 \n\
00304 bool is_bigendian # Is this data bigendian?\n\
00305 uint32 point_step # Length of a point in bytes\n\
00306 uint32 row_step # Length of a row in bytes\n\
00307 uint8[] data # Actual point data, size is (row_step*height)\n\
00308 \n\
00309 bool is_dense # True if there are no invalid points\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: sensor_msgs/PointField\n\
00313 # This message holds the description of one point entry in the\n\
00314 # PointCloud2 message format.\n\
00315 uint8 INT8 = 1\n\
00316 uint8 UINT8 = 2\n\
00317 uint8 INT16 = 3\n\
00318 uint8 UINT16 = 4\n\
00319 uint8 INT32 = 5\n\
00320 uint8 UINT32 = 6\n\
00321 uint8 FLOAT32 = 7\n\
00322 uint8 FLOAT64 = 8\n\
00323 \n\
00324 string name # Name of field\n\
00325 uint32 offset # Offset from start of point struct\n\
00326 uint8 datatype # Datatype enumeration, see above\n\
00327 uint32 count # How many elements in the field\n\
00328 \n\
00329 ================================================================================\n\
00330 MSG: sensor_msgs/Image\n\
00331 # This message contains an uncompressed image\n\
00332 # (0, 0) is at top-left corner of image\n\
00333 #\n\
00334 \n\
00335 Header header # Header timestamp should be acquisition time of image\n\
00336 # Header frame_id should be optical frame of camera\n\
00337 # origin of frame should be optical center of cameara\n\
00338 # +x should point to the right in the image\n\
00339 # +y should point down in the image\n\
00340 # +z should point into to plane of the image\n\
00341 # If the frame_id here and the frame_id of the CameraInfo\n\
00342 # message associated with the image conflict\n\
00343 # the behavior is undefined\n\
00344 \n\
00345 uint32 height # image height, that is, number of rows\n\
00346 uint32 width # image width, that is, number of columns\n\
00347 \n\
00348 # The legal values for encoding are in file src/image_encodings.cpp\n\
00349 # If you want to standardize a new string format, join\n\
00350 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00351 \n\
00352 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00353 # taken from the list of strings in src/image_encodings.cpp\n\
00354 \n\
00355 uint8 is_bigendian # is this data bigendian?\n\
00356 uint32 step # Full row length in bytes\n\
00357 uint8[] data # actual matrix data, size is (step * rows)\n\
00358 \n\
00359 ================================================================================\n\
00360 MSG: sensor_msgs/CameraInfo\n\
00361 # This message defines meta information for a camera. It should be in a\n\
00362 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00363 # image topics named:\n\
00364 #\n\
00365 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00366 # image - monochrome, distorted\n\
00367 # image_color - color, distorted\n\
00368 # image_rect - monochrome, rectified\n\
00369 # image_rect_color - color, rectified\n\
00370 #\n\
00371 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00372 # for producing the four processed image topics from image_raw and\n\
00373 # camera_info. The meaning of the camera parameters are described in\n\
00374 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00375 #\n\
00376 # The image_geometry package provides a user-friendly interface to\n\
00377 # common operations using this meta information. If you want to, e.g.,\n\
00378 # project a 3d point into image coordinates, we strongly recommend\n\
00379 # using image_geometry.\n\
00380 #\n\
00381 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00382 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00383 # indicates an uncalibrated camera.\n\
00384 \n\
00385 #######################################################################\n\
00386 # Image acquisition info #\n\
00387 #######################################################################\n\
00388 \n\
00389 # Time of image acquisition, camera coordinate frame ID\n\
00390 Header header # Header timestamp should be acquisition time of image\n\
00391 # Header frame_id should be optical frame of camera\n\
00392 # origin of frame should be optical center of camera\n\
00393 # +x should point to the right in the image\n\
00394 # +y should point down in the image\n\
00395 # +z should point into the plane of the image\n\
00396 \n\
00397 \n\
00398 #######################################################################\n\
00399 # Calibration Parameters #\n\
00400 #######################################################################\n\
00401 # These are fixed during camera calibration. Their values will be the #\n\
00402 # same in all messages until the camera is recalibrated. Note that #\n\
00403 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00404 # #\n\
00405 # The internal parameters can be used to warp a raw (distorted) image #\n\
00406 # to: #\n\
00407 # 1. An undistorted image (requires D and K) #\n\
00408 # 2. A rectified image (requires D, K, R) #\n\
00409 # The projection matrix P projects 3D points into the rectified image.#\n\
00410 #######################################################################\n\
00411 \n\
00412 # The image dimensions with which the camera was calibrated. Normally\n\
00413 # this will be the full camera resolution in pixels.\n\
00414 uint32 height\n\
00415 uint32 width\n\
00416 \n\
00417 # The distortion model used. Supported models are listed in\n\
00418 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00419 # simple model of radial and tangential distortion - is sufficent.\n\
00420 string distortion_model\n\
00421 \n\
00422 # The distortion parameters, size depending on the distortion model.\n\
00423 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00424 float64[] D\n\
00425 \n\
00426 # Intrinsic camera matrix for the raw (distorted) images.\n\
00427 # [fx 0 cx]\n\
00428 # K = [ 0 fy cy]\n\
00429 # [ 0 0 1]\n\
00430 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00431 # coordinates using the focal lengths (fx, fy) and principal point\n\
00432 # (cx, cy).\n\
00433 float64[9] K # 3x3 row-major matrix\n\
00434 \n\
00435 # Rectification matrix (stereo cameras only)\n\
00436 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00437 # stereo image plane so that epipolar lines in both stereo images are\n\
00438 # parallel.\n\
00439 float64[9] R # 3x3 row-major matrix\n\
00440 \n\
00441 # Projection/camera matrix\n\
00442 # [fx' 0 cx' Tx]\n\
00443 # P = [ 0 fy' cy' Ty]\n\
00444 # [ 0 0 1 0]\n\
00445 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00446 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00447 # is the normal camera intrinsic matrix for the rectified image.\n\
00448 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00449 # coordinates using the focal lengths (fx', fy') and principal point\n\
00450 # (cx', cy') - these may differ from the values in K.\n\
00451 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00452 # also have R = the identity and P[1:3,1:3] = K.\n\
00453 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00454 # position of the optical center of the second camera in the first\n\
00455 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00456 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00457 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00458 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00459 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00460 # the rectified image is given by:\n\
00461 # [u v w]' = P * [X Y Z 1]'\n\
00462 # x = u / w\n\
00463 # y = v / w\n\
00464 # This holds for both images of a stereo pair.\n\
00465 float64[12] P # 3x4 row-major matrix\n\
00466 \n\
00467 \n\
00468 #######################################################################\n\
00469 # Operational Parameters #\n\
00470 #######################################################################\n\
00471 # These define the image region actually captured by the camera #\n\
00472 # driver. Although they affect the geometry of the output image, they #\n\
00473 # may be changed freely without recalibrating the camera. #\n\
00474 #######################################################################\n\
00475 \n\
00476 # Binning refers here to any camera setting which combines rectangular\n\
00477 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00478 # resolution of the output image to\n\
00479 # (width / binning_x) x (height / binning_y).\n\
00480 # The default values binning_x = binning_y = 0 is considered the same\n\
00481 # as binning_x = binning_y = 1 (no subsampling).\n\
00482 uint32 binning_x\n\
00483 uint32 binning_y\n\
00484 \n\
00485 # Region of interest (subwindow of full camera resolution), given in\n\
00486 # full resolution (unbinned) image coordinates. A particular ROI\n\
00487 # always denotes the same window of pixels on the camera sensor,\n\
00488 # regardless of binning settings.\n\
00489 # The default setting of roi (all values 0) is considered the same as\n\
00490 # full resolution (roi.width = width, roi.height = height).\n\
00491 RegionOfInterest roi\n\
00492 \n\
00493 ================================================================================\n\
00494 MSG: sensor_msgs/RegionOfInterest\n\
00495 # This message is used to specify a region of interest within an image.\n\
00496 #\n\
00497 # When used to specify the ROI setting of the camera when the image was\n\
00498 # taken, the height and width fields should either match the height and\n\
00499 # width fields for the associated image; or height = width = 0\n\
00500 # indicates that the full resolution image was captured.\n\
00501 \n\
00502 uint32 x_offset # Leftmost pixel of the ROI\n\
00503 # (0 if the ROI includes the left edge of the image)\n\
00504 uint32 y_offset # Topmost pixel of the ROI\n\
00505 # (0 if the ROI includes the top edge of the image)\n\
00506 uint32 height # Height of ROI\n\
00507 uint32 width # Width of ROI\n\
00508 \n\
00509 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00510 # ROI in this message. Typically this should be False if the full image\n\
00511 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00512 # used).\n\
00513 bool do_rectify\n\
00514 \n\
00515 ================================================================================\n\
00516 MSG: trajectory_msgs/JointTrajectory\n\
00517 Header header\n\
00518 string[] joint_names\n\
00519 JointTrajectoryPoint[] points\n\
00520 ================================================================================\n\
00521 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00522 float64[] positions\n\
00523 float64[] velocities\n\
00524 float64[] accelerations\n\
00525 duration time_from_start\n\
00526 ================================================================================\n\
00527 MSG: sensor_msgs/JointState\n\
00528 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00529 #\n\
00530 # The state of each joint (revolute or prismatic) is defined by:\n\
00531 # * the position of the joint (rad or m),\n\
00532 # * the velocity of the joint (rad/s or m/s) and \n\
00533 # * the effort that is applied in the joint (Nm or N).\n\
00534 #\n\
00535 # Each joint is uniquely identified by its name\n\
00536 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00537 # in one message have to be recorded at the same time.\n\
00538 #\n\
00539 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00540 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00541 # effort associated with them, you can leave the effort array empty. \n\
00542 #\n\
00543 # All arrays in this message should have the same size, or be empty.\n\
00544 # This is the only way to uniquely associate the joint name with the correct\n\
00545 # states.\n\
00546 \n\
00547 \n\
00548 Header header\n\
00549 \n\
00550 string[] name\n\
00551 float64[] position\n\
00552 float64[] velocity\n\
00553 float64[] effort\n\
00554 \n\
00555 ================================================================================\n\
00556 MSG: object_manipulation_msgs/ReactiveGraspActionResult\n\
00557 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00558 \n\
00559 Header header\n\
00560 actionlib_msgs/GoalStatus status\n\
00561 ReactiveGraspResult result\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: actionlib_msgs/GoalStatus\n\
00565 GoalID goal_id\n\
00566 uint8 status\n\
00567 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00568 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00569 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00570 # and has since completed its execution (Terminal State)\n\
00571 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00572 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00573 # to some failure (Terminal State)\n\
00574 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00575 # because the goal was unattainable or invalid (Terminal State)\n\
00576 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00577 # and has not yet completed execution\n\
00578 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00579 # but the action server has not yet confirmed that the goal is canceled\n\
00580 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00581 # and was successfully cancelled (Terminal State)\n\
00582 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00583 # sent over the wire by an action server\n\
00584 \n\
00585 #Allow for the user to associate a string with GoalStatus for debugging\n\
00586 string text\n\
00587 \n\
00588 \n\
00589 ================================================================================\n\
00590 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
00591 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00592 \n\
00593 # the result of the reactive grasp attempt\n\
00594 \n\
00595 ManipulationResult manipulation_result\n\
00596 \n\
00597 \n\
00598 ================================================================================\n\
00599 MSG: object_manipulation_msgs/ManipulationResult\n\
00600 # Result codes for manipulation tasks\n\
00601 \n\
00602 # task completed as expected\n\
00603 # generally means you can proceed as planned\n\
00604 int32 SUCCESS = 1\n\
00605 \n\
00606 # task not possible (e.g. out of reach or obstacles in the way)\n\
00607 # generally means that the world was not disturbed, so you can try another task\n\
00608 int32 UNFEASIBLE = -1\n\
00609 \n\
00610 # task was thought possible, but failed due to unexpected events during execution\n\
00611 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00612 # your sensed world model before proceeding to another task\n\
00613 int32 FAILED = -2\n\
00614 \n\
00615 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00616 # generally requires human attention\n\
00617 int32 ERROR = -3\n\
00618 \n\
00619 # means that at some point during execution we ended up in a state that the collision-aware\n\
00620 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00621 # probably need a new collision map to move the arm out of the stuck position\n\
00622 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00623 \n\
00624 # specific to grasp actions\n\
00625 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00626 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00627 int32 LIFT_FAILED = -5\n\
00628 \n\
00629 # specific to place actions\n\
00630 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00631 # it is likely that the collision environment will see collisions between the hand and the object\n\
00632 int32 RETREAT_FAILED = -6\n\
00633 \n\
00634 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00635 int32 CANCELLED = -7\n\
00636 \n\
00637 # the actual value of this error code\n\
00638 int32 value\n\
00639 \n\
00640 ================================================================================\n\
00641 MSG: object_manipulation_msgs/ReactiveGraspActionFeedback\n\
00642 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00643 \n\
00644 Header header\n\
00645 actionlib_msgs/GoalStatus status\n\
00646 ReactiveGraspFeedback feedback\n\
00647 \n\
00648 ================================================================================\n\
00649 MSG: object_manipulation_msgs/ReactiveGraspFeedback\n\
00650 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00651 \n\
00652 # which phase the grasp is in\n\
00653 \n\
00654 ManipulationPhase manipulation_phase\n\
00655 \n\
00656 \n\
00657 \n\
00658 \n\
00659 ================================================================================\n\
00660 MSG: object_manipulation_msgs/ManipulationPhase\n\
00661 int32 CHECKING_FEASIBILITY = 0\n\
00662 int32 MOVING_TO_PREGRASP = 1\n\
00663 int32 MOVING_TO_GRASP = 2\n\
00664 int32 CLOSING = 3 \n\
00665 int32 ADJUSTING_GRASP = 4\n\
00666 int32 LIFTING = 5\n\
00667 int32 MOVING_WITH_OBJECT = 6\n\
00668 int32 MOVING_TO_PLACE = 7\n\
00669 int32 PLACING = 8\n\
00670 int32 OPENING = 9\n\
00671 int32 RETREATING = 10\n\
00672 int32 MOVING_WITHOUT_OBJECT = 11\n\
00673 int32 SHAKING = 12\n\
00674 int32 SUCCEEDED = 13\n\
00675 int32 FAILED = 14\n\
00676 int32 ABORTED = 15\n\
00677 int32 HOLDING_OBJECT = 16\n\
00678 \n\
00679 int32 phase\n\
00680 "; }
00681 public:
00682 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00683
00684 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00685
00686 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00687 {
00688 ros::serialization::OStream stream(write_ptr, 1000000000);
00689 ros::serialization::serialize(stream, action_goal);
00690 ros::serialization::serialize(stream, action_result);
00691 ros::serialization::serialize(stream, action_feedback);
00692 return stream.getData();
00693 }
00694
00695 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00696 {
00697 ros::serialization::IStream stream(read_ptr, 1000000000);
00698 ros::serialization::deserialize(stream, action_goal);
00699 ros::serialization::deserialize(stream, action_result);
00700 ros::serialization::deserialize(stream, action_feedback);
00701 return stream.getData();
00702 }
00703
00704 ROS_DEPRECATED virtual uint32_t serializationLength() const
00705 {
00706 uint32_t size = 0;
00707 size += ros::serialization::serializationLength(action_goal);
00708 size += ros::serialization::serializationLength(action_result);
00709 size += ros::serialization::serializationLength(action_feedback);
00710 return size;
00711 }
00712
00713 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > Ptr;
00714 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> const> ConstPtr;
00715 };
00716 typedef ::object_manipulation_msgs::ReactiveGraspAction_<std::allocator<void> > ReactiveGraspAction;
00717
00718 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction> ReactiveGraspActionPtr;
00719 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspAction const> ReactiveGraspActionConstPtr;
00720
00721
00722 template<typename ContainerAllocator>
00723 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> & v)
00724 {
00725 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >::stream(s, "", v);
00726 return s;}
00727
00728 }
00729
00730 namespace ros
00731 {
00732 namespace message_traits
00733 {
00734 template<class ContainerAllocator>
00735 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > {
00736 static const char* value()
00737 {
00738 return "a98e439d448e3a27be746925c86b6377";
00739 }
00740
00741 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); }
00742 static const uint64_t static_value1 = 0xa98e439d448e3a27ULL;
00743 static const uint64_t static_value2 = 0xbe746925c86b6377ULL;
00744 };
00745
00746 template<class ContainerAllocator>
00747 struct DataType< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > {
00748 static const char* value()
00749 {
00750 return "object_manipulation_msgs/ReactiveGraspAction";
00751 }
00752
00753 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); }
00754 };
00755
00756 template<class ContainerAllocator>
00757 struct Definition< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> > {
00758 static const char* value()
00759 {
00760 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00761 \n\
00762 ReactiveGraspActionGoal action_goal\n\
00763 ReactiveGraspActionResult action_result\n\
00764 ReactiveGraspActionFeedback action_feedback\n\
00765 \n\
00766 ================================================================================\n\
00767 MSG: object_manipulation_msgs/ReactiveGraspActionGoal\n\
00768 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00769 \n\
00770 Header header\n\
00771 actionlib_msgs/GoalID goal_id\n\
00772 ReactiveGraspGoal goal\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: std_msgs/Header\n\
00776 # Standard metadata for higher-level stamped data types.\n\
00777 # This is generally used to communicate timestamped data \n\
00778 # in a particular coordinate frame.\n\
00779 # \n\
00780 # sequence ID: consecutively increasing ID \n\
00781 uint32 seq\n\
00782 #Two-integer timestamp that is expressed as:\n\
00783 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00784 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00785 # time-handling sugar is provided by the client library\n\
00786 time stamp\n\
00787 #Frame this data is associated with\n\
00788 # 0: no frame\n\
00789 # 1: global frame\n\
00790 string frame_id\n\
00791 \n\
00792 ================================================================================\n\
00793 MSG: actionlib_msgs/GoalID\n\
00794 # The stamp should store the time at which this goal was requested.\n\
00795 # It is used by an action server when it tries to preempt all\n\
00796 # goals that were requested before a certain time\n\
00797 time stamp\n\
00798 \n\
00799 # The id provides a way to associate feedback and\n\
00800 # result message with specific goal requests. The id\n\
00801 # specified must be unique.\n\
00802 string id\n\
00803 \n\
00804 \n\
00805 ================================================================================\n\
00806 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00807 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00808 # an action for reactive grasping\n\
00809 # a reactive grasp starts from the current pose of the gripper and ends\n\
00810 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00811 \n\
00812 # the name of the arm being used\n\
00813 string arm_name\n\
00814 \n\
00815 # the object to be grasped\n\
00816 GraspableObject target\n\
00817 \n\
00818 # the desired grasp pose for the hand\n\
00819 geometry_msgs/PoseStamped final_grasp_pose\n\
00820 \n\
00821 # the joint trajectory to use for the approach (if available)\n\
00822 # this trajectory is expected to start at the current pose of the gripper\n\
00823 # and end at the desired grasp pose\n\
00824 trajectory_msgs/JointTrajectory trajectory\n\
00825 \n\
00826 # the name of the support surface in the collision environment, if any\n\
00827 string collision_support_surface_name\n\
00828 \n\
00829 # The internal posture of the hand for the pre-grasp\n\
00830 # only positions are used\n\
00831 sensor_msgs/JointState pre_grasp_posture\n\
00832 \n\
00833 # The internal posture of the hand for the grasp\n\
00834 # positions and efforts are used\n\
00835 sensor_msgs/JointState grasp_posture\n\
00836 \n\
00837 \n\
00838 ================================================================================\n\
00839 MSG: object_manipulation_msgs/GraspableObject\n\
00840 # an object that the object_manipulator can work on\n\
00841 \n\
00842 # a graspable object can be represented in multiple ways. This message\n\
00843 # can contain all of them. Which one is actually used is up to the receiver\n\
00844 # of this message. When adding new representations, one must be careful that\n\
00845 # they have reasonable lightweight defaults indicating that that particular\n\
00846 # representation is not available.\n\
00847 \n\
00848 # the tf frame to be used as a reference frame when combining information from\n\
00849 # the different representations below\n\
00850 string reference_frame_id\n\
00851 \n\
00852 # potential recognition results from a database of models\n\
00853 # all poses are relative to the object reference pose\n\
00854 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00855 \n\
00856 # the point cloud itself\n\
00857 sensor_msgs/PointCloud cluster\n\
00858 \n\
00859 # a region of a PointCloud2 of interest\n\
00860 object_manipulation_msgs/SceneRegion region\n\
00861 \n\
00862 \n\
00863 ================================================================================\n\
00864 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00865 # Informs that a specific model from the Model Database has been \n\
00866 # identified at a certain location\n\
00867 \n\
00868 # the database id of the model\n\
00869 int32 model_id\n\
00870 \n\
00871 # the pose that it can be found in\n\
00872 geometry_msgs/PoseStamped pose\n\
00873 \n\
00874 # a measure of the confidence level in this detection result\n\
00875 float32 confidence\n\
00876 ================================================================================\n\
00877 MSG: geometry_msgs/PoseStamped\n\
00878 # A Pose with reference coordinate frame and timestamp\n\
00879 Header header\n\
00880 Pose pose\n\
00881 \n\
00882 ================================================================================\n\
00883 MSG: geometry_msgs/Pose\n\
00884 # A representation of pose in free space, composed of postion and orientation. \n\
00885 Point position\n\
00886 Quaternion orientation\n\
00887 \n\
00888 ================================================================================\n\
00889 MSG: geometry_msgs/Point\n\
00890 # This contains the position of a point in free space\n\
00891 float64 x\n\
00892 float64 y\n\
00893 float64 z\n\
00894 \n\
00895 ================================================================================\n\
00896 MSG: geometry_msgs/Quaternion\n\
00897 # This represents an orientation in free space in quaternion form.\n\
00898 \n\
00899 float64 x\n\
00900 float64 y\n\
00901 float64 z\n\
00902 float64 w\n\
00903 \n\
00904 ================================================================================\n\
00905 MSG: sensor_msgs/PointCloud\n\
00906 # This message holds a collection of 3d points, plus optional additional\n\
00907 # information about each point.\n\
00908 \n\
00909 # Time of sensor data acquisition, coordinate frame ID.\n\
00910 Header header\n\
00911 \n\
00912 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00913 # in the frame given in the header.\n\
00914 geometry_msgs/Point32[] points\n\
00915 \n\
00916 # Each channel should have the same number of elements as points array,\n\
00917 # and the data in each channel should correspond 1:1 with each point.\n\
00918 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00919 ChannelFloat32[] channels\n\
00920 \n\
00921 ================================================================================\n\
00922 MSG: geometry_msgs/Point32\n\
00923 # This contains the position of a point in free space(with 32 bits of precision).\n\
00924 # It is recommeded to use Point wherever possible instead of Point32. \n\
00925 # \n\
00926 # This recommendation is to promote interoperability. \n\
00927 #\n\
00928 # This message is designed to take up less space when sending\n\
00929 # lots of points at once, as in the case of a PointCloud. \n\
00930 \n\
00931 float32 x\n\
00932 float32 y\n\
00933 float32 z\n\
00934 ================================================================================\n\
00935 MSG: sensor_msgs/ChannelFloat32\n\
00936 # This message is used by the PointCloud message to hold optional data\n\
00937 # associated with each point in the cloud. The length of the values\n\
00938 # array should be the same as the length of the points array in the\n\
00939 # PointCloud, and each value should be associated with the corresponding\n\
00940 # point.\n\
00941 \n\
00942 # Channel names in existing practice include:\n\
00943 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00944 # This is opposite to usual conventions but remains for\n\
00945 # historical reasons. The newer PointCloud2 message has no\n\
00946 # such problem.\n\
00947 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00948 # (R,G,B) values packed into the least significant 24 bits,\n\
00949 # in order.\n\
00950 # \"intensity\" - laser or pixel intensity.\n\
00951 # \"distance\"\n\
00952 \n\
00953 # The channel name should give semantics of the channel (e.g.\n\
00954 # \"intensity\" instead of \"value\").\n\
00955 string name\n\
00956 \n\
00957 # The values array should be 1-1 with the elements of the associated\n\
00958 # PointCloud.\n\
00959 float32[] values\n\
00960 \n\
00961 ================================================================================\n\
00962 MSG: object_manipulation_msgs/SceneRegion\n\
00963 # Point cloud\n\
00964 sensor_msgs/PointCloud2 cloud\n\
00965 \n\
00966 # Indices for the region of interest\n\
00967 int32[] mask\n\
00968 \n\
00969 # One of the corresponding 2D images, if applicable\n\
00970 sensor_msgs/Image image\n\
00971 \n\
00972 # The disparity image, if applicable\n\
00973 sensor_msgs/Image disparity_image\n\
00974 \n\
00975 # Camera info for the camera that took the image\n\
00976 sensor_msgs/CameraInfo cam_info\n\
00977 \n\
00978 ================================================================================\n\
00979 MSG: sensor_msgs/PointCloud2\n\
00980 # This message holds a collection of N-dimensional points, which may\n\
00981 # contain additional information such as normals, intensity, etc. The\n\
00982 # point data is stored as a binary blob, its layout described by the\n\
00983 # contents of the \"fields\" array.\n\
00984 \n\
00985 # The point cloud data may be organized 2d (image-like) or 1d\n\
00986 # (unordered). Point clouds organized as 2d images may be produced by\n\
00987 # camera depth sensors such as stereo or time-of-flight.\n\
00988 \n\
00989 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00990 # points).\n\
00991 Header header\n\
00992 \n\
00993 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00994 # 1 and width is the length of the point cloud.\n\
00995 uint32 height\n\
00996 uint32 width\n\
00997 \n\
00998 # Describes the channels and their layout in the binary data blob.\n\
00999 PointField[] fields\n\
01000 \n\
01001 bool is_bigendian # Is this data bigendian?\n\
01002 uint32 point_step # Length of a point in bytes\n\
01003 uint32 row_step # Length of a row in bytes\n\
01004 uint8[] data # Actual point data, size is (row_step*height)\n\
01005 \n\
01006 bool is_dense # True if there are no invalid points\n\
01007 \n\
01008 ================================================================================\n\
01009 MSG: sensor_msgs/PointField\n\
01010 # This message holds the description of one point entry in the\n\
01011 # PointCloud2 message format.\n\
01012 uint8 INT8 = 1\n\
01013 uint8 UINT8 = 2\n\
01014 uint8 INT16 = 3\n\
01015 uint8 UINT16 = 4\n\
01016 uint8 INT32 = 5\n\
01017 uint8 UINT32 = 6\n\
01018 uint8 FLOAT32 = 7\n\
01019 uint8 FLOAT64 = 8\n\
01020 \n\
01021 string name # Name of field\n\
01022 uint32 offset # Offset from start of point struct\n\
01023 uint8 datatype # Datatype enumeration, see above\n\
01024 uint32 count # How many elements in the field\n\
01025 \n\
01026 ================================================================================\n\
01027 MSG: sensor_msgs/Image\n\
01028 # This message contains an uncompressed image\n\
01029 # (0, 0) is at top-left corner of image\n\
01030 #\n\
01031 \n\
01032 Header header # Header timestamp should be acquisition time of image\n\
01033 # Header frame_id should be optical frame of camera\n\
01034 # origin of frame should be optical center of cameara\n\
01035 # +x should point to the right in the image\n\
01036 # +y should point down in the image\n\
01037 # +z should point into to plane of the image\n\
01038 # If the frame_id here and the frame_id of the CameraInfo\n\
01039 # message associated with the image conflict\n\
01040 # the behavior is undefined\n\
01041 \n\
01042 uint32 height # image height, that is, number of rows\n\
01043 uint32 width # image width, that is, number of columns\n\
01044 \n\
01045 # The legal values for encoding are in file src/image_encodings.cpp\n\
01046 # If you want to standardize a new string format, join\n\
01047 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01048 \n\
01049 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01050 # taken from the list of strings in src/image_encodings.cpp\n\
01051 \n\
01052 uint8 is_bigendian # is this data bigendian?\n\
01053 uint32 step # Full row length in bytes\n\
01054 uint8[] data # actual matrix data, size is (step * rows)\n\
01055 \n\
01056 ================================================================================\n\
01057 MSG: sensor_msgs/CameraInfo\n\
01058 # This message defines meta information for a camera. It should be in a\n\
01059 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01060 # image topics named:\n\
01061 #\n\
01062 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01063 # image - monochrome, distorted\n\
01064 # image_color - color, distorted\n\
01065 # image_rect - monochrome, rectified\n\
01066 # image_rect_color - color, rectified\n\
01067 #\n\
01068 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01069 # for producing the four processed image topics from image_raw and\n\
01070 # camera_info. The meaning of the camera parameters are described in\n\
01071 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01072 #\n\
01073 # The image_geometry package provides a user-friendly interface to\n\
01074 # common operations using this meta information. If you want to, e.g.,\n\
01075 # project a 3d point into image coordinates, we strongly recommend\n\
01076 # using image_geometry.\n\
01077 #\n\
01078 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01079 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01080 # indicates an uncalibrated camera.\n\
01081 \n\
01082 #######################################################################\n\
01083 # Image acquisition info #\n\
01084 #######################################################################\n\
01085 \n\
01086 # Time of image acquisition, camera coordinate frame ID\n\
01087 Header header # Header timestamp should be acquisition time of image\n\
01088 # Header frame_id should be optical frame of camera\n\
01089 # origin of frame should be optical center of camera\n\
01090 # +x should point to the right in the image\n\
01091 # +y should point down in the image\n\
01092 # +z should point into the plane of the image\n\
01093 \n\
01094 \n\
01095 #######################################################################\n\
01096 # Calibration Parameters #\n\
01097 #######################################################################\n\
01098 # These are fixed during camera calibration. Their values will be the #\n\
01099 # same in all messages until the camera is recalibrated. Note that #\n\
01100 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01101 # #\n\
01102 # The internal parameters can be used to warp a raw (distorted) image #\n\
01103 # to: #\n\
01104 # 1. An undistorted image (requires D and K) #\n\
01105 # 2. A rectified image (requires D, K, R) #\n\
01106 # The projection matrix P projects 3D points into the rectified image.#\n\
01107 #######################################################################\n\
01108 \n\
01109 # The image dimensions with which the camera was calibrated. Normally\n\
01110 # this will be the full camera resolution in pixels.\n\
01111 uint32 height\n\
01112 uint32 width\n\
01113 \n\
01114 # The distortion model used. Supported models are listed in\n\
01115 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01116 # simple model of radial and tangential distortion - is sufficent.\n\
01117 string distortion_model\n\
01118 \n\
01119 # The distortion parameters, size depending on the distortion model.\n\
01120 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01121 float64[] D\n\
01122 \n\
01123 # Intrinsic camera matrix for the raw (distorted) images.\n\
01124 # [fx 0 cx]\n\
01125 # K = [ 0 fy cy]\n\
01126 # [ 0 0 1]\n\
01127 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01128 # coordinates using the focal lengths (fx, fy) and principal point\n\
01129 # (cx, cy).\n\
01130 float64[9] K # 3x3 row-major matrix\n\
01131 \n\
01132 # Rectification matrix (stereo cameras only)\n\
01133 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01134 # stereo image plane so that epipolar lines in both stereo images are\n\
01135 # parallel.\n\
01136 float64[9] R # 3x3 row-major matrix\n\
01137 \n\
01138 # Projection/camera matrix\n\
01139 # [fx' 0 cx' Tx]\n\
01140 # P = [ 0 fy' cy' Ty]\n\
01141 # [ 0 0 1 0]\n\
01142 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01143 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01144 # is the normal camera intrinsic matrix for the rectified image.\n\
01145 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01146 # coordinates using the focal lengths (fx', fy') and principal point\n\
01147 # (cx', cy') - these may differ from the values in K.\n\
01148 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01149 # also have R = the identity and P[1:3,1:3] = K.\n\
01150 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01151 # position of the optical center of the second camera in the first\n\
01152 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01153 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01154 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01155 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01156 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01157 # the rectified image is given by:\n\
01158 # [u v w]' = P * [X Y Z 1]'\n\
01159 # x = u / w\n\
01160 # y = v / w\n\
01161 # This holds for both images of a stereo pair.\n\
01162 float64[12] P # 3x4 row-major matrix\n\
01163 \n\
01164 \n\
01165 #######################################################################\n\
01166 # Operational Parameters #\n\
01167 #######################################################################\n\
01168 # These define the image region actually captured by the camera #\n\
01169 # driver. Although they affect the geometry of the output image, they #\n\
01170 # may be changed freely without recalibrating the camera. #\n\
01171 #######################################################################\n\
01172 \n\
01173 # Binning refers here to any camera setting which combines rectangular\n\
01174 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01175 # resolution of the output image to\n\
01176 # (width / binning_x) x (height / binning_y).\n\
01177 # The default values binning_x = binning_y = 0 is considered the same\n\
01178 # as binning_x = binning_y = 1 (no subsampling).\n\
01179 uint32 binning_x\n\
01180 uint32 binning_y\n\
01181 \n\
01182 # Region of interest (subwindow of full camera resolution), given in\n\
01183 # full resolution (unbinned) image coordinates. A particular ROI\n\
01184 # always denotes the same window of pixels on the camera sensor,\n\
01185 # regardless of binning settings.\n\
01186 # The default setting of roi (all values 0) is considered the same as\n\
01187 # full resolution (roi.width = width, roi.height = height).\n\
01188 RegionOfInterest roi\n\
01189 \n\
01190 ================================================================================\n\
01191 MSG: sensor_msgs/RegionOfInterest\n\
01192 # This message is used to specify a region of interest within an image.\n\
01193 #\n\
01194 # When used to specify the ROI setting of the camera when the image was\n\
01195 # taken, the height and width fields should either match the height and\n\
01196 # width fields for the associated image; or height = width = 0\n\
01197 # indicates that the full resolution image was captured.\n\
01198 \n\
01199 uint32 x_offset # Leftmost pixel of the ROI\n\
01200 # (0 if the ROI includes the left edge of the image)\n\
01201 uint32 y_offset # Topmost pixel of the ROI\n\
01202 # (0 if the ROI includes the top edge of the image)\n\
01203 uint32 height # Height of ROI\n\
01204 uint32 width # Width of ROI\n\
01205 \n\
01206 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01207 # ROI in this message. Typically this should be False if the full image\n\
01208 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01209 # used).\n\
01210 bool do_rectify\n\
01211 \n\
01212 ================================================================================\n\
01213 MSG: trajectory_msgs/JointTrajectory\n\
01214 Header header\n\
01215 string[] joint_names\n\
01216 JointTrajectoryPoint[] points\n\
01217 ================================================================================\n\
01218 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01219 float64[] positions\n\
01220 float64[] velocities\n\
01221 float64[] accelerations\n\
01222 duration time_from_start\n\
01223 ================================================================================\n\
01224 MSG: sensor_msgs/JointState\n\
01225 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01226 #\n\
01227 # The state of each joint (revolute or prismatic) is defined by:\n\
01228 # * the position of the joint (rad or m),\n\
01229 # * the velocity of the joint (rad/s or m/s) and \n\
01230 # * the effort that is applied in the joint (Nm or N).\n\
01231 #\n\
01232 # Each joint is uniquely identified by its name\n\
01233 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01234 # in one message have to be recorded at the same time.\n\
01235 #\n\
01236 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01237 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01238 # effort associated with them, you can leave the effort array empty. \n\
01239 #\n\
01240 # All arrays in this message should have the same size, or be empty.\n\
01241 # This is the only way to uniquely associate the joint name with the correct\n\
01242 # states.\n\
01243 \n\
01244 \n\
01245 Header header\n\
01246 \n\
01247 string[] name\n\
01248 float64[] position\n\
01249 float64[] velocity\n\
01250 float64[] effort\n\
01251 \n\
01252 ================================================================================\n\
01253 MSG: object_manipulation_msgs/ReactiveGraspActionResult\n\
01254 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01255 \n\
01256 Header header\n\
01257 actionlib_msgs/GoalStatus status\n\
01258 ReactiveGraspResult result\n\
01259 \n\
01260 ================================================================================\n\
01261 MSG: actionlib_msgs/GoalStatus\n\
01262 GoalID goal_id\n\
01263 uint8 status\n\
01264 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01265 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01266 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01267 # and has since completed its execution (Terminal State)\n\
01268 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01269 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01270 # to some failure (Terminal State)\n\
01271 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01272 # because the goal was unattainable or invalid (Terminal State)\n\
01273 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01274 # and has not yet completed execution\n\
01275 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01276 # but the action server has not yet confirmed that the goal is canceled\n\
01277 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01278 # and was successfully cancelled (Terminal State)\n\
01279 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01280 # sent over the wire by an action server\n\
01281 \n\
01282 #Allow for the user to associate a string with GoalStatus for debugging\n\
01283 string text\n\
01284 \n\
01285 \n\
01286 ================================================================================\n\
01287 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
01288 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01289 \n\
01290 # the result of the reactive grasp attempt\n\
01291 \n\
01292 ManipulationResult manipulation_result\n\
01293 \n\
01294 \n\
01295 ================================================================================\n\
01296 MSG: object_manipulation_msgs/ManipulationResult\n\
01297 # Result codes for manipulation tasks\n\
01298 \n\
01299 # task completed as expected\n\
01300 # generally means you can proceed as planned\n\
01301 int32 SUCCESS = 1\n\
01302 \n\
01303 # task not possible (e.g. out of reach or obstacles in the way)\n\
01304 # generally means that the world was not disturbed, so you can try another task\n\
01305 int32 UNFEASIBLE = -1\n\
01306 \n\
01307 # task was thought possible, but failed due to unexpected events during execution\n\
01308 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01309 # your sensed world model before proceeding to another task\n\
01310 int32 FAILED = -2\n\
01311 \n\
01312 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01313 # generally requires human attention\n\
01314 int32 ERROR = -3\n\
01315 \n\
01316 # means that at some point during execution we ended up in a state that the collision-aware\n\
01317 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01318 # probably need a new collision map to move the arm out of the stuck position\n\
01319 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01320 \n\
01321 # specific to grasp actions\n\
01322 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01323 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01324 int32 LIFT_FAILED = -5\n\
01325 \n\
01326 # specific to place actions\n\
01327 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01328 # it is likely that the collision environment will see collisions between the hand and the object\n\
01329 int32 RETREAT_FAILED = -6\n\
01330 \n\
01331 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01332 int32 CANCELLED = -7\n\
01333 \n\
01334 # the actual value of this error code\n\
01335 int32 value\n\
01336 \n\
01337 ================================================================================\n\
01338 MSG: object_manipulation_msgs/ReactiveGraspActionFeedback\n\
01339 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01340 \n\
01341 Header header\n\
01342 actionlib_msgs/GoalStatus status\n\
01343 ReactiveGraspFeedback feedback\n\
01344 \n\
01345 ================================================================================\n\
01346 MSG: object_manipulation_msgs/ReactiveGraspFeedback\n\
01347 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01348 \n\
01349 # which phase the grasp is in\n\
01350 \n\
01351 ManipulationPhase manipulation_phase\n\
01352 \n\
01353 \n\
01354 \n\
01355 \n\
01356 ================================================================================\n\
01357 MSG: object_manipulation_msgs/ManipulationPhase\n\
01358 int32 CHECKING_FEASIBILITY = 0\n\
01359 int32 MOVING_TO_PREGRASP = 1\n\
01360 int32 MOVING_TO_GRASP = 2\n\
01361 int32 CLOSING = 3 \n\
01362 int32 ADJUSTING_GRASP = 4\n\
01363 int32 LIFTING = 5\n\
01364 int32 MOVING_WITH_OBJECT = 6\n\
01365 int32 MOVING_TO_PLACE = 7\n\
01366 int32 PLACING = 8\n\
01367 int32 OPENING = 9\n\
01368 int32 RETREATING = 10\n\
01369 int32 MOVING_WITHOUT_OBJECT = 11\n\
01370 int32 SHAKING = 12\n\
01371 int32 SUCCEEDED = 13\n\
01372 int32 FAILED = 14\n\
01373 int32 ABORTED = 15\n\
01374 int32 HOLDING_OBJECT = 16\n\
01375 \n\
01376 int32 phase\n\
01377 ";
01378 }
01379
01380 static const char* value(const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> &) { return value(); }
01381 };
01382
01383 }
01384 }
01385
01386 namespace ros
01387 {
01388 namespace serialization
01389 {
01390
01391 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >
01392 {
01393 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01394 {
01395 stream.next(m.action_goal);
01396 stream.next(m.action_result);
01397 stream.next(m.action_feedback);
01398 }
01399
01400 ROS_DECLARE_ALLINONE_SERIALIZER;
01401 };
01402 }
01403 }
01404
01405 namespace ros
01406 {
01407 namespace message_operations
01408 {
01409
01410 template<class ContainerAllocator>
01411 struct Printer< ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> >
01412 {
01413 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspAction_<ContainerAllocator> & v)
01414 {
01415 s << indent << "action_goal: ";
01416 s << std::endl;
01417 Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01418 s << indent << "action_result: ";
01419 s << std::endl;
01420 Printer< ::object_manipulation_msgs::ReactiveGraspActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01421 s << indent << "action_feedback: ";
01422 s << std::endl;
01423 Printer< ::object_manipulation_msgs::ReactiveGraspActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01424 }
01425 };
01426
01427
01428 }
01429 }
01430
01431 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTION_H
01432