00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/PickupActionGoal.h"
00014 #include "object_manipulation_msgs/PickupActionResult.h"
00015 #include "object_manipulation_msgs/PickupActionFeedback.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct PickupAction_ : public ros::Message
00021 {
00022 typedef PickupAction_<ContainerAllocator> Type;
00023
00024 PickupAction_()
00025 : action_goal()
00026 , action_result()
00027 , action_feedback()
00028 {
00029 }
00030
00031 PickupAction_(const ContainerAllocator& _alloc)
00032 : action_goal(_alloc)
00033 , action_result(_alloc)
00034 , action_feedback(_alloc)
00035 {
00036 }
00037
00038 typedef ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> _action_goal_type;
00039 ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> action_goal;
00040
00041 typedef ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> _action_result_type;
00042 ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> action_result;
00043
00044 typedef ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> _action_feedback_type;
00045 ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> action_feedback;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupAction"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "4c4251571eb6b9f4c166c8e6a30f33ee"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "PickupActionGoal action_goal\n\
00064 PickupActionResult action_result\n\
00065 PickupActionFeedback action_feedback\n\
00066 \n\
00067 ================================================================================\n\
00068 MSG: object_manipulation_msgs/PickupActionGoal\n\
00069 Header header\n\
00070 actionlib_msgs/GoalID goal_id\n\
00071 PickupGoal goal\n\
00072 \n\
00073 ================================================================================\n\
00074 MSG: std_msgs/Header\n\
00075 # Standard metadata for higher-level stamped data types.\n\
00076 # This is generally used to communicate timestamped data \n\
00077 # in a particular coordinate frame.\n\
00078 # \n\
00079 # sequence ID: consecutively increasing ID \n\
00080 uint32 seq\n\
00081 #Two-integer timestamp that is expressed as:\n\
00082 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00083 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00084 # time-handling sugar is provided by the client library\n\
00085 time stamp\n\
00086 #Frame this data is associated with\n\
00087 # 0: no frame\n\
00088 # 1: global frame\n\
00089 string frame_id\n\
00090 \n\
00091 ================================================================================\n\
00092 MSG: actionlib_msgs/GoalID\n\
00093 # The stamp should store the time at which this goal was requested.\n\
00094 # It is used by an action server when it tries to preempt all\n\
00095 # goals that were requested before a certain time\n\
00096 time stamp\n\
00097 \n\
00098 # The id provides a way to associate feedback and\n\
00099 # result message with specific goal requests. The id\n\
00100 # specified must be unique.\n\
00101 string id\n\
00102 \n\
00103 \n\
00104 ================================================================================\n\
00105 MSG: object_manipulation_msgs/PickupGoal\n\
00106 # An action for picking up an object\n\
00107 \n\
00108 # which arm to be used for grasping\n\
00109 string arm_name\n\
00110 \n\
00111 # the object to be grasped\n\
00112 GraspableObject target\n\
00113 \n\
00114 # a list of grasps to be used\n\
00115 # if empty, the grasp executive will call one of its own planners\n\
00116 Grasp[] desired_grasps\n\
00117 \n\
00118 # how far the pre-grasp should ideally be away from the grasp\n\
00119 float32 desired_approach_distance\n\
00120 \n\
00121 # how much distance between pre-grasp and grasp must actually be feasible \n\
00122 # for the grasp not to be rejected\n\
00123 float32 min_approach_distance\n\
00124 \n\
00125 # how the object should be lifted after the grasp\n\
00126 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00127 # or the gripper_frame specified in your hand description file\n\
00128 GripperTranslation lift\n\
00129 \n\
00130 # the name that the target object has in the collision map\n\
00131 # can be left empty if no name is available\n\
00132 string collision_object_name\n\
00133 \n\
00134 # the name that the support surface (e.g. table) has in the collision map\n\
00135 # can be left empty if no name is available\n\
00136 string collision_support_surface_name\n\
00137 \n\
00138 # whether collisions between the gripper and the support surface should be acceptable\n\
00139 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00140 # pre-grasp location are still not allowed even if this is set to true.\n\
00141 bool allow_gripper_support_collision\n\
00142 \n\
00143 # whether reactive grasp execution using tactile sensors should be used\n\
00144 bool use_reactive_execution\n\
00145 \n\
00146 # whether reactive object lifting based on tactile sensors should be used\n\
00147 bool use_reactive_lift\n\
00148 \n\
00149 # OPTIONAL (These will not have to be filled out most of the time)\n\
00150 # constraints to be imposed on every point in the motion of the arm\n\
00151 motion_planning_msgs/Constraints path_constraints\n\
00152 \n\
00153 # OPTIONAL (These will not have to be filled out most of the time)\n\
00154 # additional collision operations to be used for every arm movement performed\n\
00155 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00156 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00157 # with care and only if special behaviors are desired\n\
00158 motion_planning_msgs/OrderedCollisionOperations additional_collision_operations\n\
00159 \n\
00160 # OPTIONAL (These will not have to be filled out most of the time)\n\
00161 # additional link paddings to be used for every arm movement performed\n\
00162 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00163 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00164 # with care and only if special behaviors are desired\n\
00165 motion_planning_msgs/LinkPadding[] additional_link_padding\n\
00166 ================================================================================\n\
00167 MSG: object_manipulation_msgs/GraspableObject\n\
00168 # an object that the object_manipulator can work on\n\
00169 \n\
00170 # a graspable object can be represented in multiple ways. This message\n\
00171 # can contain all of them. Which one is actually used is up to the receiver\n\
00172 # of this message. When adding new representations, one must be careful that\n\
00173 # they have reasonable lightweight defaults indicating that that particular\n\
00174 # representation is not available.\n\
00175 \n\
00176 # the tf frame to be used as a reference frame when combining information from\n\
00177 # the different representations below\n\
00178 string reference_frame_id\n\
00179 \n\
00180 # potential recognition results from a database of models\n\
00181 # all poses are relative to the object reference pose\n\
00182 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00183 \n\
00184 # the point cloud itself\n\
00185 sensor_msgs/PointCloud cluster\n\
00186 \n\
00187 # a region of a PointCloud2 of interest\n\
00188 object_manipulation_msgs/SceneRegion region\n\
00189 \n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00193 # Informs that a specific model from the Model Database has been \n\
00194 # identified at a certain location\n\
00195 \n\
00196 # the database id of the model\n\
00197 int32 model_id\n\
00198 \n\
00199 # the pose that it can be found in\n\
00200 geometry_msgs/PoseStamped pose\n\
00201 \n\
00202 # a measure of the confidence level in this detection result\n\
00203 float32 confidence\n\
00204 ================================================================================\n\
00205 MSG: geometry_msgs/PoseStamped\n\
00206 # A Pose with reference coordinate frame and timestamp\n\
00207 Header header\n\
00208 Pose pose\n\
00209 \n\
00210 ================================================================================\n\
00211 MSG: geometry_msgs/Pose\n\
00212 # A representation of pose in free space, composed of postion and orientation. \n\
00213 Point position\n\
00214 Quaternion orientation\n\
00215 \n\
00216 ================================================================================\n\
00217 MSG: geometry_msgs/Point\n\
00218 # This contains the position of a point in free space\n\
00219 float64 x\n\
00220 float64 y\n\
00221 float64 z\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: geometry_msgs/Quaternion\n\
00225 # This represents an orientation in free space in quaternion form.\n\
00226 \n\
00227 float64 x\n\
00228 float64 y\n\
00229 float64 z\n\
00230 float64 w\n\
00231 \n\
00232 ================================================================================\n\
00233 MSG: sensor_msgs/PointCloud\n\
00234 # This message holds a collection of 3d points, plus optional additional\n\
00235 # information about each point.\n\
00236 \n\
00237 # Time of sensor data acquisition, coordinate frame ID.\n\
00238 Header header\n\
00239 \n\
00240 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00241 # in the frame given in the header.\n\
00242 geometry_msgs/Point32[] points\n\
00243 \n\
00244 # Each channel should have the same number of elements as points array,\n\
00245 # and the data in each channel should correspond 1:1 with each point.\n\
00246 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00247 ChannelFloat32[] channels\n\
00248 \n\
00249 ================================================================================\n\
00250 MSG: geometry_msgs/Point32\n\
00251 # This contains the position of a point in free space(with 32 bits of precision).\n\
00252 # It is recommeded to use Point wherever possible instead of Point32. \n\
00253 # \n\
00254 # This recommendation is to promote interoperability. \n\
00255 #\n\
00256 # This message is designed to take up less space when sending\n\
00257 # lots of points at once, as in the case of a PointCloud. \n\
00258 \n\
00259 float32 x\n\
00260 float32 y\n\
00261 float32 z\n\
00262 ================================================================================\n\
00263 MSG: sensor_msgs/ChannelFloat32\n\
00264 # This message is used by the PointCloud message to hold optional data\n\
00265 # associated with each point in the cloud. The length of the values\n\
00266 # array should be the same as the length of the points array in the\n\
00267 # PointCloud, and each value should be associated with the corresponding\n\
00268 # point.\n\
00269 \n\
00270 # Channel names in existing practice include:\n\
00271 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00272 # This is opposite to usual conventions but remains for\n\
00273 # historical reasons. The newer PointCloud2 message has no\n\
00274 # such problem.\n\
00275 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00276 # (R,G,B) values packed into the least significant 24 bits,\n\
00277 # in order.\n\
00278 # \"intensity\" - laser or pixel intensity.\n\
00279 # \"distance\"\n\
00280 \n\
00281 # The channel name should give semantics of the channel (e.g.\n\
00282 # \"intensity\" instead of \"value\").\n\
00283 string name\n\
00284 \n\
00285 # The values array should be 1-1 with the elements of the associated\n\
00286 # PointCloud.\n\
00287 float32[] values\n\
00288 \n\
00289 ================================================================================\n\
00290 MSG: object_manipulation_msgs/SceneRegion\n\
00291 # Point cloud\n\
00292 sensor_msgs/PointCloud2 cloud\n\
00293 \n\
00294 # Indices for the region of interest\n\
00295 int32[] mask\n\
00296 \n\
00297 # One of the corresponding 2D images, if applicable\n\
00298 sensor_msgs/Image image\n\
00299 \n\
00300 # The disparity image, if applicable\n\
00301 sensor_msgs/Image disparity_image\n\
00302 \n\
00303 # Camera info for the camera that took the image\n\
00304 sensor_msgs/CameraInfo cam_info\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: sensor_msgs/PointCloud2\n\
00308 # This message holds a collection of N-dimensional points, which may\n\
00309 # contain additional information such as normals, intensity, etc. The\n\
00310 # point data is stored as a binary blob, its layout described by the\n\
00311 # contents of the \"fields\" array.\n\
00312 \n\
00313 # The point cloud data may be organized 2d (image-like) or 1d\n\
00314 # (unordered). Point clouds organized as 2d images may be produced by\n\
00315 # camera depth sensors such as stereo or time-of-flight.\n\
00316 \n\
00317 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00318 # points).\n\
00319 Header header\n\
00320 \n\
00321 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00322 # 1 and width is the length of the point cloud.\n\
00323 uint32 height\n\
00324 uint32 width\n\
00325 \n\
00326 # Describes the channels and their layout in the binary data blob.\n\
00327 PointField[] fields\n\
00328 \n\
00329 bool is_bigendian # Is this data bigendian?\n\
00330 uint32 point_step # Length of a point in bytes\n\
00331 uint32 row_step # Length of a row in bytes\n\
00332 uint8[] data # Actual point data, size is (row_step*height)\n\
00333 \n\
00334 bool is_dense # True if there are no invalid points\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/PointField\n\
00338 # This message holds the description of one point entry in the\n\
00339 # PointCloud2 message format.\n\
00340 uint8 INT8 = 1\n\
00341 uint8 UINT8 = 2\n\
00342 uint8 INT16 = 3\n\
00343 uint8 UINT16 = 4\n\
00344 uint8 INT32 = 5\n\
00345 uint8 UINT32 = 6\n\
00346 uint8 FLOAT32 = 7\n\
00347 uint8 FLOAT64 = 8\n\
00348 \n\
00349 string name # Name of field\n\
00350 uint32 offset # Offset from start of point struct\n\
00351 uint8 datatype # Datatype enumeration, see above\n\
00352 uint32 count # How many elements in the field\n\
00353 \n\
00354 ================================================================================\n\
00355 MSG: sensor_msgs/Image\n\
00356 # This message contains an uncompressed image\n\
00357 # (0, 0) is at top-left corner of image\n\
00358 #\n\
00359 \n\
00360 Header header # Header timestamp should be acquisition time of image\n\
00361 # Header frame_id should be optical frame of camera\n\
00362 # origin of frame should be optical center of cameara\n\
00363 # +x should point to the right in the image\n\
00364 # +y should point down in the image\n\
00365 # +z should point into to plane of the image\n\
00366 # If the frame_id here and the frame_id of the CameraInfo\n\
00367 # message associated with the image conflict\n\
00368 # the behavior is undefined\n\
00369 \n\
00370 uint32 height # image height, that is, number of rows\n\
00371 uint32 width # image width, that is, number of columns\n\
00372 \n\
00373 # The legal values for encoding are in file src/image_encodings.cpp\n\
00374 # If you want to standardize a new string format, join\n\
00375 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00376 \n\
00377 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00378 # taken from the list of strings in src/image_encodings.cpp\n\
00379 \n\
00380 uint8 is_bigendian # is this data bigendian?\n\
00381 uint32 step # Full row length in bytes\n\
00382 uint8[] data # actual matrix data, size is (step * rows)\n\
00383 \n\
00384 ================================================================================\n\
00385 MSG: sensor_msgs/CameraInfo\n\
00386 # This message defines meta information for a camera. It should be in a\n\
00387 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00388 # image topics named:\n\
00389 #\n\
00390 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00391 # image - monochrome, distorted\n\
00392 # image_color - color, distorted\n\
00393 # image_rect - monochrome, rectified\n\
00394 # image_rect_color - color, rectified\n\
00395 #\n\
00396 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00397 # for producing the four processed image topics from image_raw and\n\
00398 # camera_info. The meaning of the camera parameters are described in\n\
00399 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00400 #\n\
00401 # The image_geometry package provides a user-friendly interface to\n\
00402 # common operations using this meta information. If you want to, e.g.,\n\
00403 # project a 3d point into image coordinates, we strongly recommend\n\
00404 # using image_geometry.\n\
00405 #\n\
00406 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00407 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00408 # indicates an uncalibrated camera.\n\
00409 \n\
00410 #######################################################################\n\
00411 # Image acquisition info #\n\
00412 #######################################################################\n\
00413 \n\
00414 # Time of image acquisition, camera coordinate frame ID\n\
00415 Header header # Header timestamp should be acquisition time of image\n\
00416 # Header frame_id should be optical frame of camera\n\
00417 # origin of frame should be optical center of camera\n\
00418 # +x should point to the right in the image\n\
00419 # +y should point down in the image\n\
00420 # +z should point into the plane of the image\n\
00421 \n\
00422 \n\
00423 #######################################################################\n\
00424 # Calibration Parameters #\n\
00425 #######################################################################\n\
00426 # These are fixed during camera calibration. Their values will be the #\n\
00427 # same in all messages until the camera is recalibrated. Note that #\n\
00428 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00429 # #\n\
00430 # The internal parameters can be used to warp a raw (distorted) image #\n\
00431 # to: #\n\
00432 # 1. An undistorted image (requires D and K) #\n\
00433 # 2. A rectified image (requires D, K, R) #\n\
00434 # The projection matrix P projects 3D points into the rectified image.#\n\
00435 #######################################################################\n\
00436 \n\
00437 # The image dimensions with which the camera was calibrated. Normally\n\
00438 # this will be the full camera resolution in pixels.\n\
00439 uint32 height\n\
00440 uint32 width\n\
00441 \n\
00442 # The distortion model used. Supported models are listed in\n\
00443 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00444 # simple model of radial and tangential distortion - is sufficent.\n\
00445 string distortion_model\n\
00446 \n\
00447 # The distortion parameters, size depending on the distortion model.\n\
00448 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00449 float64[] D\n\
00450 \n\
00451 # Intrinsic camera matrix for the raw (distorted) images.\n\
00452 # [fx 0 cx]\n\
00453 # K = [ 0 fy cy]\n\
00454 # [ 0 0 1]\n\
00455 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00456 # coordinates using the focal lengths (fx, fy) and principal point\n\
00457 # (cx, cy).\n\
00458 float64[9] K # 3x3 row-major matrix\n\
00459 \n\
00460 # Rectification matrix (stereo cameras only)\n\
00461 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00462 # stereo image plane so that epipolar lines in both stereo images are\n\
00463 # parallel.\n\
00464 float64[9] R # 3x3 row-major matrix\n\
00465 \n\
00466 # Projection/camera matrix\n\
00467 # [fx' 0 cx' Tx]\n\
00468 # P = [ 0 fy' cy' Ty]\n\
00469 # [ 0 0 1 0]\n\
00470 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00471 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00472 # is the normal camera intrinsic matrix for the rectified image.\n\
00473 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00474 # coordinates using the focal lengths (fx', fy') and principal point\n\
00475 # (cx', cy') - these may differ from the values in K.\n\
00476 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00477 # also have R = the identity and P[1:3,1:3] = K.\n\
00478 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00479 # position of the optical center of the second camera in the first\n\
00480 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00481 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00482 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00483 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00484 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00485 # the rectified image is given by:\n\
00486 # [u v w]' = P * [X Y Z 1]'\n\
00487 # x = u / w\n\
00488 # y = v / w\n\
00489 # This holds for both images of a stereo pair.\n\
00490 float64[12] P # 3x4 row-major matrix\n\
00491 \n\
00492 \n\
00493 #######################################################################\n\
00494 # Operational Parameters #\n\
00495 #######################################################################\n\
00496 # These define the image region actually captured by the camera #\n\
00497 # driver. Although they affect the geometry of the output image, they #\n\
00498 # may be changed freely without recalibrating the camera. #\n\
00499 #######################################################################\n\
00500 \n\
00501 # Binning refers here to any camera setting which combines rectangular\n\
00502 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00503 # resolution of the output image to\n\
00504 # (width / binning_x) x (height / binning_y).\n\
00505 # The default values binning_x = binning_y = 0 is considered the same\n\
00506 # as binning_x = binning_y = 1 (no subsampling).\n\
00507 uint32 binning_x\n\
00508 uint32 binning_y\n\
00509 \n\
00510 # Region of interest (subwindow of full camera resolution), given in\n\
00511 # full resolution (unbinned) image coordinates. A particular ROI\n\
00512 # always denotes the same window of pixels on the camera sensor,\n\
00513 # regardless of binning settings.\n\
00514 # The default setting of roi (all values 0) is considered the same as\n\
00515 # full resolution (roi.width = width, roi.height = height).\n\
00516 RegionOfInterest roi\n\
00517 \n\
00518 ================================================================================\n\
00519 MSG: sensor_msgs/RegionOfInterest\n\
00520 # This message is used to specify a region of interest within an image.\n\
00521 #\n\
00522 # When used to specify the ROI setting of the camera when the image was\n\
00523 # taken, the height and width fields should either match the height and\n\
00524 # width fields for the associated image; or height = width = 0\n\
00525 # indicates that the full resolution image was captured.\n\
00526 \n\
00527 uint32 x_offset # Leftmost pixel of the ROI\n\
00528 # (0 if the ROI includes the left edge of the image)\n\
00529 uint32 y_offset # Topmost pixel of the ROI\n\
00530 # (0 if the ROI includes the top edge of the image)\n\
00531 uint32 height # Height of ROI\n\
00532 uint32 width # Width of ROI\n\
00533 \n\
00534 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00535 # ROI in this message. Typically this should be False if the full image\n\
00536 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00537 # used).\n\
00538 bool do_rectify\n\
00539 \n\
00540 ================================================================================\n\
00541 MSG: object_manipulation_msgs/Grasp\n\
00542 \n\
00543 # The internal posture of the hand for the pre-grasp\n\
00544 # only positions are used\n\
00545 sensor_msgs/JointState pre_grasp_posture\n\
00546 \n\
00547 # The internal posture of the hand for the grasp\n\
00548 # positions and efforts are used\n\
00549 sensor_msgs/JointState grasp_posture\n\
00550 \n\
00551 # The position of the end-effector for the grasp relative to the object\n\
00552 geometry_msgs/Pose grasp_pose\n\
00553 \n\
00554 # The estimated probability of success for this grasp\n\
00555 float64 success_probability\n\
00556 \n\
00557 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00558 bool cluster_rep\n\
00559 ================================================================================\n\
00560 MSG: sensor_msgs/JointState\n\
00561 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00562 #\n\
00563 # The state of each joint (revolute or prismatic) is defined by:\n\
00564 # * the position of the joint (rad or m),\n\
00565 # * the velocity of the joint (rad/s or m/s) and \n\
00566 # * the effort that is applied in the joint (Nm or N).\n\
00567 #\n\
00568 # Each joint is uniquely identified by its name\n\
00569 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00570 # in one message have to be recorded at the same time.\n\
00571 #\n\
00572 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00573 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00574 # effort associated with them, you can leave the effort array empty. \n\
00575 #\n\
00576 # All arrays in this message should have the same size, or be empty.\n\
00577 # This is the only way to uniquely associate the joint name with the correct\n\
00578 # states.\n\
00579 \n\
00580 \n\
00581 Header header\n\
00582 \n\
00583 string[] name\n\
00584 float64[] position\n\
00585 float64[] velocity\n\
00586 float64[] effort\n\
00587 \n\
00588 ================================================================================\n\
00589 MSG: object_manipulation_msgs/GripperTranslation\n\
00590 # defines a translation for the gripper, used in pickup or place tasks\n\
00591 # for example for lifting an object off a table or approaching the table for placing\n\
00592 \n\
00593 # the direction of the translation\n\
00594 geometry_msgs/Vector3Stamped direction\n\
00595 \n\
00596 # the desired translation distance\n\
00597 float32 desired_distance\n\
00598 \n\
00599 # the min distance that must be considered feasible before the\n\
00600 # grasp is even attempted\n\
00601 float32 min_distance\n\
00602 ================================================================================\n\
00603 MSG: geometry_msgs/Vector3Stamped\n\
00604 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00605 Header header\n\
00606 Vector3 vector\n\
00607 \n\
00608 ================================================================================\n\
00609 MSG: geometry_msgs/Vector3\n\
00610 # This represents a vector in free space. \n\
00611 \n\
00612 float64 x\n\
00613 float64 y\n\
00614 float64 z\n\
00615 ================================================================================\n\
00616 MSG: motion_planning_msgs/Constraints\n\
00617 # This message contains a list of motion planning constraints.\n\
00618 \n\
00619 motion_planning_msgs/JointConstraint[] joint_constraints\n\
00620 motion_planning_msgs/PositionConstraint[] position_constraints\n\
00621 motion_planning_msgs/OrientationConstraint[] orientation_constraints\n\
00622 motion_planning_msgs/VisibilityConstraint[] visibility_constraints\n\
00623 \n\
00624 ================================================================================\n\
00625 MSG: motion_planning_msgs/JointConstraint\n\
00626 # Constrain the position of a joint to be within a certain bound\n\
00627 string joint_name\n\
00628 \n\
00629 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00630 float64 position\n\
00631 float64 tolerance_above\n\
00632 float64 tolerance_below\n\
00633 \n\
00634 # A weighting factor for this constraint\n\
00635 float64 weight\n\
00636 ================================================================================\n\
00637 MSG: motion_planning_msgs/PositionConstraint\n\
00638 # This message contains the definition of a position constraint.\n\
00639 Header header\n\
00640 \n\
00641 # The robot link this constraint refers to\n\
00642 string link_name\n\
00643 \n\
00644 # The offset (in the link frame) for the target point on the link we are planning for\n\
00645 geometry_msgs/Point target_point_offset\n\
00646 \n\
00647 # The nominal/target position for the point we are planning for\n\
00648 geometry_msgs/Point position\n\
00649 \n\
00650 # The shape of the bounded region that constrains the position of the end-effector\n\
00651 # This region is always centered at the position defined above\n\
00652 geometric_shapes_msgs/Shape constraint_region_shape\n\
00653 \n\
00654 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00655 # This allows the specification of non-axis aligned constraints\n\
00656 geometry_msgs/Quaternion constraint_region_orientation\n\
00657 \n\
00658 # Constraint weighting factor - a weight for this constraint\n\
00659 float64 weight\n\
00660 ================================================================================\n\
00661 MSG: geometric_shapes_msgs/Shape\n\
00662 byte SPHERE=0\n\
00663 byte BOX=1\n\
00664 byte CYLINDER=2\n\
00665 byte MESH=3\n\
00666 \n\
00667 byte type\n\
00668 \n\
00669 \n\
00670 #### define sphere, box, cylinder ####\n\
00671 # the origin of each shape is considered at the shape's center\n\
00672 \n\
00673 # for sphere\n\
00674 # radius := dimensions[0]\n\
00675 \n\
00676 # for cylinder\n\
00677 # radius := dimensions[0]\n\
00678 # length := dimensions[1]\n\
00679 # the length is along the Z axis\n\
00680 \n\
00681 # for box\n\
00682 # size_x := dimensions[0]\n\
00683 # size_y := dimensions[1]\n\
00684 # size_z := dimensions[2]\n\
00685 float64[] dimensions\n\
00686 \n\
00687 \n\
00688 #### define mesh ####\n\
00689 \n\
00690 # list of triangles; triangle k is defined by tre vertices located\n\
00691 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00692 int32[] triangles\n\
00693 geometry_msgs/Point[] vertices\n\
00694 \n\
00695 ================================================================================\n\
00696 MSG: motion_planning_msgs/OrientationConstraint\n\
00697 # This message contains the definition of an orientation constraint.\n\
00698 Header header\n\
00699 \n\
00700 # The robot link this constraint refers to\n\
00701 string link_name\n\
00702 \n\
00703 # The type of the constraint\n\
00704 int32 type\n\
00705 int32 LINK_FRAME=0\n\
00706 int32 HEADER_FRAME=1\n\
00707 \n\
00708 # The desired orientation of the robot link specified as a quaternion\n\
00709 geometry_msgs/Quaternion orientation\n\
00710 \n\
00711 # optional RPY error tolerances specified if \n\
00712 float64 absolute_roll_tolerance\n\
00713 float64 absolute_pitch_tolerance\n\
00714 float64 absolute_yaw_tolerance\n\
00715 \n\
00716 # Constraint weighting factor - a weight for this constraint\n\
00717 float64 weight\n\
00718 \n\
00719 ================================================================================\n\
00720 MSG: motion_planning_msgs/VisibilityConstraint\n\
00721 # This message contains the definition of a visibility constraint.\n\
00722 Header header\n\
00723 \n\
00724 # The point stamped target that needs to be kept within view of the sensor\n\
00725 geometry_msgs/PointStamped target\n\
00726 \n\
00727 # The local pose of the frame in which visibility is to be maintained\n\
00728 # The frame id should represent the robot link to which the sensor is attached\n\
00729 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00730 geometry_msgs/PoseStamped sensor_pose\n\
00731 \n\
00732 # The deviation (in radians) that will be tolerated\n\
00733 # Constraint error will be measured as the solid angle between the \n\
00734 # X axis of the frame defined above and the vector between the origin \n\
00735 # of the frame defined above and the target location\n\
00736 float64 absolute_tolerance\n\
00737 \n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: geometry_msgs/PointStamped\n\
00741 # This represents a Point with reference coordinate frame and timestamp\n\
00742 Header header\n\
00743 Point point\n\
00744 \n\
00745 ================================================================================\n\
00746 MSG: motion_planning_msgs/OrderedCollisionOperations\n\
00747 # A set of collision operations that will be performed in the order they are specified\n\
00748 CollisionOperation[] collision_operations\n\
00749 ================================================================================\n\
00750 MSG: motion_planning_msgs/CollisionOperation\n\
00751 # A definition of a collision operation\n\
00752 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00753 # between the gripper and all objects in the collision space\n\
00754 \n\
00755 string object1\n\
00756 string object2\n\
00757 string COLLISION_SET_ALL=\"all\"\n\
00758 string COLLISION_SET_OBJECTS=\"objects\"\n\
00759 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00760 \n\
00761 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00762 float64 penetration_distance\n\
00763 \n\
00764 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00765 int32 operation\n\
00766 int32 DISABLE=0\n\
00767 int32 ENABLE=1\n\
00768 \n\
00769 ================================================================================\n\
00770 MSG: motion_planning_msgs/LinkPadding\n\
00771 #name for the link\n\
00772 string link_name\n\
00773 \n\
00774 # padding to apply to the link\n\
00775 float64 padding\n\
00776 \n\
00777 ================================================================================\n\
00778 MSG: object_manipulation_msgs/PickupActionResult\n\
00779 Header header\n\
00780 actionlib_msgs/GoalStatus status\n\
00781 PickupResult result\n\
00782 \n\
00783 ================================================================================\n\
00784 MSG: actionlib_msgs/GoalStatus\n\
00785 GoalID goal_id\n\
00786 uint8 status\n\
00787 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00788 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00789 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00790 # and has since completed its execution (Terminal State)\n\
00791 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00792 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00793 # to some failure (Terminal State)\n\
00794 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00795 # because the goal was unattainable or invalid (Terminal State)\n\
00796 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00797 # and has not yet completed execution\n\
00798 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00799 # but the action server has not yet confirmed that the goal is canceled\n\
00800 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00801 # and was successfully cancelled (Terminal State)\n\
00802 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00803 # sent over the wire by an action server\n\
00804 \n\
00805 #Allow for the user to associate a string with GoalStatus for debugging\n\
00806 string text\n\
00807 \n\
00808 \n\
00809 ================================================================================\n\
00810 MSG: object_manipulation_msgs/PickupResult\n\
00811 # The overall result of the pickup attempt\n\
00812 ManipulationResult manipulation_result\n\
00813 \n\
00814 # The performed grasp, if attempt was successful\n\
00815 Grasp grasp\n\
00816 \n\
00817 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00818 # the successful one should be the last one in this list\n\
00819 Grasp[] attempted_grasps\n\
00820 \n\
00821 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00822 GraspResult[] attempted_grasp_results\n\
00823 ================================================================================\n\
00824 MSG: object_manipulation_msgs/ManipulationResult\n\
00825 # Result codes for manipulation tasks\n\
00826 \n\
00827 # task completed as expected\n\
00828 # generally means you can proceed as planned\n\
00829 int32 SUCCESS = 1\n\
00830 \n\
00831 # task not possible (e.g. out of reach or obstacles in the way)\n\
00832 # generally means that the world was not disturbed, so you can try another task\n\
00833 int32 UNFEASIBLE = -1\n\
00834 \n\
00835 # task was thought possible, but failed due to unexpected events during execution\n\
00836 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00837 # your sensed world model before proceeding to another task\n\
00838 int32 FAILED = -2\n\
00839 \n\
00840 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00841 # generally requires human attention\n\
00842 int32 ERROR = -3\n\
00843 \n\
00844 # means that at some point during execution we ended up in a state that the collision-aware\n\
00845 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00846 # probably need a new collision map to move the arm out of the stuck position\n\
00847 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00848 \n\
00849 # specific to grasp actions\n\
00850 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00851 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00852 int32 LIFT_FAILED = -5\n\
00853 \n\
00854 # specific to place actions\n\
00855 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00856 # it is likely that the collision environment will see collisions between the hand and the object\n\
00857 int32 RETREAT_FAILED = -6\n\
00858 \n\
00859 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00860 int32 CANCELLED = -7\n\
00861 \n\
00862 # the actual value of this error code\n\
00863 int32 value\n\
00864 \n\
00865 ================================================================================\n\
00866 MSG: object_manipulation_msgs/GraspResult\n\
00867 int32 SUCCESS = 1\n\
00868 int32 GRASP_OUT_OF_REACH = 2\n\
00869 int32 GRASP_IN_COLLISION = 3\n\
00870 int32 GRASP_UNFEASIBLE = 4\n\
00871 int32 PREGRASP_OUT_OF_REACH = 5\n\
00872 int32 PREGRASP_IN_COLLISION = 6\n\
00873 int32 PREGRASP_UNFEASIBLE = 7\n\
00874 int32 LIFT_OUT_OF_REACH = 8\n\
00875 int32 LIFT_IN_COLLISION = 9\n\
00876 int32 LIFT_UNFEASIBLE = 10\n\
00877 int32 MOVE_ARM_FAILED = 11\n\
00878 int32 GRASP_FAILED = 12\n\
00879 int32 LIFT_FAILED = 13\n\
00880 int32 RETREAT_FAILED = 14\n\
00881 int32 result_code\n\
00882 \n\
00883 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
00884 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
00885 # before proceeding\n\
00886 bool continuation_possible\n\
00887 \n\
00888 ================================================================================\n\
00889 MSG: object_manipulation_msgs/PickupActionFeedback\n\
00890 Header header\n\
00891 actionlib_msgs/GoalStatus status\n\
00892 PickupFeedback feedback\n\
00893 \n\
00894 ================================================================================\n\
00895 MSG: object_manipulation_msgs/PickupFeedback\n\
00896 # The number of the grasp currently being attempted\n\
00897 int32 current_grasp\n\
00898 \n\
00899 # The total number of grasps that will be attempted\n\
00900 int32 total_grasps\n\
00901 \n\
00902 \n\
00903 \n\
00904 "; }
00905 public:
00906 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00907
00908 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00909
00910 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00911 {
00912 ros::serialization::OStream stream(write_ptr, 1000000000);
00913 ros::serialization::serialize(stream, action_goal);
00914 ros::serialization::serialize(stream, action_result);
00915 ros::serialization::serialize(stream, action_feedback);
00916 return stream.getData();
00917 }
00918
00919 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00920 {
00921 ros::serialization::IStream stream(read_ptr, 1000000000);
00922 ros::serialization::deserialize(stream, action_goal);
00923 ros::serialization::deserialize(stream, action_result);
00924 ros::serialization::deserialize(stream, action_feedback);
00925 return stream.getData();
00926 }
00927
00928 ROS_DEPRECATED virtual uint32_t serializationLength() const
00929 {
00930 uint32_t size = 0;
00931 size += ros::serialization::serializationLength(action_goal);
00932 size += ros::serialization::serializationLength(action_result);
00933 size += ros::serialization::serializationLength(action_feedback);
00934 return size;
00935 }
00936
00937 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > Ptr;
00938 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> const> ConstPtr;
00939 };
00940 typedef ::object_manipulation_msgs::PickupAction_<std::allocator<void> > PickupAction;
00941
00942 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction> PickupActionPtr;
00943 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction const> PickupActionConstPtr;
00944
00945
00946 template<typename ContainerAllocator>
00947 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v)
00948 {
00949 ros::message_operations::Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >::stream(s, "", v);
00950 return s;}
00951
00952 }
00953
00954 namespace ros
00955 {
00956 namespace message_traits
00957 {
00958 template<class ContainerAllocator>
00959 struct MD5Sum< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
00960 static const char* value()
00961 {
00962 return "4c4251571eb6b9f4c166c8e6a30f33ee";
00963 }
00964
00965 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); }
00966 static const uint64_t static_value1 = 0x4c4251571eb6b9f4ULL;
00967 static const uint64_t static_value2 = 0xc166c8e6a30f33eeULL;
00968 };
00969
00970 template<class ContainerAllocator>
00971 struct DataType< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
00972 static const char* value()
00973 {
00974 return "object_manipulation_msgs/PickupAction";
00975 }
00976
00977 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); }
00978 };
00979
00980 template<class ContainerAllocator>
00981 struct Definition< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
00982 static const char* value()
00983 {
00984 return "PickupActionGoal action_goal\n\
00985 PickupActionResult action_result\n\
00986 PickupActionFeedback action_feedback\n\
00987 \n\
00988 ================================================================================\n\
00989 MSG: object_manipulation_msgs/PickupActionGoal\n\
00990 Header header\n\
00991 actionlib_msgs/GoalID goal_id\n\
00992 PickupGoal goal\n\
00993 \n\
00994 ================================================================================\n\
00995 MSG: std_msgs/Header\n\
00996 # Standard metadata for higher-level stamped data types.\n\
00997 # This is generally used to communicate timestamped data \n\
00998 # in a particular coordinate frame.\n\
00999 # \n\
01000 # sequence ID: consecutively increasing ID \n\
01001 uint32 seq\n\
01002 #Two-integer timestamp that is expressed as:\n\
01003 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01004 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01005 # time-handling sugar is provided by the client library\n\
01006 time stamp\n\
01007 #Frame this data is associated with\n\
01008 # 0: no frame\n\
01009 # 1: global frame\n\
01010 string frame_id\n\
01011 \n\
01012 ================================================================================\n\
01013 MSG: actionlib_msgs/GoalID\n\
01014 # The stamp should store the time at which this goal was requested.\n\
01015 # It is used by an action server when it tries to preempt all\n\
01016 # goals that were requested before a certain time\n\
01017 time stamp\n\
01018 \n\
01019 # The id provides a way to associate feedback and\n\
01020 # result message with specific goal requests. The id\n\
01021 # specified must be unique.\n\
01022 string id\n\
01023 \n\
01024 \n\
01025 ================================================================================\n\
01026 MSG: object_manipulation_msgs/PickupGoal\n\
01027 # An action for picking up an object\n\
01028 \n\
01029 # which arm to be used for grasping\n\
01030 string arm_name\n\
01031 \n\
01032 # the object to be grasped\n\
01033 GraspableObject target\n\
01034 \n\
01035 # a list of grasps to be used\n\
01036 # if empty, the grasp executive will call one of its own planners\n\
01037 Grasp[] desired_grasps\n\
01038 \n\
01039 # how far the pre-grasp should ideally be away from the grasp\n\
01040 float32 desired_approach_distance\n\
01041 \n\
01042 # how much distance between pre-grasp and grasp must actually be feasible \n\
01043 # for the grasp not to be rejected\n\
01044 float32 min_approach_distance\n\
01045 \n\
01046 # how the object should be lifted after the grasp\n\
01047 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
01048 # or the gripper_frame specified in your hand description file\n\
01049 GripperTranslation lift\n\
01050 \n\
01051 # the name that the target object has in the collision map\n\
01052 # can be left empty if no name is available\n\
01053 string collision_object_name\n\
01054 \n\
01055 # the name that the support surface (e.g. table) has in the collision map\n\
01056 # can be left empty if no name is available\n\
01057 string collision_support_surface_name\n\
01058 \n\
01059 # whether collisions between the gripper and the support surface should be acceptable\n\
01060 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
01061 # pre-grasp location are still not allowed even if this is set to true.\n\
01062 bool allow_gripper_support_collision\n\
01063 \n\
01064 # whether reactive grasp execution using tactile sensors should be used\n\
01065 bool use_reactive_execution\n\
01066 \n\
01067 # whether reactive object lifting based on tactile sensors should be used\n\
01068 bool use_reactive_lift\n\
01069 \n\
01070 # OPTIONAL (These will not have to be filled out most of the time)\n\
01071 # constraints to be imposed on every point in the motion of the arm\n\
01072 motion_planning_msgs/Constraints path_constraints\n\
01073 \n\
01074 # OPTIONAL (These will not have to be filled out most of the time)\n\
01075 # additional collision operations to be used for every arm movement performed\n\
01076 # during grasping. Note that these will be added on top of (and thus overide) other \n\
01077 # collision operations that the grasping pipeline deems necessary. Should be used\n\
01078 # with care and only if special behaviors are desired\n\
01079 motion_planning_msgs/OrderedCollisionOperations additional_collision_operations\n\
01080 \n\
01081 # OPTIONAL (These will not have to be filled out most of the time)\n\
01082 # additional link paddings to be used for every arm movement performed\n\
01083 # during grasping. Note that these will be added on top of (and thus overide) other \n\
01084 # link paddings that the grasping pipeline deems necessary. Should be used\n\
01085 # with care and only if special behaviors are desired\n\
01086 motion_planning_msgs/LinkPadding[] additional_link_padding\n\
01087 ================================================================================\n\
01088 MSG: object_manipulation_msgs/GraspableObject\n\
01089 # an object that the object_manipulator can work on\n\
01090 \n\
01091 # a graspable object can be represented in multiple ways. This message\n\
01092 # can contain all of them. Which one is actually used is up to the receiver\n\
01093 # of this message. When adding new representations, one must be careful that\n\
01094 # they have reasonable lightweight defaults indicating that that particular\n\
01095 # representation is not available.\n\
01096 \n\
01097 # the tf frame to be used as a reference frame when combining information from\n\
01098 # the different representations below\n\
01099 string reference_frame_id\n\
01100 \n\
01101 # potential recognition results from a database of models\n\
01102 # all poses are relative to the object reference pose\n\
01103 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01104 \n\
01105 # the point cloud itself\n\
01106 sensor_msgs/PointCloud cluster\n\
01107 \n\
01108 # a region of a PointCloud2 of interest\n\
01109 object_manipulation_msgs/SceneRegion region\n\
01110 \n\
01111 \n\
01112 ================================================================================\n\
01113 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01114 # Informs that a specific model from the Model Database has been \n\
01115 # identified at a certain location\n\
01116 \n\
01117 # the database id of the model\n\
01118 int32 model_id\n\
01119 \n\
01120 # the pose that it can be found in\n\
01121 geometry_msgs/PoseStamped pose\n\
01122 \n\
01123 # a measure of the confidence level in this detection result\n\
01124 float32 confidence\n\
01125 ================================================================================\n\
01126 MSG: geometry_msgs/PoseStamped\n\
01127 # A Pose with reference coordinate frame and timestamp\n\
01128 Header header\n\
01129 Pose pose\n\
01130 \n\
01131 ================================================================================\n\
01132 MSG: geometry_msgs/Pose\n\
01133 # A representation of pose in free space, composed of postion and orientation. \n\
01134 Point position\n\
01135 Quaternion orientation\n\
01136 \n\
01137 ================================================================================\n\
01138 MSG: geometry_msgs/Point\n\
01139 # This contains the position of a point in free space\n\
01140 float64 x\n\
01141 float64 y\n\
01142 float64 z\n\
01143 \n\
01144 ================================================================================\n\
01145 MSG: geometry_msgs/Quaternion\n\
01146 # This represents an orientation in free space in quaternion form.\n\
01147 \n\
01148 float64 x\n\
01149 float64 y\n\
01150 float64 z\n\
01151 float64 w\n\
01152 \n\
01153 ================================================================================\n\
01154 MSG: sensor_msgs/PointCloud\n\
01155 # This message holds a collection of 3d points, plus optional additional\n\
01156 # information about each point.\n\
01157 \n\
01158 # Time of sensor data acquisition, coordinate frame ID.\n\
01159 Header header\n\
01160 \n\
01161 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01162 # in the frame given in the header.\n\
01163 geometry_msgs/Point32[] points\n\
01164 \n\
01165 # Each channel should have the same number of elements as points array,\n\
01166 # and the data in each channel should correspond 1:1 with each point.\n\
01167 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01168 ChannelFloat32[] channels\n\
01169 \n\
01170 ================================================================================\n\
01171 MSG: geometry_msgs/Point32\n\
01172 # This contains the position of a point in free space(with 32 bits of precision).\n\
01173 # It is recommeded to use Point wherever possible instead of Point32. \n\
01174 # \n\
01175 # This recommendation is to promote interoperability. \n\
01176 #\n\
01177 # This message is designed to take up less space when sending\n\
01178 # lots of points at once, as in the case of a PointCloud. \n\
01179 \n\
01180 float32 x\n\
01181 float32 y\n\
01182 float32 z\n\
01183 ================================================================================\n\
01184 MSG: sensor_msgs/ChannelFloat32\n\
01185 # This message is used by the PointCloud message to hold optional data\n\
01186 # associated with each point in the cloud. The length of the values\n\
01187 # array should be the same as the length of the points array in the\n\
01188 # PointCloud, and each value should be associated with the corresponding\n\
01189 # point.\n\
01190 \n\
01191 # Channel names in existing practice include:\n\
01192 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01193 # This is opposite to usual conventions but remains for\n\
01194 # historical reasons. The newer PointCloud2 message has no\n\
01195 # such problem.\n\
01196 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01197 # (R,G,B) values packed into the least significant 24 bits,\n\
01198 # in order.\n\
01199 # \"intensity\" - laser or pixel intensity.\n\
01200 # \"distance\"\n\
01201 \n\
01202 # The channel name should give semantics of the channel (e.g.\n\
01203 # \"intensity\" instead of \"value\").\n\
01204 string name\n\
01205 \n\
01206 # The values array should be 1-1 with the elements of the associated\n\
01207 # PointCloud.\n\
01208 float32[] values\n\
01209 \n\
01210 ================================================================================\n\
01211 MSG: object_manipulation_msgs/SceneRegion\n\
01212 # Point cloud\n\
01213 sensor_msgs/PointCloud2 cloud\n\
01214 \n\
01215 # Indices for the region of interest\n\
01216 int32[] mask\n\
01217 \n\
01218 # One of the corresponding 2D images, if applicable\n\
01219 sensor_msgs/Image image\n\
01220 \n\
01221 # The disparity image, if applicable\n\
01222 sensor_msgs/Image disparity_image\n\
01223 \n\
01224 # Camera info for the camera that took the image\n\
01225 sensor_msgs/CameraInfo cam_info\n\
01226 \n\
01227 ================================================================================\n\
01228 MSG: sensor_msgs/PointCloud2\n\
01229 # This message holds a collection of N-dimensional points, which may\n\
01230 # contain additional information such as normals, intensity, etc. The\n\
01231 # point data is stored as a binary blob, its layout described by the\n\
01232 # contents of the \"fields\" array.\n\
01233 \n\
01234 # The point cloud data may be organized 2d (image-like) or 1d\n\
01235 # (unordered). Point clouds organized as 2d images may be produced by\n\
01236 # camera depth sensors such as stereo or time-of-flight.\n\
01237 \n\
01238 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01239 # points).\n\
01240 Header header\n\
01241 \n\
01242 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01243 # 1 and width is the length of the point cloud.\n\
01244 uint32 height\n\
01245 uint32 width\n\
01246 \n\
01247 # Describes the channels and their layout in the binary data blob.\n\
01248 PointField[] fields\n\
01249 \n\
01250 bool is_bigendian # Is this data bigendian?\n\
01251 uint32 point_step # Length of a point in bytes\n\
01252 uint32 row_step # Length of a row in bytes\n\
01253 uint8[] data # Actual point data, size is (row_step*height)\n\
01254 \n\
01255 bool is_dense # True if there are no invalid points\n\
01256 \n\
01257 ================================================================================\n\
01258 MSG: sensor_msgs/PointField\n\
01259 # This message holds the description of one point entry in the\n\
01260 # PointCloud2 message format.\n\
01261 uint8 INT8 = 1\n\
01262 uint8 UINT8 = 2\n\
01263 uint8 INT16 = 3\n\
01264 uint8 UINT16 = 4\n\
01265 uint8 INT32 = 5\n\
01266 uint8 UINT32 = 6\n\
01267 uint8 FLOAT32 = 7\n\
01268 uint8 FLOAT64 = 8\n\
01269 \n\
01270 string name # Name of field\n\
01271 uint32 offset # Offset from start of point struct\n\
01272 uint8 datatype # Datatype enumeration, see above\n\
01273 uint32 count # How many elements in the field\n\
01274 \n\
01275 ================================================================================\n\
01276 MSG: sensor_msgs/Image\n\
01277 # This message contains an uncompressed image\n\
01278 # (0, 0) is at top-left corner of image\n\
01279 #\n\
01280 \n\
01281 Header header # Header timestamp should be acquisition time of image\n\
01282 # Header frame_id should be optical frame of camera\n\
01283 # origin of frame should be optical center of cameara\n\
01284 # +x should point to the right in the image\n\
01285 # +y should point down in the image\n\
01286 # +z should point into to plane of the image\n\
01287 # If the frame_id here and the frame_id of the CameraInfo\n\
01288 # message associated with the image conflict\n\
01289 # the behavior is undefined\n\
01290 \n\
01291 uint32 height # image height, that is, number of rows\n\
01292 uint32 width # image width, that is, number of columns\n\
01293 \n\
01294 # The legal values for encoding are in file src/image_encodings.cpp\n\
01295 # If you want to standardize a new string format, join\n\
01296 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01297 \n\
01298 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01299 # taken from the list of strings in src/image_encodings.cpp\n\
01300 \n\
01301 uint8 is_bigendian # is this data bigendian?\n\
01302 uint32 step # Full row length in bytes\n\
01303 uint8[] data # actual matrix data, size is (step * rows)\n\
01304 \n\
01305 ================================================================================\n\
01306 MSG: sensor_msgs/CameraInfo\n\
01307 # This message defines meta information for a camera. It should be in a\n\
01308 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01309 # image topics named:\n\
01310 #\n\
01311 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01312 # image - monochrome, distorted\n\
01313 # image_color - color, distorted\n\
01314 # image_rect - monochrome, rectified\n\
01315 # image_rect_color - color, rectified\n\
01316 #\n\
01317 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01318 # for producing the four processed image topics from image_raw and\n\
01319 # camera_info. The meaning of the camera parameters are described in\n\
01320 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01321 #\n\
01322 # The image_geometry package provides a user-friendly interface to\n\
01323 # common operations using this meta information. If you want to, e.g.,\n\
01324 # project a 3d point into image coordinates, we strongly recommend\n\
01325 # using image_geometry.\n\
01326 #\n\
01327 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01328 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01329 # indicates an uncalibrated camera.\n\
01330 \n\
01331 #######################################################################\n\
01332 # Image acquisition info #\n\
01333 #######################################################################\n\
01334 \n\
01335 # Time of image acquisition, camera coordinate frame ID\n\
01336 Header header # Header timestamp should be acquisition time of image\n\
01337 # Header frame_id should be optical frame of camera\n\
01338 # origin of frame should be optical center of camera\n\
01339 # +x should point to the right in the image\n\
01340 # +y should point down in the image\n\
01341 # +z should point into the plane of the image\n\
01342 \n\
01343 \n\
01344 #######################################################################\n\
01345 # Calibration Parameters #\n\
01346 #######################################################################\n\
01347 # These are fixed during camera calibration. Their values will be the #\n\
01348 # same in all messages until the camera is recalibrated. Note that #\n\
01349 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01350 # #\n\
01351 # The internal parameters can be used to warp a raw (distorted) image #\n\
01352 # to: #\n\
01353 # 1. An undistorted image (requires D and K) #\n\
01354 # 2. A rectified image (requires D, K, R) #\n\
01355 # The projection matrix P projects 3D points into the rectified image.#\n\
01356 #######################################################################\n\
01357 \n\
01358 # The image dimensions with which the camera was calibrated. Normally\n\
01359 # this will be the full camera resolution in pixels.\n\
01360 uint32 height\n\
01361 uint32 width\n\
01362 \n\
01363 # The distortion model used. Supported models are listed in\n\
01364 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01365 # simple model of radial and tangential distortion - is sufficent.\n\
01366 string distortion_model\n\
01367 \n\
01368 # The distortion parameters, size depending on the distortion model.\n\
01369 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01370 float64[] D\n\
01371 \n\
01372 # Intrinsic camera matrix for the raw (distorted) images.\n\
01373 # [fx 0 cx]\n\
01374 # K = [ 0 fy cy]\n\
01375 # [ 0 0 1]\n\
01376 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01377 # coordinates using the focal lengths (fx, fy) and principal point\n\
01378 # (cx, cy).\n\
01379 float64[9] K # 3x3 row-major matrix\n\
01380 \n\
01381 # Rectification matrix (stereo cameras only)\n\
01382 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01383 # stereo image plane so that epipolar lines in both stereo images are\n\
01384 # parallel.\n\
01385 float64[9] R # 3x3 row-major matrix\n\
01386 \n\
01387 # Projection/camera matrix\n\
01388 # [fx' 0 cx' Tx]\n\
01389 # P = [ 0 fy' cy' Ty]\n\
01390 # [ 0 0 1 0]\n\
01391 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01392 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01393 # is the normal camera intrinsic matrix for the rectified image.\n\
01394 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01395 # coordinates using the focal lengths (fx', fy') and principal point\n\
01396 # (cx', cy') - these may differ from the values in K.\n\
01397 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01398 # also have R = the identity and P[1:3,1:3] = K.\n\
01399 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01400 # position of the optical center of the second camera in the first\n\
01401 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01402 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01403 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01404 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01405 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01406 # the rectified image is given by:\n\
01407 # [u v w]' = P * [X Y Z 1]'\n\
01408 # x = u / w\n\
01409 # y = v / w\n\
01410 # This holds for both images of a stereo pair.\n\
01411 float64[12] P # 3x4 row-major matrix\n\
01412 \n\
01413 \n\
01414 #######################################################################\n\
01415 # Operational Parameters #\n\
01416 #######################################################################\n\
01417 # These define the image region actually captured by the camera #\n\
01418 # driver. Although they affect the geometry of the output image, they #\n\
01419 # may be changed freely without recalibrating the camera. #\n\
01420 #######################################################################\n\
01421 \n\
01422 # Binning refers here to any camera setting which combines rectangular\n\
01423 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01424 # resolution of the output image to\n\
01425 # (width / binning_x) x (height / binning_y).\n\
01426 # The default values binning_x = binning_y = 0 is considered the same\n\
01427 # as binning_x = binning_y = 1 (no subsampling).\n\
01428 uint32 binning_x\n\
01429 uint32 binning_y\n\
01430 \n\
01431 # Region of interest (subwindow of full camera resolution), given in\n\
01432 # full resolution (unbinned) image coordinates. A particular ROI\n\
01433 # always denotes the same window of pixels on the camera sensor,\n\
01434 # regardless of binning settings.\n\
01435 # The default setting of roi (all values 0) is considered the same as\n\
01436 # full resolution (roi.width = width, roi.height = height).\n\
01437 RegionOfInterest roi\n\
01438 \n\
01439 ================================================================================\n\
01440 MSG: sensor_msgs/RegionOfInterest\n\
01441 # This message is used to specify a region of interest within an image.\n\
01442 #\n\
01443 # When used to specify the ROI setting of the camera when the image was\n\
01444 # taken, the height and width fields should either match the height and\n\
01445 # width fields for the associated image; or height = width = 0\n\
01446 # indicates that the full resolution image was captured.\n\
01447 \n\
01448 uint32 x_offset # Leftmost pixel of the ROI\n\
01449 # (0 if the ROI includes the left edge of the image)\n\
01450 uint32 y_offset # Topmost pixel of the ROI\n\
01451 # (0 if the ROI includes the top edge of the image)\n\
01452 uint32 height # Height of ROI\n\
01453 uint32 width # Width of ROI\n\
01454 \n\
01455 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01456 # ROI in this message. Typically this should be False if the full image\n\
01457 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01458 # used).\n\
01459 bool do_rectify\n\
01460 \n\
01461 ================================================================================\n\
01462 MSG: object_manipulation_msgs/Grasp\n\
01463 \n\
01464 # The internal posture of the hand for the pre-grasp\n\
01465 # only positions are used\n\
01466 sensor_msgs/JointState pre_grasp_posture\n\
01467 \n\
01468 # The internal posture of the hand for the grasp\n\
01469 # positions and efforts are used\n\
01470 sensor_msgs/JointState grasp_posture\n\
01471 \n\
01472 # The position of the end-effector for the grasp relative to the object\n\
01473 geometry_msgs/Pose grasp_pose\n\
01474 \n\
01475 # The estimated probability of success for this grasp\n\
01476 float64 success_probability\n\
01477 \n\
01478 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01479 bool cluster_rep\n\
01480 ================================================================================\n\
01481 MSG: sensor_msgs/JointState\n\
01482 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01483 #\n\
01484 # The state of each joint (revolute or prismatic) is defined by:\n\
01485 # * the position of the joint (rad or m),\n\
01486 # * the velocity of the joint (rad/s or m/s) and \n\
01487 # * the effort that is applied in the joint (Nm or N).\n\
01488 #\n\
01489 # Each joint is uniquely identified by its name\n\
01490 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01491 # in one message have to be recorded at the same time.\n\
01492 #\n\
01493 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01494 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01495 # effort associated with them, you can leave the effort array empty. \n\
01496 #\n\
01497 # All arrays in this message should have the same size, or be empty.\n\
01498 # This is the only way to uniquely associate the joint name with the correct\n\
01499 # states.\n\
01500 \n\
01501 \n\
01502 Header header\n\
01503 \n\
01504 string[] name\n\
01505 float64[] position\n\
01506 float64[] velocity\n\
01507 float64[] effort\n\
01508 \n\
01509 ================================================================================\n\
01510 MSG: object_manipulation_msgs/GripperTranslation\n\
01511 # defines a translation for the gripper, used in pickup or place tasks\n\
01512 # for example for lifting an object off a table or approaching the table for placing\n\
01513 \n\
01514 # the direction of the translation\n\
01515 geometry_msgs/Vector3Stamped direction\n\
01516 \n\
01517 # the desired translation distance\n\
01518 float32 desired_distance\n\
01519 \n\
01520 # the min distance that must be considered feasible before the\n\
01521 # grasp is even attempted\n\
01522 float32 min_distance\n\
01523 ================================================================================\n\
01524 MSG: geometry_msgs/Vector3Stamped\n\
01525 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01526 Header header\n\
01527 Vector3 vector\n\
01528 \n\
01529 ================================================================================\n\
01530 MSG: geometry_msgs/Vector3\n\
01531 # This represents a vector in free space. \n\
01532 \n\
01533 float64 x\n\
01534 float64 y\n\
01535 float64 z\n\
01536 ================================================================================\n\
01537 MSG: motion_planning_msgs/Constraints\n\
01538 # This message contains a list of motion planning constraints.\n\
01539 \n\
01540 motion_planning_msgs/JointConstraint[] joint_constraints\n\
01541 motion_planning_msgs/PositionConstraint[] position_constraints\n\
01542 motion_planning_msgs/OrientationConstraint[] orientation_constraints\n\
01543 motion_planning_msgs/VisibilityConstraint[] visibility_constraints\n\
01544 \n\
01545 ================================================================================\n\
01546 MSG: motion_planning_msgs/JointConstraint\n\
01547 # Constrain the position of a joint to be within a certain bound\n\
01548 string joint_name\n\
01549 \n\
01550 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01551 float64 position\n\
01552 float64 tolerance_above\n\
01553 float64 tolerance_below\n\
01554 \n\
01555 # A weighting factor for this constraint\n\
01556 float64 weight\n\
01557 ================================================================================\n\
01558 MSG: motion_planning_msgs/PositionConstraint\n\
01559 # This message contains the definition of a position constraint.\n\
01560 Header header\n\
01561 \n\
01562 # The robot link this constraint refers to\n\
01563 string link_name\n\
01564 \n\
01565 # The offset (in the link frame) for the target point on the link we are planning for\n\
01566 geometry_msgs/Point target_point_offset\n\
01567 \n\
01568 # The nominal/target position for the point we are planning for\n\
01569 geometry_msgs/Point position\n\
01570 \n\
01571 # The shape of the bounded region that constrains the position of the end-effector\n\
01572 # This region is always centered at the position defined above\n\
01573 geometric_shapes_msgs/Shape constraint_region_shape\n\
01574 \n\
01575 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01576 # This allows the specification of non-axis aligned constraints\n\
01577 geometry_msgs/Quaternion constraint_region_orientation\n\
01578 \n\
01579 # Constraint weighting factor - a weight for this constraint\n\
01580 float64 weight\n\
01581 ================================================================================\n\
01582 MSG: geometric_shapes_msgs/Shape\n\
01583 byte SPHERE=0\n\
01584 byte BOX=1\n\
01585 byte CYLINDER=2\n\
01586 byte MESH=3\n\
01587 \n\
01588 byte type\n\
01589 \n\
01590 \n\
01591 #### define sphere, box, cylinder ####\n\
01592 # the origin of each shape is considered at the shape's center\n\
01593 \n\
01594 # for sphere\n\
01595 # radius := dimensions[0]\n\
01596 \n\
01597 # for cylinder\n\
01598 # radius := dimensions[0]\n\
01599 # length := dimensions[1]\n\
01600 # the length is along the Z axis\n\
01601 \n\
01602 # for box\n\
01603 # size_x := dimensions[0]\n\
01604 # size_y := dimensions[1]\n\
01605 # size_z := dimensions[2]\n\
01606 float64[] dimensions\n\
01607 \n\
01608 \n\
01609 #### define mesh ####\n\
01610 \n\
01611 # list of triangles; triangle k is defined by tre vertices located\n\
01612 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01613 int32[] triangles\n\
01614 geometry_msgs/Point[] vertices\n\
01615 \n\
01616 ================================================================================\n\
01617 MSG: motion_planning_msgs/OrientationConstraint\n\
01618 # This message contains the definition of an orientation constraint.\n\
01619 Header header\n\
01620 \n\
01621 # The robot link this constraint refers to\n\
01622 string link_name\n\
01623 \n\
01624 # The type of the constraint\n\
01625 int32 type\n\
01626 int32 LINK_FRAME=0\n\
01627 int32 HEADER_FRAME=1\n\
01628 \n\
01629 # The desired orientation of the robot link specified as a quaternion\n\
01630 geometry_msgs/Quaternion orientation\n\
01631 \n\
01632 # optional RPY error tolerances specified if \n\
01633 float64 absolute_roll_tolerance\n\
01634 float64 absolute_pitch_tolerance\n\
01635 float64 absolute_yaw_tolerance\n\
01636 \n\
01637 # Constraint weighting factor - a weight for this constraint\n\
01638 float64 weight\n\
01639 \n\
01640 ================================================================================\n\
01641 MSG: motion_planning_msgs/VisibilityConstraint\n\
01642 # This message contains the definition of a visibility constraint.\n\
01643 Header header\n\
01644 \n\
01645 # The point stamped target that needs to be kept within view of the sensor\n\
01646 geometry_msgs/PointStamped target\n\
01647 \n\
01648 # The local pose of the frame in which visibility is to be maintained\n\
01649 # The frame id should represent the robot link to which the sensor is attached\n\
01650 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01651 geometry_msgs/PoseStamped sensor_pose\n\
01652 \n\
01653 # The deviation (in radians) that will be tolerated\n\
01654 # Constraint error will be measured as the solid angle between the \n\
01655 # X axis of the frame defined above and the vector between the origin \n\
01656 # of the frame defined above and the target location\n\
01657 float64 absolute_tolerance\n\
01658 \n\
01659 \n\
01660 ================================================================================\n\
01661 MSG: geometry_msgs/PointStamped\n\
01662 # This represents a Point with reference coordinate frame and timestamp\n\
01663 Header header\n\
01664 Point point\n\
01665 \n\
01666 ================================================================================\n\
01667 MSG: motion_planning_msgs/OrderedCollisionOperations\n\
01668 # A set of collision operations that will be performed in the order they are specified\n\
01669 CollisionOperation[] collision_operations\n\
01670 ================================================================================\n\
01671 MSG: motion_planning_msgs/CollisionOperation\n\
01672 # A definition of a collision operation\n\
01673 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01674 # between the gripper and all objects in the collision space\n\
01675 \n\
01676 string object1\n\
01677 string object2\n\
01678 string COLLISION_SET_ALL=\"all\"\n\
01679 string COLLISION_SET_OBJECTS=\"objects\"\n\
01680 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01681 \n\
01682 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01683 float64 penetration_distance\n\
01684 \n\
01685 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01686 int32 operation\n\
01687 int32 DISABLE=0\n\
01688 int32 ENABLE=1\n\
01689 \n\
01690 ================================================================================\n\
01691 MSG: motion_planning_msgs/LinkPadding\n\
01692 #name for the link\n\
01693 string link_name\n\
01694 \n\
01695 # padding to apply to the link\n\
01696 float64 padding\n\
01697 \n\
01698 ================================================================================\n\
01699 MSG: object_manipulation_msgs/PickupActionResult\n\
01700 Header header\n\
01701 actionlib_msgs/GoalStatus status\n\
01702 PickupResult result\n\
01703 \n\
01704 ================================================================================\n\
01705 MSG: actionlib_msgs/GoalStatus\n\
01706 GoalID goal_id\n\
01707 uint8 status\n\
01708 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01709 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01710 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01711 # and has since completed its execution (Terminal State)\n\
01712 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01713 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01714 # to some failure (Terminal State)\n\
01715 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01716 # because the goal was unattainable or invalid (Terminal State)\n\
01717 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01718 # and has not yet completed execution\n\
01719 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01720 # but the action server has not yet confirmed that the goal is canceled\n\
01721 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01722 # and was successfully cancelled (Terminal State)\n\
01723 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01724 # sent over the wire by an action server\n\
01725 \n\
01726 #Allow for the user to associate a string with GoalStatus for debugging\n\
01727 string text\n\
01728 \n\
01729 \n\
01730 ================================================================================\n\
01731 MSG: object_manipulation_msgs/PickupResult\n\
01732 # The overall result of the pickup attempt\n\
01733 ManipulationResult manipulation_result\n\
01734 \n\
01735 # The performed grasp, if attempt was successful\n\
01736 Grasp grasp\n\
01737 \n\
01738 # the complete list of attempted grasp, in the order in which they have been attempted\n\
01739 # the successful one should be the last one in this list\n\
01740 Grasp[] attempted_grasps\n\
01741 \n\
01742 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
01743 GraspResult[] attempted_grasp_results\n\
01744 ================================================================================\n\
01745 MSG: object_manipulation_msgs/ManipulationResult\n\
01746 # Result codes for manipulation tasks\n\
01747 \n\
01748 # task completed as expected\n\
01749 # generally means you can proceed as planned\n\
01750 int32 SUCCESS = 1\n\
01751 \n\
01752 # task not possible (e.g. out of reach or obstacles in the way)\n\
01753 # generally means that the world was not disturbed, so you can try another task\n\
01754 int32 UNFEASIBLE = -1\n\
01755 \n\
01756 # task was thought possible, but failed due to unexpected events during execution\n\
01757 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01758 # your sensed world model before proceeding to another task\n\
01759 int32 FAILED = -2\n\
01760 \n\
01761 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01762 # generally requires human attention\n\
01763 int32 ERROR = -3\n\
01764 \n\
01765 # means that at some point during execution we ended up in a state that the collision-aware\n\
01766 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01767 # probably need a new collision map to move the arm out of the stuck position\n\
01768 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01769 \n\
01770 # specific to grasp actions\n\
01771 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01772 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01773 int32 LIFT_FAILED = -5\n\
01774 \n\
01775 # specific to place actions\n\
01776 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01777 # it is likely that the collision environment will see collisions between the hand and the object\n\
01778 int32 RETREAT_FAILED = -6\n\
01779 \n\
01780 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01781 int32 CANCELLED = -7\n\
01782 \n\
01783 # the actual value of this error code\n\
01784 int32 value\n\
01785 \n\
01786 ================================================================================\n\
01787 MSG: object_manipulation_msgs/GraspResult\n\
01788 int32 SUCCESS = 1\n\
01789 int32 GRASP_OUT_OF_REACH = 2\n\
01790 int32 GRASP_IN_COLLISION = 3\n\
01791 int32 GRASP_UNFEASIBLE = 4\n\
01792 int32 PREGRASP_OUT_OF_REACH = 5\n\
01793 int32 PREGRASP_IN_COLLISION = 6\n\
01794 int32 PREGRASP_UNFEASIBLE = 7\n\
01795 int32 LIFT_OUT_OF_REACH = 8\n\
01796 int32 LIFT_IN_COLLISION = 9\n\
01797 int32 LIFT_UNFEASIBLE = 10\n\
01798 int32 MOVE_ARM_FAILED = 11\n\
01799 int32 GRASP_FAILED = 12\n\
01800 int32 LIFT_FAILED = 13\n\
01801 int32 RETREAT_FAILED = 14\n\
01802 int32 result_code\n\
01803 \n\
01804 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
01805 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
01806 # before proceeding\n\
01807 bool continuation_possible\n\
01808 \n\
01809 ================================================================================\n\
01810 MSG: object_manipulation_msgs/PickupActionFeedback\n\
01811 Header header\n\
01812 actionlib_msgs/GoalStatus status\n\
01813 PickupFeedback feedback\n\
01814 \n\
01815 ================================================================================\n\
01816 MSG: object_manipulation_msgs/PickupFeedback\n\
01817 # The number of the grasp currently being attempted\n\
01818 int32 current_grasp\n\
01819 \n\
01820 # The total number of grasps that will be attempted\n\
01821 int32 total_grasps\n\
01822 \n\
01823 \n\
01824 \n\
01825 ";
01826 }
01827
01828 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); }
01829 };
01830
01831 }
01832 }
01833
01834 namespace ros
01835 {
01836 namespace serialization
01837 {
01838
01839 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >
01840 {
01841 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01842 {
01843 stream.next(m.action_goal);
01844 stream.next(m.action_result);
01845 stream.next(m.action_feedback);
01846 }
01847
01848 ROS_DECLARE_ALLINONE_SERIALIZER;
01849 };
01850 }
01851 }
01852
01853 namespace ros
01854 {
01855 namespace message_operations
01856 {
01857
01858 template<class ContainerAllocator>
01859 struct Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >
01860 {
01861 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v)
01862 {
01863 s << indent << "action_goal: ";
01864 s << std::endl;
01865 Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01866 s << indent << "action_result: ";
01867 s << std::endl;
01868 Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01869 s << indent << "action_feedback: ";
01870 s << std::endl;
01871 Printer< ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01872 }
01873 };
01874
01875
01876 }
01877 }
01878
01879 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
01880