00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "actionlib_msgs/GoalID.h"
00015 #include "object_manipulation_msgs/PickupGoal.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct PickupActionGoal_ : public ros::Message
00021 {
00022 typedef PickupActionGoal_<ContainerAllocator> Type;
00023
00024 PickupActionGoal_()
00025 : header()
00026 , goal_id()
00027 , goal()
00028 {
00029 }
00030
00031 PickupActionGoal_(const ContainerAllocator& _alloc)
00032 : header(_alloc)
00033 , goal_id(_alloc)
00034 , goal(_alloc)
00035 {
00036 }
00037
00038 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00039 ::std_msgs::Header_<ContainerAllocator> header;
00040
00041 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00042 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00043
00044 typedef ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> _goal_type;
00045 ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> goal;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupActionGoal"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "f7abe358d29b89ddc12ef820f5a4cb67"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "Header header\n\
00064 actionlib_msgs/GoalID goal_id\n\
00065 PickupGoal goal\n\
00066 \n\
00067 ================================================================================\n\
00068 MSG: std_msgs/Header\n\
00069 # Standard metadata for higher-level stamped data types.\n\
00070 # This is generally used to communicate timestamped data \n\
00071 # in a particular coordinate frame.\n\
00072 # \n\
00073 # sequence ID: consecutively increasing ID \n\
00074 uint32 seq\n\
00075 #Two-integer timestamp that is expressed as:\n\
00076 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00077 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00078 # time-handling sugar is provided by the client library\n\
00079 time stamp\n\
00080 #Frame this data is associated with\n\
00081 # 0: no frame\n\
00082 # 1: global frame\n\
00083 string frame_id\n\
00084 \n\
00085 ================================================================================\n\
00086 MSG: actionlib_msgs/GoalID\n\
00087 # The stamp should store the time at which this goal was requested.\n\
00088 # It is used by an action server when it tries to preempt all\n\
00089 # goals that were requested before a certain time\n\
00090 time stamp\n\
00091 \n\
00092 # The id provides a way to associate feedback and\n\
00093 # result message with specific goal requests. The id\n\
00094 # specified must be unique.\n\
00095 string id\n\
00096 \n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: object_manipulation_msgs/PickupGoal\n\
00100 # An action for picking up an object\n\
00101 \n\
00102 # which arm to be used for grasping\n\
00103 string arm_name\n\
00104 \n\
00105 # the object to be grasped\n\
00106 GraspableObject target\n\
00107 \n\
00108 # a list of grasps to be used\n\
00109 # if empty, the grasp executive will call one of its own planners\n\
00110 Grasp[] desired_grasps\n\
00111 \n\
00112 # how far the pre-grasp should ideally be away from the grasp\n\
00113 float32 desired_approach_distance\n\
00114 \n\
00115 # how much distance between pre-grasp and grasp must actually be feasible \n\
00116 # for the grasp not to be rejected\n\
00117 float32 min_approach_distance\n\
00118 \n\
00119 # how the object should be lifted after the grasp\n\
00120 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00121 # or the gripper_frame specified in your hand description file\n\
00122 GripperTranslation lift\n\
00123 \n\
00124 # the name that the target object has in the collision map\n\
00125 # can be left empty if no name is available\n\
00126 string collision_object_name\n\
00127 \n\
00128 # the name that the support surface (e.g. table) has in the collision map\n\
00129 # can be left empty if no name is available\n\
00130 string collision_support_surface_name\n\
00131 \n\
00132 # whether collisions between the gripper and the support surface should be acceptable\n\
00133 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00134 # pre-grasp location are still not allowed even if this is set to true.\n\
00135 bool allow_gripper_support_collision\n\
00136 \n\
00137 # whether reactive grasp execution using tactile sensors should be used\n\
00138 bool use_reactive_execution\n\
00139 \n\
00140 # whether reactive object lifting based on tactile sensors should be used\n\
00141 bool use_reactive_lift\n\
00142 \n\
00143 # OPTIONAL (These will not have to be filled out most of the time)\n\
00144 # constraints to be imposed on every point in the motion of the arm\n\
00145 motion_planning_msgs/Constraints path_constraints\n\
00146 \n\
00147 # OPTIONAL (These will not have to be filled out most of the time)\n\
00148 # additional collision operations to be used for every arm movement performed\n\
00149 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00150 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00151 # with care and only if special behaviors are desired\n\
00152 motion_planning_msgs/OrderedCollisionOperations additional_collision_operations\n\
00153 \n\
00154 # OPTIONAL (These will not have to be filled out most of the time)\n\
00155 # additional link paddings to be used for every arm movement performed\n\
00156 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00157 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00158 # with care and only if special behaviors are desired\n\
00159 motion_planning_msgs/LinkPadding[] additional_link_padding\n\
00160 ================================================================================\n\
00161 MSG: object_manipulation_msgs/GraspableObject\n\
00162 # an object that the object_manipulator can work on\n\
00163 \n\
00164 # a graspable object can be represented in multiple ways. This message\n\
00165 # can contain all of them. Which one is actually used is up to the receiver\n\
00166 # of this message. When adding new representations, one must be careful that\n\
00167 # they have reasonable lightweight defaults indicating that that particular\n\
00168 # representation is not available.\n\
00169 \n\
00170 # the tf frame to be used as a reference frame when combining information from\n\
00171 # the different representations below\n\
00172 string reference_frame_id\n\
00173 \n\
00174 # potential recognition results from a database of models\n\
00175 # all poses are relative to the object reference pose\n\
00176 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00177 \n\
00178 # the point cloud itself\n\
00179 sensor_msgs/PointCloud cluster\n\
00180 \n\
00181 # a region of a PointCloud2 of interest\n\
00182 object_manipulation_msgs/SceneRegion region\n\
00183 \n\
00184 \n\
00185 ================================================================================\n\
00186 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00187 # Informs that a specific model from the Model Database has been \n\
00188 # identified at a certain location\n\
00189 \n\
00190 # the database id of the model\n\
00191 int32 model_id\n\
00192 \n\
00193 # the pose that it can be found in\n\
00194 geometry_msgs/PoseStamped pose\n\
00195 \n\
00196 # a measure of the confidence level in this detection result\n\
00197 float32 confidence\n\
00198 ================================================================================\n\
00199 MSG: geometry_msgs/PoseStamped\n\
00200 # A Pose with reference coordinate frame and timestamp\n\
00201 Header header\n\
00202 Pose pose\n\
00203 \n\
00204 ================================================================================\n\
00205 MSG: geometry_msgs/Pose\n\
00206 # A representation of pose in free space, composed of postion and orientation. \n\
00207 Point position\n\
00208 Quaternion orientation\n\
00209 \n\
00210 ================================================================================\n\
00211 MSG: geometry_msgs/Point\n\
00212 # This contains the position of a point in free space\n\
00213 float64 x\n\
00214 float64 y\n\
00215 float64 z\n\
00216 \n\
00217 ================================================================================\n\
00218 MSG: geometry_msgs/Quaternion\n\
00219 # This represents an orientation in free space in quaternion form.\n\
00220 \n\
00221 float64 x\n\
00222 float64 y\n\
00223 float64 z\n\
00224 float64 w\n\
00225 \n\
00226 ================================================================================\n\
00227 MSG: sensor_msgs/PointCloud\n\
00228 # This message holds a collection of 3d points, plus optional additional\n\
00229 # information about each point.\n\
00230 \n\
00231 # Time of sensor data acquisition, coordinate frame ID.\n\
00232 Header header\n\
00233 \n\
00234 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00235 # in the frame given in the header.\n\
00236 geometry_msgs/Point32[] points\n\
00237 \n\
00238 # Each channel should have the same number of elements as points array,\n\
00239 # and the data in each channel should correspond 1:1 with each point.\n\
00240 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00241 ChannelFloat32[] channels\n\
00242 \n\
00243 ================================================================================\n\
00244 MSG: geometry_msgs/Point32\n\
00245 # This contains the position of a point in free space(with 32 bits of precision).\n\
00246 # It is recommeded to use Point wherever possible instead of Point32. \n\
00247 # \n\
00248 # This recommendation is to promote interoperability. \n\
00249 #\n\
00250 # This message is designed to take up less space when sending\n\
00251 # lots of points at once, as in the case of a PointCloud. \n\
00252 \n\
00253 float32 x\n\
00254 float32 y\n\
00255 float32 z\n\
00256 ================================================================================\n\
00257 MSG: sensor_msgs/ChannelFloat32\n\
00258 # This message is used by the PointCloud message to hold optional data\n\
00259 # associated with each point in the cloud. The length of the values\n\
00260 # array should be the same as the length of the points array in the\n\
00261 # PointCloud, and each value should be associated with the corresponding\n\
00262 # point.\n\
00263 \n\
00264 # Channel names in existing practice include:\n\
00265 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00266 # This is opposite to usual conventions but remains for\n\
00267 # historical reasons. The newer PointCloud2 message has no\n\
00268 # such problem.\n\
00269 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00270 # (R,G,B) values packed into the least significant 24 bits,\n\
00271 # in order.\n\
00272 # \"intensity\" - laser or pixel intensity.\n\
00273 # \"distance\"\n\
00274 \n\
00275 # The channel name should give semantics of the channel (e.g.\n\
00276 # \"intensity\" instead of \"value\").\n\
00277 string name\n\
00278 \n\
00279 # The values array should be 1-1 with the elements of the associated\n\
00280 # PointCloud.\n\
00281 float32[] values\n\
00282 \n\
00283 ================================================================================\n\
00284 MSG: object_manipulation_msgs/SceneRegion\n\
00285 # Point cloud\n\
00286 sensor_msgs/PointCloud2 cloud\n\
00287 \n\
00288 # Indices for the region of interest\n\
00289 int32[] mask\n\
00290 \n\
00291 # One of the corresponding 2D images, if applicable\n\
00292 sensor_msgs/Image image\n\
00293 \n\
00294 # The disparity image, if applicable\n\
00295 sensor_msgs/Image disparity_image\n\
00296 \n\
00297 # Camera info for the camera that took the image\n\
00298 sensor_msgs/CameraInfo cam_info\n\
00299 \n\
00300 ================================================================================\n\
00301 MSG: sensor_msgs/PointCloud2\n\
00302 # This message holds a collection of N-dimensional points, which may\n\
00303 # contain additional information such as normals, intensity, etc. The\n\
00304 # point data is stored as a binary blob, its layout described by the\n\
00305 # contents of the \"fields\" array.\n\
00306 \n\
00307 # The point cloud data may be organized 2d (image-like) or 1d\n\
00308 # (unordered). Point clouds organized as 2d images may be produced by\n\
00309 # camera depth sensors such as stereo or time-of-flight.\n\
00310 \n\
00311 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00312 # points).\n\
00313 Header header\n\
00314 \n\
00315 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00316 # 1 and width is the length of the point cloud.\n\
00317 uint32 height\n\
00318 uint32 width\n\
00319 \n\
00320 # Describes the channels and their layout in the binary data blob.\n\
00321 PointField[] fields\n\
00322 \n\
00323 bool is_bigendian # Is this data bigendian?\n\
00324 uint32 point_step # Length of a point in bytes\n\
00325 uint32 row_step # Length of a row in bytes\n\
00326 uint8[] data # Actual point data, size is (row_step*height)\n\
00327 \n\
00328 bool is_dense # True if there are no invalid points\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: sensor_msgs/PointField\n\
00332 # This message holds the description of one point entry in the\n\
00333 # PointCloud2 message format.\n\
00334 uint8 INT8 = 1\n\
00335 uint8 UINT8 = 2\n\
00336 uint8 INT16 = 3\n\
00337 uint8 UINT16 = 4\n\
00338 uint8 INT32 = 5\n\
00339 uint8 UINT32 = 6\n\
00340 uint8 FLOAT32 = 7\n\
00341 uint8 FLOAT64 = 8\n\
00342 \n\
00343 string name # Name of field\n\
00344 uint32 offset # Offset from start of point struct\n\
00345 uint8 datatype # Datatype enumeration, see above\n\
00346 uint32 count # How many elements in the field\n\
00347 \n\
00348 ================================================================================\n\
00349 MSG: sensor_msgs/Image\n\
00350 # This message contains an uncompressed image\n\
00351 # (0, 0) is at top-left corner of image\n\
00352 #\n\
00353 \n\
00354 Header header # Header timestamp should be acquisition time of image\n\
00355 # Header frame_id should be optical frame of camera\n\
00356 # origin of frame should be optical center of cameara\n\
00357 # +x should point to the right in the image\n\
00358 # +y should point down in the image\n\
00359 # +z should point into to plane of the image\n\
00360 # If the frame_id here and the frame_id of the CameraInfo\n\
00361 # message associated with the image conflict\n\
00362 # the behavior is undefined\n\
00363 \n\
00364 uint32 height # image height, that is, number of rows\n\
00365 uint32 width # image width, that is, number of columns\n\
00366 \n\
00367 # The legal values for encoding are in file src/image_encodings.cpp\n\
00368 # If you want to standardize a new string format, join\n\
00369 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00370 \n\
00371 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00372 # taken from the list of strings in src/image_encodings.cpp\n\
00373 \n\
00374 uint8 is_bigendian # is this data bigendian?\n\
00375 uint32 step # Full row length in bytes\n\
00376 uint8[] data # actual matrix data, size is (step * rows)\n\
00377 \n\
00378 ================================================================================\n\
00379 MSG: sensor_msgs/CameraInfo\n\
00380 # This message defines meta information for a camera. It should be in a\n\
00381 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00382 # image topics named:\n\
00383 #\n\
00384 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00385 # image - monochrome, distorted\n\
00386 # image_color - color, distorted\n\
00387 # image_rect - monochrome, rectified\n\
00388 # image_rect_color - color, rectified\n\
00389 #\n\
00390 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00391 # for producing the four processed image topics from image_raw and\n\
00392 # camera_info. The meaning of the camera parameters are described in\n\
00393 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00394 #\n\
00395 # The image_geometry package provides a user-friendly interface to\n\
00396 # common operations using this meta information. If you want to, e.g.,\n\
00397 # project a 3d point into image coordinates, we strongly recommend\n\
00398 # using image_geometry.\n\
00399 #\n\
00400 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00401 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00402 # indicates an uncalibrated camera.\n\
00403 \n\
00404 #######################################################################\n\
00405 # Image acquisition info #\n\
00406 #######################################################################\n\
00407 \n\
00408 # Time of image acquisition, camera coordinate frame ID\n\
00409 Header header # Header timestamp should be acquisition time of image\n\
00410 # Header frame_id should be optical frame of camera\n\
00411 # origin of frame should be optical center of camera\n\
00412 # +x should point to the right in the image\n\
00413 # +y should point down in the image\n\
00414 # +z should point into the plane of the image\n\
00415 \n\
00416 \n\
00417 #######################################################################\n\
00418 # Calibration Parameters #\n\
00419 #######################################################################\n\
00420 # These are fixed during camera calibration. Their values will be the #\n\
00421 # same in all messages until the camera is recalibrated. Note that #\n\
00422 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00423 # #\n\
00424 # The internal parameters can be used to warp a raw (distorted) image #\n\
00425 # to: #\n\
00426 # 1. An undistorted image (requires D and K) #\n\
00427 # 2. A rectified image (requires D, K, R) #\n\
00428 # The projection matrix P projects 3D points into the rectified image.#\n\
00429 #######################################################################\n\
00430 \n\
00431 # The image dimensions with which the camera was calibrated. Normally\n\
00432 # this will be the full camera resolution in pixels.\n\
00433 uint32 height\n\
00434 uint32 width\n\
00435 \n\
00436 # The distortion model used. Supported models are listed in\n\
00437 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00438 # simple model of radial and tangential distortion - is sufficent.\n\
00439 string distortion_model\n\
00440 \n\
00441 # The distortion parameters, size depending on the distortion model.\n\
00442 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00443 float64[] D\n\
00444 \n\
00445 # Intrinsic camera matrix for the raw (distorted) images.\n\
00446 # [fx 0 cx]\n\
00447 # K = [ 0 fy cy]\n\
00448 # [ 0 0 1]\n\
00449 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00450 # coordinates using the focal lengths (fx, fy) and principal point\n\
00451 # (cx, cy).\n\
00452 float64[9] K # 3x3 row-major matrix\n\
00453 \n\
00454 # Rectification matrix (stereo cameras only)\n\
00455 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00456 # stereo image plane so that epipolar lines in both stereo images are\n\
00457 # parallel.\n\
00458 float64[9] R # 3x3 row-major matrix\n\
00459 \n\
00460 # Projection/camera matrix\n\
00461 # [fx' 0 cx' Tx]\n\
00462 # P = [ 0 fy' cy' Ty]\n\
00463 # [ 0 0 1 0]\n\
00464 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00465 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00466 # is the normal camera intrinsic matrix for the rectified image.\n\
00467 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00468 # coordinates using the focal lengths (fx', fy') and principal point\n\
00469 # (cx', cy') - these may differ from the values in K.\n\
00470 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00471 # also have R = the identity and P[1:3,1:3] = K.\n\
00472 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00473 # position of the optical center of the second camera in the first\n\
00474 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00475 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00476 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00477 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00478 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00479 # the rectified image is given by:\n\
00480 # [u v w]' = P * [X Y Z 1]'\n\
00481 # x = u / w\n\
00482 # y = v / w\n\
00483 # This holds for both images of a stereo pair.\n\
00484 float64[12] P # 3x4 row-major matrix\n\
00485 \n\
00486 \n\
00487 #######################################################################\n\
00488 # Operational Parameters #\n\
00489 #######################################################################\n\
00490 # These define the image region actually captured by the camera #\n\
00491 # driver. Although they affect the geometry of the output image, they #\n\
00492 # may be changed freely without recalibrating the camera. #\n\
00493 #######################################################################\n\
00494 \n\
00495 # Binning refers here to any camera setting which combines rectangular\n\
00496 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00497 # resolution of the output image to\n\
00498 # (width / binning_x) x (height / binning_y).\n\
00499 # The default values binning_x = binning_y = 0 is considered the same\n\
00500 # as binning_x = binning_y = 1 (no subsampling).\n\
00501 uint32 binning_x\n\
00502 uint32 binning_y\n\
00503 \n\
00504 # Region of interest (subwindow of full camera resolution), given in\n\
00505 # full resolution (unbinned) image coordinates. A particular ROI\n\
00506 # always denotes the same window of pixels on the camera sensor,\n\
00507 # regardless of binning settings.\n\
00508 # The default setting of roi (all values 0) is considered the same as\n\
00509 # full resolution (roi.width = width, roi.height = height).\n\
00510 RegionOfInterest roi\n\
00511 \n\
00512 ================================================================================\n\
00513 MSG: sensor_msgs/RegionOfInterest\n\
00514 # This message is used to specify a region of interest within an image.\n\
00515 #\n\
00516 # When used to specify the ROI setting of the camera when the image was\n\
00517 # taken, the height and width fields should either match the height and\n\
00518 # width fields for the associated image; or height = width = 0\n\
00519 # indicates that the full resolution image was captured.\n\
00520 \n\
00521 uint32 x_offset # Leftmost pixel of the ROI\n\
00522 # (0 if the ROI includes the left edge of the image)\n\
00523 uint32 y_offset # Topmost pixel of the ROI\n\
00524 # (0 if the ROI includes the top edge of the image)\n\
00525 uint32 height # Height of ROI\n\
00526 uint32 width # Width of ROI\n\
00527 \n\
00528 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00529 # ROI in this message. Typically this should be False if the full image\n\
00530 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00531 # used).\n\
00532 bool do_rectify\n\
00533 \n\
00534 ================================================================================\n\
00535 MSG: object_manipulation_msgs/Grasp\n\
00536 \n\
00537 # The internal posture of the hand for the pre-grasp\n\
00538 # only positions are used\n\
00539 sensor_msgs/JointState pre_grasp_posture\n\
00540 \n\
00541 # The internal posture of the hand for the grasp\n\
00542 # positions and efforts are used\n\
00543 sensor_msgs/JointState grasp_posture\n\
00544 \n\
00545 # The position of the end-effector for the grasp relative to the object\n\
00546 geometry_msgs/Pose grasp_pose\n\
00547 \n\
00548 # The estimated probability of success for this grasp\n\
00549 float64 success_probability\n\
00550 \n\
00551 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00552 bool cluster_rep\n\
00553 ================================================================================\n\
00554 MSG: sensor_msgs/JointState\n\
00555 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00556 #\n\
00557 # The state of each joint (revolute or prismatic) is defined by:\n\
00558 # * the position of the joint (rad or m),\n\
00559 # * the velocity of the joint (rad/s or m/s) and \n\
00560 # * the effort that is applied in the joint (Nm or N).\n\
00561 #\n\
00562 # Each joint is uniquely identified by its name\n\
00563 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00564 # in one message have to be recorded at the same time.\n\
00565 #\n\
00566 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00567 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00568 # effort associated with them, you can leave the effort array empty. \n\
00569 #\n\
00570 # All arrays in this message should have the same size, or be empty.\n\
00571 # This is the only way to uniquely associate the joint name with the correct\n\
00572 # states.\n\
00573 \n\
00574 \n\
00575 Header header\n\
00576 \n\
00577 string[] name\n\
00578 float64[] position\n\
00579 float64[] velocity\n\
00580 float64[] effort\n\
00581 \n\
00582 ================================================================================\n\
00583 MSG: object_manipulation_msgs/GripperTranslation\n\
00584 # defines a translation for the gripper, used in pickup or place tasks\n\
00585 # for example for lifting an object off a table or approaching the table for placing\n\
00586 \n\
00587 # the direction of the translation\n\
00588 geometry_msgs/Vector3Stamped direction\n\
00589 \n\
00590 # the desired translation distance\n\
00591 float32 desired_distance\n\
00592 \n\
00593 # the min distance that must be considered feasible before the\n\
00594 # grasp is even attempted\n\
00595 float32 min_distance\n\
00596 ================================================================================\n\
00597 MSG: geometry_msgs/Vector3Stamped\n\
00598 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00599 Header header\n\
00600 Vector3 vector\n\
00601 \n\
00602 ================================================================================\n\
00603 MSG: geometry_msgs/Vector3\n\
00604 # This represents a vector in free space. \n\
00605 \n\
00606 float64 x\n\
00607 float64 y\n\
00608 float64 z\n\
00609 ================================================================================\n\
00610 MSG: motion_planning_msgs/Constraints\n\
00611 # This message contains a list of motion planning constraints.\n\
00612 \n\
00613 motion_planning_msgs/JointConstraint[] joint_constraints\n\
00614 motion_planning_msgs/PositionConstraint[] position_constraints\n\
00615 motion_planning_msgs/OrientationConstraint[] orientation_constraints\n\
00616 motion_planning_msgs/VisibilityConstraint[] visibility_constraints\n\
00617 \n\
00618 ================================================================================\n\
00619 MSG: motion_planning_msgs/JointConstraint\n\
00620 # Constrain the position of a joint to be within a certain bound\n\
00621 string joint_name\n\
00622 \n\
00623 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00624 float64 position\n\
00625 float64 tolerance_above\n\
00626 float64 tolerance_below\n\
00627 \n\
00628 # A weighting factor for this constraint\n\
00629 float64 weight\n\
00630 ================================================================================\n\
00631 MSG: motion_planning_msgs/PositionConstraint\n\
00632 # This message contains the definition of a position constraint.\n\
00633 Header header\n\
00634 \n\
00635 # The robot link this constraint refers to\n\
00636 string link_name\n\
00637 \n\
00638 # The offset (in the link frame) for the target point on the link we are planning for\n\
00639 geometry_msgs/Point target_point_offset\n\
00640 \n\
00641 # The nominal/target position for the point we are planning for\n\
00642 geometry_msgs/Point position\n\
00643 \n\
00644 # The shape of the bounded region that constrains the position of the end-effector\n\
00645 # This region is always centered at the position defined above\n\
00646 geometric_shapes_msgs/Shape constraint_region_shape\n\
00647 \n\
00648 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00649 # This allows the specification of non-axis aligned constraints\n\
00650 geometry_msgs/Quaternion constraint_region_orientation\n\
00651 \n\
00652 # Constraint weighting factor - a weight for this constraint\n\
00653 float64 weight\n\
00654 ================================================================================\n\
00655 MSG: geometric_shapes_msgs/Shape\n\
00656 byte SPHERE=0\n\
00657 byte BOX=1\n\
00658 byte CYLINDER=2\n\
00659 byte MESH=3\n\
00660 \n\
00661 byte type\n\
00662 \n\
00663 \n\
00664 #### define sphere, box, cylinder ####\n\
00665 # the origin of each shape is considered at the shape's center\n\
00666 \n\
00667 # for sphere\n\
00668 # radius := dimensions[0]\n\
00669 \n\
00670 # for cylinder\n\
00671 # radius := dimensions[0]\n\
00672 # length := dimensions[1]\n\
00673 # the length is along the Z axis\n\
00674 \n\
00675 # for box\n\
00676 # size_x := dimensions[0]\n\
00677 # size_y := dimensions[1]\n\
00678 # size_z := dimensions[2]\n\
00679 float64[] dimensions\n\
00680 \n\
00681 \n\
00682 #### define mesh ####\n\
00683 \n\
00684 # list of triangles; triangle k is defined by tre vertices located\n\
00685 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00686 int32[] triangles\n\
00687 geometry_msgs/Point[] vertices\n\
00688 \n\
00689 ================================================================================\n\
00690 MSG: motion_planning_msgs/OrientationConstraint\n\
00691 # This message contains the definition of an orientation constraint.\n\
00692 Header header\n\
00693 \n\
00694 # The robot link this constraint refers to\n\
00695 string link_name\n\
00696 \n\
00697 # The type of the constraint\n\
00698 int32 type\n\
00699 int32 LINK_FRAME=0\n\
00700 int32 HEADER_FRAME=1\n\
00701 \n\
00702 # The desired orientation of the robot link specified as a quaternion\n\
00703 geometry_msgs/Quaternion orientation\n\
00704 \n\
00705 # optional RPY error tolerances specified if \n\
00706 float64 absolute_roll_tolerance\n\
00707 float64 absolute_pitch_tolerance\n\
00708 float64 absolute_yaw_tolerance\n\
00709 \n\
00710 # Constraint weighting factor - a weight for this constraint\n\
00711 float64 weight\n\
00712 \n\
00713 ================================================================================\n\
00714 MSG: motion_planning_msgs/VisibilityConstraint\n\
00715 # This message contains the definition of a visibility constraint.\n\
00716 Header header\n\
00717 \n\
00718 # The point stamped target that needs to be kept within view of the sensor\n\
00719 geometry_msgs/PointStamped target\n\
00720 \n\
00721 # The local pose of the frame in which visibility is to be maintained\n\
00722 # The frame id should represent the robot link to which the sensor is attached\n\
00723 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00724 geometry_msgs/PoseStamped sensor_pose\n\
00725 \n\
00726 # The deviation (in radians) that will be tolerated\n\
00727 # Constraint error will be measured as the solid angle between the \n\
00728 # X axis of the frame defined above and the vector between the origin \n\
00729 # of the frame defined above and the target location\n\
00730 float64 absolute_tolerance\n\
00731 \n\
00732 \n\
00733 ================================================================================\n\
00734 MSG: geometry_msgs/PointStamped\n\
00735 # This represents a Point with reference coordinate frame and timestamp\n\
00736 Header header\n\
00737 Point point\n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: motion_planning_msgs/OrderedCollisionOperations\n\
00741 # A set of collision operations that will be performed in the order they are specified\n\
00742 CollisionOperation[] collision_operations\n\
00743 ================================================================================\n\
00744 MSG: motion_planning_msgs/CollisionOperation\n\
00745 # A definition of a collision operation\n\
00746 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00747 # between the gripper and all objects in the collision space\n\
00748 \n\
00749 string object1\n\
00750 string object2\n\
00751 string COLLISION_SET_ALL=\"all\"\n\
00752 string COLLISION_SET_OBJECTS=\"objects\"\n\
00753 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00754 \n\
00755 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00756 float64 penetration_distance\n\
00757 \n\
00758 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00759 int32 operation\n\
00760 int32 DISABLE=0\n\
00761 int32 ENABLE=1\n\
00762 \n\
00763 ================================================================================\n\
00764 MSG: motion_planning_msgs/LinkPadding\n\
00765 #name for the link\n\
00766 string link_name\n\
00767 \n\
00768 # padding to apply to the link\n\
00769 float64 padding\n\
00770 \n\
00771 "; }
00772 public:
00773 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00774
00775 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00776
00777 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00778 {
00779 ros::serialization::OStream stream(write_ptr, 1000000000);
00780 ros::serialization::serialize(stream, header);
00781 ros::serialization::serialize(stream, goal_id);
00782 ros::serialization::serialize(stream, goal);
00783 return stream.getData();
00784 }
00785
00786 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00787 {
00788 ros::serialization::IStream stream(read_ptr, 1000000000);
00789 ros::serialization::deserialize(stream, header);
00790 ros::serialization::deserialize(stream, goal_id);
00791 ros::serialization::deserialize(stream, goal);
00792 return stream.getData();
00793 }
00794
00795 ROS_DEPRECATED virtual uint32_t serializationLength() const
00796 {
00797 uint32_t size = 0;
00798 size += ros::serialization::serializationLength(header);
00799 size += ros::serialization::serializationLength(goal_id);
00800 size += ros::serialization::serializationLength(goal);
00801 return size;
00802 }
00803
00804 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > Ptr;
00805 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> const> ConstPtr;
00806 };
00807 typedef ::object_manipulation_msgs::PickupActionGoal_<std::allocator<void> > PickupActionGoal;
00808
00809 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal> PickupActionGoalPtr;
00810 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal const> PickupActionGoalConstPtr;
00811
00812
00813 template<typename ContainerAllocator>
00814 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v)
00815 {
00816 ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, "", v);
00817 return s;}
00818
00819 }
00820
00821 namespace ros
00822 {
00823 namespace message_traits
00824 {
00825 template<class ContainerAllocator>
00826 struct MD5Sum< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00827 static const char* value()
00828 {
00829 return "f7abe358d29b89ddc12ef820f5a4cb67";
00830 }
00831
00832 static const char* value(const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); }
00833 static const uint64_t static_value1 = 0xf7abe358d29b89ddULL;
00834 static const uint64_t static_value2 = 0xc12ef820f5a4cb67ULL;
00835 };
00836
00837 template<class ContainerAllocator>
00838 struct DataType< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00839 static const char* value()
00840 {
00841 return "object_manipulation_msgs/PickupActionGoal";
00842 }
00843
00844 static const char* value(const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); }
00845 };
00846
00847 template<class ContainerAllocator>
00848 struct Definition< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00849 static const char* value()
00850 {
00851 return "Header header\n\
00852 actionlib_msgs/GoalID goal_id\n\
00853 PickupGoal goal\n\
00854 \n\
00855 ================================================================================\n\
00856 MSG: std_msgs/Header\n\
00857 # Standard metadata for higher-level stamped data types.\n\
00858 # This is generally used to communicate timestamped data \n\
00859 # in a particular coordinate frame.\n\
00860 # \n\
00861 # sequence ID: consecutively increasing ID \n\
00862 uint32 seq\n\
00863 #Two-integer timestamp that is expressed as:\n\
00864 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00865 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00866 # time-handling sugar is provided by the client library\n\
00867 time stamp\n\
00868 #Frame this data is associated with\n\
00869 # 0: no frame\n\
00870 # 1: global frame\n\
00871 string frame_id\n\
00872 \n\
00873 ================================================================================\n\
00874 MSG: actionlib_msgs/GoalID\n\
00875 # The stamp should store the time at which this goal was requested.\n\
00876 # It is used by an action server when it tries to preempt all\n\
00877 # goals that were requested before a certain time\n\
00878 time stamp\n\
00879 \n\
00880 # The id provides a way to associate feedback and\n\
00881 # result message with specific goal requests. The id\n\
00882 # specified must be unique.\n\
00883 string id\n\
00884 \n\
00885 \n\
00886 ================================================================================\n\
00887 MSG: object_manipulation_msgs/PickupGoal\n\
00888 # An action for picking up an object\n\
00889 \n\
00890 # which arm to be used for grasping\n\
00891 string arm_name\n\
00892 \n\
00893 # the object to be grasped\n\
00894 GraspableObject target\n\
00895 \n\
00896 # a list of grasps to be used\n\
00897 # if empty, the grasp executive will call one of its own planners\n\
00898 Grasp[] desired_grasps\n\
00899 \n\
00900 # how far the pre-grasp should ideally be away from the grasp\n\
00901 float32 desired_approach_distance\n\
00902 \n\
00903 # how much distance between pre-grasp and grasp must actually be feasible \n\
00904 # for the grasp not to be rejected\n\
00905 float32 min_approach_distance\n\
00906 \n\
00907 # how the object should be lifted after the grasp\n\
00908 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00909 # or the gripper_frame specified in your hand description file\n\
00910 GripperTranslation lift\n\
00911 \n\
00912 # the name that the target object has in the collision map\n\
00913 # can be left empty if no name is available\n\
00914 string collision_object_name\n\
00915 \n\
00916 # the name that the support surface (e.g. table) has in the collision map\n\
00917 # can be left empty if no name is available\n\
00918 string collision_support_surface_name\n\
00919 \n\
00920 # whether collisions between the gripper and the support surface should be acceptable\n\
00921 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00922 # pre-grasp location are still not allowed even if this is set to true.\n\
00923 bool allow_gripper_support_collision\n\
00924 \n\
00925 # whether reactive grasp execution using tactile sensors should be used\n\
00926 bool use_reactive_execution\n\
00927 \n\
00928 # whether reactive object lifting based on tactile sensors should be used\n\
00929 bool use_reactive_lift\n\
00930 \n\
00931 # OPTIONAL (These will not have to be filled out most of the time)\n\
00932 # constraints to be imposed on every point in the motion of the arm\n\
00933 motion_planning_msgs/Constraints path_constraints\n\
00934 \n\
00935 # OPTIONAL (These will not have to be filled out most of the time)\n\
00936 # additional collision operations to be used for every arm movement performed\n\
00937 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00938 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00939 # with care and only if special behaviors are desired\n\
00940 motion_planning_msgs/OrderedCollisionOperations additional_collision_operations\n\
00941 \n\
00942 # OPTIONAL (These will not have to be filled out most of the time)\n\
00943 # additional link paddings to be used for every arm movement performed\n\
00944 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00945 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00946 # with care and only if special behaviors are desired\n\
00947 motion_planning_msgs/LinkPadding[] additional_link_padding\n\
00948 ================================================================================\n\
00949 MSG: object_manipulation_msgs/GraspableObject\n\
00950 # an object that the object_manipulator can work on\n\
00951 \n\
00952 # a graspable object can be represented in multiple ways. This message\n\
00953 # can contain all of them. Which one is actually used is up to the receiver\n\
00954 # of this message. When adding new representations, one must be careful that\n\
00955 # they have reasonable lightweight defaults indicating that that particular\n\
00956 # representation is not available.\n\
00957 \n\
00958 # the tf frame to be used as a reference frame when combining information from\n\
00959 # the different representations below\n\
00960 string reference_frame_id\n\
00961 \n\
00962 # potential recognition results from a database of models\n\
00963 # all poses are relative to the object reference pose\n\
00964 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00965 \n\
00966 # the point cloud itself\n\
00967 sensor_msgs/PointCloud cluster\n\
00968 \n\
00969 # a region of a PointCloud2 of interest\n\
00970 object_manipulation_msgs/SceneRegion region\n\
00971 \n\
00972 \n\
00973 ================================================================================\n\
00974 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00975 # Informs that a specific model from the Model Database has been \n\
00976 # identified at a certain location\n\
00977 \n\
00978 # the database id of the model\n\
00979 int32 model_id\n\
00980 \n\
00981 # the pose that it can be found in\n\
00982 geometry_msgs/PoseStamped pose\n\
00983 \n\
00984 # a measure of the confidence level in this detection result\n\
00985 float32 confidence\n\
00986 ================================================================================\n\
00987 MSG: geometry_msgs/PoseStamped\n\
00988 # A Pose with reference coordinate frame and timestamp\n\
00989 Header header\n\
00990 Pose pose\n\
00991 \n\
00992 ================================================================================\n\
00993 MSG: geometry_msgs/Pose\n\
00994 # A representation of pose in free space, composed of postion and orientation. \n\
00995 Point position\n\
00996 Quaternion orientation\n\
00997 \n\
00998 ================================================================================\n\
00999 MSG: geometry_msgs/Point\n\
01000 # This contains the position of a point in free space\n\
01001 float64 x\n\
01002 float64 y\n\
01003 float64 z\n\
01004 \n\
01005 ================================================================================\n\
01006 MSG: geometry_msgs/Quaternion\n\
01007 # This represents an orientation in free space in quaternion form.\n\
01008 \n\
01009 float64 x\n\
01010 float64 y\n\
01011 float64 z\n\
01012 float64 w\n\
01013 \n\
01014 ================================================================================\n\
01015 MSG: sensor_msgs/PointCloud\n\
01016 # This message holds a collection of 3d points, plus optional additional\n\
01017 # information about each point.\n\
01018 \n\
01019 # Time of sensor data acquisition, coordinate frame ID.\n\
01020 Header header\n\
01021 \n\
01022 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01023 # in the frame given in the header.\n\
01024 geometry_msgs/Point32[] points\n\
01025 \n\
01026 # Each channel should have the same number of elements as points array,\n\
01027 # and the data in each channel should correspond 1:1 with each point.\n\
01028 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01029 ChannelFloat32[] channels\n\
01030 \n\
01031 ================================================================================\n\
01032 MSG: geometry_msgs/Point32\n\
01033 # This contains the position of a point in free space(with 32 bits of precision).\n\
01034 # It is recommeded to use Point wherever possible instead of Point32. \n\
01035 # \n\
01036 # This recommendation is to promote interoperability. \n\
01037 #\n\
01038 # This message is designed to take up less space when sending\n\
01039 # lots of points at once, as in the case of a PointCloud. \n\
01040 \n\
01041 float32 x\n\
01042 float32 y\n\
01043 float32 z\n\
01044 ================================================================================\n\
01045 MSG: sensor_msgs/ChannelFloat32\n\
01046 # This message is used by the PointCloud message to hold optional data\n\
01047 # associated with each point in the cloud. The length of the values\n\
01048 # array should be the same as the length of the points array in the\n\
01049 # PointCloud, and each value should be associated with the corresponding\n\
01050 # point.\n\
01051 \n\
01052 # Channel names in existing practice include:\n\
01053 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01054 # This is opposite to usual conventions but remains for\n\
01055 # historical reasons. The newer PointCloud2 message has no\n\
01056 # such problem.\n\
01057 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01058 # (R,G,B) values packed into the least significant 24 bits,\n\
01059 # in order.\n\
01060 # \"intensity\" - laser or pixel intensity.\n\
01061 # \"distance\"\n\
01062 \n\
01063 # The channel name should give semantics of the channel (e.g.\n\
01064 # \"intensity\" instead of \"value\").\n\
01065 string name\n\
01066 \n\
01067 # The values array should be 1-1 with the elements of the associated\n\
01068 # PointCloud.\n\
01069 float32[] values\n\
01070 \n\
01071 ================================================================================\n\
01072 MSG: object_manipulation_msgs/SceneRegion\n\
01073 # Point cloud\n\
01074 sensor_msgs/PointCloud2 cloud\n\
01075 \n\
01076 # Indices for the region of interest\n\
01077 int32[] mask\n\
01078 \n\
01079 # One of the corresponding 2D images, if applicable\n\
01080 sensor_msgs/Image image\n\
01081 \n\
01082 # The disparity image, if applicable\n\
01083 sensor_msgs/Image disparity_image\n\
01084 \n\
01085 # Camera info for the camera that took the image\n\
01086 sensor_msgs/CameraInfo cam_info\n\
01087 \n\
01088 ================================================================================\n\
01089 MSG: sensor_msgs/PointCloud2\n\
01090 # This message holds a collection of N-dimensional points, which may\n\
01091 # contain additional information such as normals, intensity, etc. The\n\
01092 # point data is stored as a binary blob, its layout described by the\n\
01093 # contents of the \"fields\" array.\n\
01094 \n\
01095 # The point cloud data may be organized 2d (image-like) or 1d\n\
01096 # (unordered). Point clouds organized as 2d images may be produced by\n\
01097 # camera depth sensors such as stereo or time-of-flight.\n\
01098 \n\
01099 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01100 # points).\n\
01101 Header header\n\
01102 \n\
01103 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01104 # 1 and width is the length of the point cloud.\n\
01105 uint32 height\n\
01106 uint32 width\n\
01107 \n\
01108 # Describes the channels and their layout in the binary data blob.\n\
01109 PointField[] fields\n\
01110 \n\
01111 bool is_bigendian # Is this data bigendian?\n\
01112 uint32 point_step # Length of a point in bytes\n\
01113 uint32 row_step # Length of a row in bytes\n\
01114 uint8[] data # Actual point data, size is (row_step*height)\n\
01115 \n\
01116 bool is_dense # True if there are no invalid points\n\
01117 \n\
01118 ================================================================================\n\
01119 MSG: sensor_msgs/PointField\n\
01120 # This message holds the description of one point entry in the\n\
01121 # PointCloud2 message format.\n\
01122 uint8 INT8 = 1\n\
01123 uint8 UINT8 = 2\n\
01124 uint8 INT16 = 3\n\
01125 uint8 UINT16 = 4\n\
01126 uint8 INT32 = 5\n\
01127 uint8 UINT32 = 6\n\
01128 uint8 FLOAT32 = 7\n\
01129 uint8 FLOAT64 = 8\n\
01130 \n\
01131 string name # Name of field\n\
01132 uint32 offset # Offset from start of point struct\n\
01133 uint8 datatype # Datatype enumeration, see above\n\
01134 uint32 count # How many elements in the field\n\
01135 \n\
01136 ================================================================================\n\
01137 MSG: sensor_msgs/Image\n\
01138 # This message contains an uncompressed image\n\
01139 # (0, 0) is at top-left corner of image\n\
01140 #\n\
01141 \n\
01142 Header header # Header timestamp should be acquisition time of image\n\
01143 # Header frame_id should be optical frame of camera\n\
01144 # origin of frame should be optical center of cameara\n\
01145 # +x should point to the right in the image\n\
01146 # +y should point down in the image\n\
01147 # +z should point into to plane of the image\n\
01148 # If the frame_id here and the frame_id of the CameraInfo\n\
01149 # message associated with the image conflict\n\
01150 # the behavior is undefined\n\
01151 \n\
01152 uint32 height # image height, that is, number of rows\n\
01153 uint32 width # image width, that is, number of columns\n\
01154 \n\
01155 # The legal values for encoding are in file src/image_encodings.cpp\n\
01156 # If you want to standardize a new string format, join\n\
01157 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01158 \n\
01159 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01160 # taken from the list of strings in src/image_encodings.cpp\n\
01161 \n\
01162 uint8 is_bigendian # is this data bigendian?\n\
01163 uint32 step # Full row length in bytes\n\
01164 uint8[] data # actual matrix data, size is (step * rows)\n\
01165 \n\
01166 ================================================================================\n\
01167 MSG: sensor_msgs/CameraInfo\n\
01168 # This message defines meta information for a camera. It should be in a\n\
01169 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01170 # image topics named:\n\
01171 #\n\
01172 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01173 # image - monochrome, distorted\n\
01174 # image_color - color, distorted\n\
01175 # image_rect - monochrome, rectified\n\
01176 # image_rect_color - color, rectified\n\
01177 #\n\
01178 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01179 # for producing the four processed image topics from image_raw and\n\
01180 # camera_info. The meaning of the camera parameters are described in\n\
01181 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01182 #\n\
01183 # The image_geometry package provides a user-friendly interface to\n\
01184 # common operations using this meta information. If you want to, e.g.,\n\
01185 # project a 3d point into image coordinates, we strongly recommend\n\
01186 # using image_geometry.\n\
01187 #\n\
01188 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01189 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01190 # indicates an uncalibrated camera.\n\
01191 \n\
01192 #######################################################################\n\
01193 # Image acquisition info #\n\
01194 #######################################################################\n\
01195 \n\
01196 # Time of image acquisition, camera coordinate frame ID\n\
01197 Header header # Header timestamp should be acquisition time of image\n\
01198 # Header frame_id should be optical frame of camera\n\
01199 # origin of frame should be optical center of camera\n\
01200 # +x should point to the right in the image\n\
01201 # +y should point down in the image\n\
01202 # +z should point into the plane of the image\n\
01203 \n\
01204 \n\
01205 #######################################################################\n\
01206 # Calibration Parameters #\n\
01207 #######################################################################\n\
01208 # These are fixed during camera calibration. Their values will be the #\n\
01209 # same in all messages until the camera is recalibrated. Note that #\n\
01210 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01211 # #\n\
01212 # The internal parameters can be used to warp a raw (distorted) image #\n\
01213 # to: #\n\
01214 # 1. An undistorted image (requires D and K) #\n\
01215 # 2. A rectified image (requires D, K, R) #\n\
01216 # The projection matrix P projects 3D points into the rectified image.#\n\
01217 #######################################################################\n\
01218 \n\
01219 # The image dimensions with which the camera was calibrated. Normally\n\
01220 # this will be the full camera resolution in pixels.\n\
01221 uint32 height\n\
01222 uint32 width\n\
01223 \n\
01224 # The distortion model used. Supported models are listed in\n\
01225 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01226 # simple model of radial and tangential distortion - is sufficent.\n\
01227 string distortion_model\n\
01228 \n\
01229 # The distortion parameters, size depending on the distortion model.\n\
01230 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01231 float64[] D\n\
01232 \n\
01233 # Intrinsic camera matrix for the raw (distorted) images.\n\
01234 # [fx 0 cx]\n\
01235 # K = [ 0 fy cy]\n\
01236 # [ 0 0 1]\n\
01237 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01238 # coordinates using the focal lengths (fx, fy) and principal point\n\
01239 # (cx, cy).\n\
01240 float64[9] K # 3x3 row-major matrix\n\
01241 \n\
01242 # Rectification matrix (stereo cameras only)\n\
01243 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01244 # stereo image plane so that epipolar lines in both stereo images are\n\
01245 # parallel.\n\
01246 float64[9] R # 3x3 row-major matrix\n\
01247 \n\
01248 # Projection/camera matrix\n\
01249 # [fx' 0 cx' Tx]\n\
01250 # P = [ 0 fy' cy' Ty]\n\
01251 # [ 0 0 1 0]\n\
01252 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01253 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01254 # is the normal camera intrinsic matrix for the rectified image.\n\
01255 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01256 # coordinates using the focal lengths (fx', fy') and principal point\n\
01257 # (cx', cy') - these may differ from the values in K.\n\
01258 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01259 # also have R = the identity and P[1:3,1:3] = K.\n\
01260 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01261 # position of the optical center of the second camera in the first\n\
01262 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01263 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01264 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01265 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01266 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01267 # the rectified image is given by:\n\
01268 # [u v w]' = P * [X Y Z 1]'\n\
01269 # x = u / w\n\
01270 # y = v / w\n\
01271 # This holds for both images of a stereo pair.\n\
01272 float64[12] P # 3x4 row-major matrix\n\
01273 \n\
01274 \n\
01275 #######################################################################\n\
01276 # Operational Parameters #\n\
01277 #######################################################################\n\
01278 # These define the image region actually captured by the camera #\n\
01279 # driver. Although they affect the geometry of the output image, they #\n\
01280 # may be changed freely without recalibrating the camera. #\n\
01281 #######################################################################\n\
01282 \n\
01283 # Binning refers here to any camera setting which combines rectangular\n\
01284 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01285 # resolution of the output image to\n\
01286 # (width / binning_x) x (height / binning_y).\n\
01287 # The default values binning_x = binning_y = 0 is considered the same\n\
01288 # as binning_x = binning_y = 1 (no subsampling).\n\
01289 uint32 binning_x\n\
01290 uint32 binning_y\n\
01291 \n\
01292 # Region of interest (subwindow of full camera resolution), given in\n\
01293 # full resolution (unbinned) image coordinates. A particular ROI\n\
01294 # always denotes the same window of pixels on the camera sensor,\n\
01295 # regardless of binning settings.\n\
01296 # The default setting of roi (all values 0) is considered the same as\n\
01297 # full resolution (roi.width = width, roi.height = height).\n\
01298 RegionOfInterest roi\n\
01299 \n\
01300 ================================================================================\n\
01301 MSG: sensor_msgs/RegionOfInterest\n\
01302 # This message is used to specify a region of interest within an image.\n\
01303 #\n\
01304 # When used to specify the ROI setting of the camera when the image was\n\
01305 # taken, the height and width fields should either match the height and\n\
01306 # width fields for the associated image; or height = width = 0\n\
01307 # indicates that the full resolution image was captured.\n\
01308 \n\
01309 uint32 x_offset # Leftmost pixel of the ROI\n\
01310 # (0 if the ROI includes the left edge of the image)\n\
01311 uint32 y_offset # Topmost pixel of the ROI\n\
01312 # (0 if the ROI includes the top edge of the image)\n\
01313 uint32 height # Height of ROI\n\
01314 uint32 width # Width of ROI\n\
01315 \n\
01316 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01317 # ROI in this message. Typically this should be False if the full image\n\
01318 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01319 # used).\n\
01320 bool do_rectify\n\
01321 \n\
01322 ================================================================================\n\
01323 MSG: object_manipulation_msgs/Grasp\n\
01324 \n\
01325 # The internal posture of the hand for the pre-grasp\n\
01326 # only positions are used\n\
01327 sensor_msgs/JointState pre_grasp_posture\n\
01328 \n\
01329 # The internal posture of the hand for the grasp\n\
01330 # positions and efforts are used\n\
01331 sensor_msgs/JointState grasp_posture\n\
01332 \n\
01333 # The position of the end-effector for the grasp relative to the object\n\
01334 geometry_msgs/Pose grasp_pose\n\
01335 \n\
01336 # The estimated probability of success for this grasp\n\
01337 float64 success_probability\n\
01338 \n\
01339 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01340 bool cluster_rep\n\
01341 ================================================================================\n\
01342 MSG: sensor_msgs/JointState\n\
01343 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01344 #\n\
01345 # The state of each joint (revolute or prismatic) is defined by:\n\
01346 # * the position of the joint (rad or m),\n\
01347 # * the velocity of the joint (rad/s or m/s) and \n\
01348 # * the effort that is applied in the joint (Nm or N).\n\
01349 #\n\
01350 # Each joint is uniquely identified by its name\n\
01351 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01352 # in one message have to be recorded at the same time.\n\
01353 #\n\
01354 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01355 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01356 # effort associated with them, you can leave the effort array empty. \n\
01357 #\n\
01358 # All arrays in this message should have the same size, or be empty.\n\
01359 # This is the only way to uniquely associate the joint name with the correct\n\
01360 # states.\n\
01361 \n\
01362 \n\
01363 Header header\n\
01364 \n\
01365 string[] name\n\
01366 float64[] position\n\
01367 float64[] velocity\n\
01368 float64[] effort\n\
01369 \n\
01370 ================================================================================\n\
01371 MSG: object_manipulation_msgs/GripperTranslation\n\
01372 # defines a translation for the gripper, used in pickup or place tasks\n\
01373 # for example for lifting an object off a table or approaching the table for placing\n\
01374 \n\
01375 # the direction of the translation\n\
01376 geometry_msgs/Vector3Stamped direction\n\
01377 \n\
01378 # the desired translation distance\n\
01379 float32 desired_distance\n\
01380 \n\
01381 # the min distance that must be considered feasible before the\n\
01382 # grasp is even attempted\n\
01383 float32 min_distance\n\
01384 ================================================================================\n\
01385 MSG: geometry_msgs/Vector3Stamped\n\
01386 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01387 Header header\n\
01388 Vector3 vector\n\
01389 \n\
01390 ================================================================================\n\
01391 MSG: geometry_msgs/Vector3\n\
01392 # This represents a vector in free space. \n\
01393 \n\
01394 float64 x\n\
01395 float64 y\n\
01396 float64 z\n\
01397 ================================================================================\n\
01398 MSG: motion_planning_msgs/Constraints\n\
01399 # This message contains a list of motion planning constraints.\n\
01400 \n\
01401 motion_planning_msgs/JointConstraint[] joint_constraints\n\
01402 motion_planning_msgs/PositionConstraint[] position_constraints\n\
01403 motion_planning_msgs/OrientationConstraint[] orientation_constraints\n\
01404 motion_planning_msgs/VisibilityConstraint[] visibility_constraints\n\
01405 \n\
01406 ================================================================================\n\
01407 MSG: motion_planning_msgs/JointConstraint\n\
01408 # Constrain the position of a joint to be within a certain bound\n\
01409 string joint_name\n\
01410 \n\
01411 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01412 float64 position\n\
01413 float64 tolerance_above\n\
01414 float64 tolerance_below\n\
01415 \n\
01416 # A weighting factor for this constraint\n\
01417 float64 weight\n\
01418 ================================================================================\n\
01419 MSG: motion_planning_msgs/PositionConstraint\n\
01420 # This message contains the definition of a position constraint.\n\
01421 Header header\n\
01422 \n\
01423 # The robot link this constraint refers to\n\
01424 string link_name\n\
01425 \n\
01426 # The offset (in the link frame) for the target point on the link we are planning for\n\
01427 geometry_msgs/Point target_point_offset\n\
01428 \n\
01429 # The nominal/target position for the point we are planning for\n\
01430 geometry_msgs/Point position\n\
01431 \n\
01432 # The shape of the bounded region that constrains the position of the end-effector\n\
01433 # This region is always centered at the position defined above\n\
01434 geometric_shapes_msgs/Shape constraint_region_shape\n\
01435 \n\
01436 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01437 # This allows the specification of non-axis aligned constraints\n\
01438 geometry_msgs/Quaternion constraint_region_orientation\n\
01439 \n\
01440 # Constraint weighting factor - a weight for this constraint\n\
01441 float64 weight\n\
01442 ================================================================================\n\
01443 MSG: geometric_shapes_msgs/Shape\n\
01444 byte SPHERE=0\n\
01445 byte BOX=1\n\
01446 byte CYLINDER=2\n\
01447 byte MESH=3\n\
01448 \n\
01449 byte type\n\
01450 \n\
01451 \n\
01452 #### define sphere, box, cylinder ####\n\
01453 # the origin of each shape is considered at the shape's center\n\
01454 \n\
01455 # for sphere\n\
01456 # radius := dimensions[0]\n\
01457 \n\
01458 # for cylinder\n\
01459 # radius := dimensions[0]\n\
01460 # length := dimensions[1]\n\
01461 # the length is along the Z axis\n\
01462 \n\
01463 # for box\n\
01464 # size_x := dimensions[0]\n\
01465 # size_y := dimensions[1]\n\
01466 # size_z := dimensions[2]\n\
01467 float64[] dimensions\n\
01468 \n\
01469 \n\
01470 #### define mesh ####\n\
01471 \n\
01472 # list of triangles; triangle k is defined by tre vertices located\n\
01473 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01474 int32[] triangles\n\
01475 geometry_msgs/Point[] vertices\n\
01476 \n\
01477 ================================================================================\n\
01478 MSG: motion_planning_msgs/OrientationConstraint\n\
01479 # This message contains the definition of an orientation constraint.\n\
01480 Header header\n\
01481 \n\
01482 # The robot link this constraint refers to\n\
01483 string link_name\n\
01484 \n\
01485 # The type of the constraint\n\
01486 int32 type\n\
01487 int32 LINK_FRAME=0\n\
01488 int32 HEADER_FRAME=1\n\
01489 \n\
01490 # The desired orientation of the robot link specified as a quaternion\n\
01491 geometry_msgs/Quaternion orientation\n\
01492 \n\
01493 # optional RPY error tolerances specified if \n\
01494 float64 absolute_roll_tolerance\n\
01495 float64 absolute_pitch_tolerance\n\
01496 float64 absolute_yaw_tolerance\n\
01497 \n\
01498 # Constraint weighting factor - a weight for this constraint\n\
01499 float64 weight\n\
01500 \n\
01501 ================================================================================\n\
01502 MSG: motion_planning_msgs/VisibilityConstraint\n\
01503 # This message contains the definition of a visibility constraint.\n\
01504 Header header\n\
01505 \n\
01506 # The point stamped target that needs to be kept within view of the sensor\n\
01507 geometry_msgs/PointStamped target\n\
01508 \n\
01509 # The local pose of the frame in which visibility is to be maintained\n\
01510 # The frame id should represent the robot link to which the sensor is attached\n\
01511 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01512 geometry_msgs/PoseStamped sensor_pose\n\
01513 \n\
01514 # The deviation (in radians) that will be tolerated\n\
01515 # Constraint error will be measured as the solid angle between the \n\
01516 # X axis of the frame defined above and the vector between the origin \n\
01517 # of the frame defined above and the target location\n\
01518 float64 absolute_tolerance\n\
01519 \n\
01520 \n\
01521 ================================================================================\n\
01522 MSG: geometry_msgs/PointStamped\n\
01523 # This represents a Point with reference coordinate frame and timestamp\n\
01524 Header header\n\
01525 Point point\n\
01526 \n\
01527 ================================================================================\n\
01528 MSG: motion_planning_msgs/OrderedCollisionOperations\n\
01529 # A set of collision operations that will be performed in the order they are specified\n\
01530 CollisionOperation[] collision_operations\n\
01531 ================================================================================\n\
01532 MSG: motion_planning_msgs/CollisionOperation\n\
01533 # A definition of a collision operation\n\
01534 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01535 # between the gripper and all objects in the collision space\n\
01536 \n\
01537 string object1\n\
01538 string object2\n\
01539 string COLLISION_SET_ALL=\"all\"\n\
01540 string COLLISION_SET_OBJECTS=\"objects\"\n\
01541 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01542 \n\
01543 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01544 float64 penetration_distance\n\
01545 \n\
01546 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01547 int32 operation\n\
01548 int32 DISABLE=0\n\
01549 int32 ENABLE=1\n\
01550 \n\
01551 ================================================================================\n\
01552 MSG: motion_planning_msgs/LinkPadding\n\
01553 #name for the link\n\
01554 string link_name\n\
01555 \n\
01556 # padding to apply to the link\n\
01557 float64 padding\n\
01558 \n\
01559 ";
01560 }
01561
01562 static const char* value(const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); }
01563 };
01564
01565 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
01566 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
01567 }
01568 }
01569
01570 namespace ros
01571 {
01572 namespace serialization
01573 {
01574
01575 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
01576 {
01577 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01578 {
01579 stream.next(m.header);
01580 stream.next(m.goal_id);
01581 stream.next(m.goal);
01582 }
01583
01584 ROS_DECLARE_ALLINONE_SERIALIZER;
01585 };
01586 }
01587 }
01588
01589 namespace ros
01590 {
01591 namespace message_operations
01592 {
01593
01594 template<class ContainerAllocator>
01595 struct Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
01596 {
01597 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v)
01598 {
01599 s << indent << "header: ";
01600 s << std::endl;
01601 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01602 s << indent << "goal_id: ";
01603 s << std::endl;
01604 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01605 s << indent << "goal: ";
01606 s << std::endl;
01607 Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01608 }
01609 };
01610
01611
01612 }
01613 }
01614
01615 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
01616