TooN::SVD< Rows, Cols, Precision > Class Template Reference
[Matrix decompositions]

#include <SVD.h>

List of all members.

Public Member Functions

template<int Size, typename P2 , typename B2 >
Vector< Cols, typename
Internal::MultiplyType
< Precision, P2 >::type > 
backsub (const Vector< Size, P2, B2 > &rhs, const Precision condition=condition_no)
template<int Rows2, int Cols2, typename P2 , typename B2 >
Matrix< Cols, Cols2, typename
Internal::MultiplyType
< Precision, P2 >::type > 
backsub (const Matrix< Rows2, Cols2, P2, B2 > &rhs, const Precision condition=condition_no)
template<int R2, int C2, typename P2 , typename B2 >
void compute (const Matrix< R2, C2, P2, B2 > &m)
 Compute the SVD decomposition of M, typically used after the default constructor.
Precision determinant ()
Vector< Min_Dim, Precision > & get_diagonal ()
 Return the singular values as a vector.
void get_inv_diag (Vector< Min_Dim > &inv_diag, const Precision condition)
Matrix< Cols, Rows > get_pinv (const Precision condition=condition_no)
Matrix< Rows, Min_Dim,
Precision, Reference::RowMajor
get_U ()
Matrix< Min_Dim, Cols,
Precision, Reference::RowMajor
get_VT ()
int rank (const Precision condition=condition_no)
template<int R2, int C2, typename P2 , typename B2 >
 SVD (const Matrix< R2, C2, P2, B2 > &m)
 SVD (int rows, int cols)
 constructor for Rows=-1 or Cols=-1 (or both)
 SVD ()
 default constructor for Rows>0 and Cols>0

Private Member Functions

void do_compute ()
bool is_vertical ()
int min_dim ()

Private Attributes

Matrix< Rows, Cols, Precision,
RowMajor
my_copy
Vector< Min_Dim, Precision > my_diagonal
Matrix< Min_Dim, Min_Dim,
Precision, RowMajor
my_square

Static Private Attributes

static const int Min_Dim = Rows<Cols?Rows:Cols

Detailed Description

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
class TooN::SVD< Rows, Cols, Precision >

Performs SVD and back substitute to solve equations. Singular value decompositions are more robust than LU decompositions in the face of singular or nearly singular matrices. They decompose a matrix (of any shape) $M$ into:

\[M = U \times D \times V^T\]

where $D$ is a diagonal matrix of positive numbers whose dimension is the minimum of the dimensions of $M$. If $M$ is tall and thin (more rows than columns) then $U$ has the same shape as $M$ and $V$ is square (vice-versa if $M$ is short and fat). The columns of $U$ and the rows of $V$ are orthogonal and of unit norm (so one of them lies in SO(N)). The inverse of $M$ (or pseudo-inverse if $M$ is not square) is then given by

\[M^{\dagger} = V \times D^{-1} \times U^T\]

If $M$ is nearly singular then the diagonal matrix $D$ has some small values (relative to its largest value) and these terms dominate $D^{-1}$. To deal with this problem, the inverse is conditioned by setting a maximum ratio between the largest and smallest values in $D$ (passed as the condition parameter to the various functions). Any values which are too small are set to zero in the inverse (rather than a large number)

It can be used as follows to solve the $M\underline{x} = \underline{c}$ problem as follows:

// construct M
Matrix<3> M;
M[0] = makeVector(1,2,3);
M[1] = makeVector(4,5,6);
M[2] = makeVector(7,8.10);
// construct c
 Vector<3> c;
c = 2,3,4;
// create the SVD decomposition of M
SVD<3> svdM(M);
// compute x = M^-1 * c
Vector<3> x = svdM.backsub(c);

SVD<> (= SVD<-1>) can be used to create an SVD whose size is determined at run-time.

Definition at line 88 of file SVD.h.


Constructor & Destructor Documentation

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
TooN::SVD< Rows, Cols, Precision >::SVD (  )  [inline]

default constructor for Rows>0 and Cols>0

Definition at line 96 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
TooN::SVD< Rows, Cols, Precision >::SVD ( int  rows,
int  cols 
) [inline]

constructor for Rows=-1 or Cols=-1 (or both)

Definition at line 99 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
template<int R2, int C2, typename P2 , typename B2 >
TooN::SVD< Rows, Cols, Precision >::SVD ( const Matrix< R2, C2, P2, B2 > &  m  )  [inline]

Construct the SVD decomposition of a matrix. This initialises the class, and performs the decomposition immediately.

Definition at line 108 of file SVD.h.


Member Function Documentation

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
template<int Size, typename P2 , typename B2 >
Vector<Cols, typename Internal::MultiplyType<Precision,P2>::type > TooN::SVD< Rows, Cols, Precision >::backsub ( const Vector< Size, P2, B2 > &  rhs,
const Precision  condition = condition_no 
) [inline]

Calculate result of multiplying the (pseudo-)inverse of M by a vector. For a vector $b$, this calculates $M^{\dagger}b$ by back substitution (i.e. without explictly calculating the (pseudo-)inverse). See the detailed description for a description of condition variables.

Definition at line 194 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
template<int Rows2, int Cols2, typename P2 , typename B2 >
Matrix<Cols,Cols2, typename Internal::MultiplyType<Precision,P2>::type > TooN::SVD< Rows, Cols, Precision >::backsub ( const Matrix< Rows2, Cols2, P2, B2 > &  rhs,
const Precision  condition = condition_no 
) [inline]

Calculate result of multiplying the (pseudo-)inverse of M by another matrix. For a matrix $A$, this calculates $M^{\dagger}A$ by back substitution (i.e. without explictly calculating the (pseudo-)inverse). See the detailed description for a description of condition variables.

Definition at line 181 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
template<int R2, int C2, typename P2 , typename B2 >
void TooN::SVD< Rows, Cols, Precision >::compute ( const Matrix< R2, C2, P2, B2 > &  m  )  [inline]

Compute the SVD decomposition of M, typically used after the default constructor.

Definition at line 118 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Precision TooN::SVD< Rows, Cols, Precision >::determinant (  )  [inline]

Calculate the product of the singular values for square matrices this is the determinant

Definition at line 213 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
void TooN::SVD< Rows, Cols, Precision >::do_compute (  )  [inline, private]

Definition at line 124 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Vector<Min_Dim,Precision>& TooN::SVD< Rows, Cols, Precision >::get_diagonal (  )  [inline]

Return the singular values as a vector.

Definition at line 248 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
void TooN::SVD< Rows, Cols, Precision >::get_inv_diag ( Vector< Min_Dim > &  inv_diag,
const Precision  condition 
) [inline]

Return the pesudo-inverse diagonal. The reciprocal of the diagonal elements is returned if the elements are well scaled with respect to the largest element, otherwise 0 is returned.

Parameters:
inv_diag Vector in which to return the inverse diagonal.
condition Elements must be larger than this factor times the largest diagonal element to be considered well scaled.

Definition at line 268 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Matrix<Cols,Rows> TooN::SVD< Rows, Cols, Precision >::get_pinv ( const Precision  condition = condition_no  )  [inline]

Calculate (pseudo-)inverse of the matrix. This is not usually needed: if you need the inverse just to multiply it by a matrix or a vector, use one of the backsub() functions, which will be faster. See the detailed description of the pseudo-inverse and condition variables.

Definition at line 205 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Matrix<Rows,Min_Dim,Precision,Reference::RowMajor> TooN::SVD< Rows, Cols, Precision >::get_U (  )  [inline]

Return the U matrix from the decomposition The size of this depends on the shape of the original matrix it is square if the original matrix is wide or tall if the original matrix is tall

Definition at line 237 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Matrix<Min_Dim,Cols,Precision,Reference::RowMajor> TooN::SVD< Rows, Cols, Precision >::get_VT (  )  [inline]

Return the VT matrix from the decomposition The size of this depends on the shape of the original matrix it is square if the original matrix is tall or wide if the original matrix is wide

Definition at line 253 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
bool TooN::SVD< Rows, Cols, Precision >::is_vertical (  )  [inline, private]

Definition at line 167 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
int TooN::SVD< Rows, Cols, Precision >::min_dim (  )  [inline, private]

Definition at line 171 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
int TooN::SVD< Rows, Cols, Precision >::rank ( const Precision  condition = condition_no  )  [inline]

Calculate the rank of the matrix. See the detailed description of the pseudo-inverse and condition variables.

Definition at line 223 of file SVD.h.


Member Data Documentation

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
const int TooN::SVD< Rows, Cols, Precision >::Min_Dim = Rows<Cols?Rows:Cols [static, private]

Definition at line 91 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Matrix<Rows,Cols,Precision,RowMajor> TooN::SVD< Rows, Cols, Precision >::my_copy [private]

Definition at line 279 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Vector<Min_Dim,Precision> TooN::SVD< Rows, Cols, Precision >::my_diagonal [private]

Definition at line 280 of file SVD.h.

template<int Rows = Dynamic, int Cols = Rows, typename Precision = DefaultPrecision>
Matrix<Min_Dim,Min_Dim,Precision,RowMajor> TooN::SVD< Rows, Cols, Precision >::my_square [private]

Definition at line 281 of file SVD.h.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Friends Defines


libtoon
Author(s): Florian Weisshardt
autogenerated on Fri Jan 11 10:09:50 2013