00001
00002 #ifndef CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00003 #define CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "calibration_msgs/CameraMeasurement.h"
00014 #include "calibration_msgs/LaserMeasurement.h"
00015 #include "calibration_msgs/ChainMeasurement.h"
00016
00017 namespace calibration_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct RobotMeasurement_ : public ros::Message
00021 {
00022 typedef RobotMeasurement_<ContainerAllocator> Type;
00023
00024 RobotMeasurement_()
00025 : sample_id()
00026 , target_id()
00027 , chain_id()
00028 , M_cam()
00029 , M_laser()
00030 , M_chain()
00031 {
00032 }
00033
00034 RobotMeasurement_(const ContainerAllocator& _alloc)
00035 : sample_id(_alloc)
00036 , target_id(_alloc)
00037 , chain_id(_alloc)
00038 , M_cam(_alloc)
00039 , M_laser(_alloc)
00040 , M_chain(_alloc)
00041 {
00042 }
00043
00044 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _sample_id_type;
00045 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > sample_id;
00046
00047 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _target_id_type;
00048 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > target_id;
00049
00050 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _chain_id_type;
00051 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > chain_id;
00052
00053 typedef std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > _M_cam_type;
00054 std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > M_cam;
00055
00056 typedef std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > _M_laser_type;
00057 std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > M_laser;
00058
00059 typedef std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > _M_chain_type;
00060 std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > M_chain;
00061
00062
00063 ROS_DEPRECATED uint32_t get_M_cam_size() const { return (uint32_t)M_cam.size(); }
00064 ROS_DEPRECATED void set_M_cam_size(uint32_t size) { M_cam.resize((size_t)size); }
00065 ROS_DEPRECATED void get_M_cam_vec(std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_cam; }
00066 ROS_DEPRECATED void set_M_cam_vec(const std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > & vec) { this->M_cam = vec; }
00067 ROS_DEPRECATED uint32_t get_M_laser_size() const { return (uint32_t)M_laser.size(); }
00068 ROS_DEPRECATED void set_M_laser_size(uint32_t size) { M_laser.resize((size_t)size); }
00069 ROS_DEPRECATED void get_M_laser_vec(std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_laser; }
00070 ROS_DEPRECATED void set_M_laser_vec(const std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > & vec) { this->M_laser = vec; }
00071 ROS_DEPRECATED uint32_t get_M_chain_size() const { return (uint32_t)M_chain.size(); }
00072 ROS_DEPRECATED void set_M_chain_size(uint32_t size) { M_chain.resize((size_t)size); }
00073 ROS_DEPRECATED void get_M_chain_vec(std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_chain; }
00074 ROS_DEPRECATED void set_M_chain_vec(const std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > & vec) { this->M_chain = vec; }
00075 private:
00076 static const char* __s_getDataType_() { return "calibration_msgs/RobotMeasurement"; }
00077 public:
00078 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00079
00080 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00081
00082 private:
00083 static const char* __s_getMD5Sum_() { return "5faeacd55902385628948423d864d702"; }
00084 public:
00085 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00086
00087 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00088
00089 private:
00090 static const char* __s_getMessageDefinition_() { return "string sample_id # Tag to figure out which yaml file this was generated from\n\
00091 \n\
00092 string target_id # Defines the target that we were sensing.\n\
00093 string chain_id # Defines where this target was attached\n\
00094 \n\
00095 CameraMeasurement[] M_cam\n\
00096 LaserMeasurement[] M_laser\n\
00097 ChainMeasurement[] M_chain\n\
00098 \n\
00099 ================================================================================\n\
00100 MSG: calibration_msgs/CameraMeasurement\n\
00101 Header header\n\
00102 string camera_id\n\
00103 ImagePoint[] image_points\n\
00104 sensor_msgs/CameraInfo cam_info\n\
00105 \n\
00106 # True -> The extra debugging fields are populated\n\
00107 bool verbose\n\
00108 \n\
00109 # Extra, partially processed data. Only needed for debugging\n\
00110 sensor_msgs/Image image\n\
00111 sensor_msgs/Image image_rect\n\
00112 calibration_msgs/CalibrationPattern features\n\
00113 \n\
00114 ================================================================================\n\
00115 MSG: std_msgs/Header\n\
00116 # Standard metadata for higher-level stamped data types.\n\
00117 # This is generally used to communicate timestamped data \n\
00118 # in a particular coordinate frame.\n\
00119 # \n\
00120 # sequence ID: consecutively increasing ID \n\
00121 uint32 seq\n\
00122 #Two-integer timestamp that is expressed as:\n\
00123 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00124 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00125 # time-handling sugar is provided by the client library\n\
00126 time stamp\n\
00127 #Frame this data is associated with\n\
00128 # 0: no frame\n\
00129 # 1: global frame\n\
00130 string frame_id\n\
00131 \n\
00132 ================================================================================\n\
00133 MSG: calibration_msgs/ImagePoint\n\
00134 float32 x\n\
00135 float32 y\n\
00136 \n\
00137 ================================================================================\n\
00138 MSG: sensor_msgs/CameraInfo\n\
00139 # This message defines meta information for a camera. It should be in a\n\
00140 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00141 # image topics named:\n\
00142 #\n\
00143 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00144 # image - monochrome, distorted\n\
00145 # image_color - color, distorted\n\
00146 # image_rect - monochrome, rectified\n\
00147 # image_rect_color - color, rectified\n\
00148 #\n\
00149 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00150 # for producing the four processed image topics from image_raw and\n\
00151 # camera_info. The meaning of the camera parameters are described in\n\
00152 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00153 #\n\
00154 # The image_geometry package provides a user-friendly interface to\n\
00155 # common operations using this meta information. If you want to, e.g.,\n\
00156 # project a 3d point into image coordinates, we strongly recommend\n\
00157 # using image_geometry.\n\
00158 #\n\
00159 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00160 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00161 # indicates an uncalibrated camera.\n\
00162 \n\
00163 #######################################################################\n\
00164 # Image acquisition info #\n\
00165 #######################################################################\n\
00166 \n\
00167 # Time of image acquisition, camera coordinate frame ID\n\
00168 Header header # Header timestamp should be acquisition time of image\n\
00169 # Header frame_id should be optical frame of camera\n\
00170 # origin of frame should be optical center of camera\n\
00171 # +x should point to the right in the image\n\
00172 # +y should point down in the image\n\
00173 # +z should point into the plane of the image\n\
00174 \n\
00175 \n\
00176 #######################################################################\n\
00177 # Calibration Parameters #\n\
00178 #######################################################################\n\
00179 # These are fixed during camera calibration. Their values will be the #\n\
00180 # same in all messages until the camera is recalibrated. Note that #\n\
00181 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00182 # #\n\
00183 # The internal parameters can be used to warp a raw (distorted) image #\n\
00184 # to: #\n\
00185 # 1. An undistorted image (requires D and K) #\n\
00186 # 2. A rectified image (requires D, K, R) #\n\
00187 # The projection matrix P projects 3D points into the rectified image.#\n\
00188 #######################################################################\n\
00189 \n\
00190 # The image dimensions with which the camera was calibrated. Normally\n\
00191 # this will be the full camera resolution in pixels.\n\
00192 uint32 height\n\
00193 uint32 width\n\
00194 \n\
00195 # The distortion model used. Supported models are listed in\n\
00196 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00197 # simple model of radial and tangential distortion - is sufficent.\n\
00198 string distortion_model\n\
00199 \n\
00200 # The distortion parameters, size depending on the distortion model.\n\
00201 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00202 float64[] D\n\
00203 \n\
00204 # Intrinsic camera matrix for the raw (distorted) images.\n\
00205 # [fx 0 cx]\n\
00206 # K = [ 0 fy cy]\n\
00207 # [ 0 0 1]\n\
00208 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00209 # coordinates using the focal lengths (fx, fy) and principal point\n\
00210 # (cx, cy).\n\
00211 float64[9] K # 3x3 row-major matrix\n\
00212 \n\
00213 # Rectification matrix (stereo cameras only)\n\
00214 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00215 # stereo image plane so that epipolar lines in both stereo images are\n\
00216 # parallel.\n\
00217 float64[9] R # 3x3 row-major matrix\n\
00218 \n\
00219 # Projection/camera matrix\n\
00220 # [fx' 0 cx' Tx]\n\
00221 # P = [ 0 fy' cy' Ty]\n\
00222 # [ 0 0 1 0]\n\
00223 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00224 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00225 # is the normal camera intrinsic matrix for the rectified image.\n\
00226 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00227 # coordinates using the focal lengths (fx', fy') and principal point\n\
00228 # (cx', cy') - these may differ from the values in K.\n\
00229 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00230 # also have R = the identity and P[1:3,1:3] = K.\n\
00231 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00232 # position of the optical center of the second camera in the first\n\
00233 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00234 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00235 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00236 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00237 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00238 # the rectified image is given by:\n\
00239 # [u v w]' = P * [X Y Z 1]'\n\
00240 # x = u / w\n\
00241 # y = v / w\n\
00242 # This holds for both images of a stereo pair.\n\
00243 float64[12] P # 3x4 row-major matrix\n\
00244 \n\
00245 \n\
00246 #######################################################################\n\
00247 # Operational Parameters #\n\
00248 #######################################################################\n\
00249 # These define the image region actually captured by the camera #\n\
00250 # driver. Although they affect the geometry of the output image, they #\n\
00251 # may be changed freely without recalibrating the camera. #\n\
00252 #######################################################################\n\
00253 \n\
00254 # Binning refers here to any camera setting which combines rectangular\n\
00255 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00256 # resolution of the output image to\n\
00257 # (width / binning_x) x (height / binning_y).\n\
00258 # The default values binning_x = binning_y = 0 is considered the same\n\
00259 # as binning_x = binning_y = 1 (no subsampling).\n\
00260 uint32 binning_x\n\
00261 uint32 binning_y\n\
00262 \n\
00263 # Region of interest (subwindow of full camera resolution), given in\n\
00264 # full resolution (unbinned) image coordinates. A particular ROI\n\
00265 # always denotes the same window of pixels on the camera sensor,\n\
00266 # regardless of binning settings.\n\
00267 # The default setting of roi (all values 0) is considered the same as\n\
00268 # full resolution (roi.width = width, roi.height = height).\n\
00269 RegionOfInterest roi\n\
00270 \n\
00271 ================================================================================\n\
00272 MSG: sensor_msgs/RegionOfInterest\n\
00273 # This message is used to specify a region of interest within an image.\n\
00274 #\n\
00275 # When used to specify the ROI setting of the camera when the image was\n\
00276 # taken, the height and width fields should either match the height and\n\
00277 # width fields for the associated image; or height = width = 0\n\
00278 # indicates that the full resolution image was captured.\n\
00279 \n\
00280 uint32 x_offset # Leftmost pixel of the ROI\n\
00281 # (0 if the ROI includes the left edge of the image)\n\
00282 uint32 y_offset # Topmost pixel of the ROI\n\
00283 # (0 if the ROI includes the top edge of the image)\n\
00284 uint32 height # Height of ROI\n\
00285 uint32 width # Width of ROI\n\
00286 \n\
00287 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00288 # ROI in this message. Typically this should be False if the full image\n\
00289 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00290 # used).\n\
00291 bool do_rectify\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: sensor_msgs/Image\n\
00295 # This message contains an uncompressed image\n\
00296 # (0, 0) is at top-left corner of image\n\
00297 #\n\
00298 \n\
00299 Header header # Header timestamp should be acquisition time of image\n\
00300 # Header frame_id should be optical frame of camera\n\
00301 # origin of frame should be optical center of cameara\n\
00302 # +x should point to the right in the image\n\
00303 # +y should point down in the image\n\
00304 # +z should point into to plane of the image\n\
00305 # If the frame_id here and the frame_id of the CameraInfo\n\
00306 # message associated with the image conflict\n\
00307 # the behavior is undefined\n\
00308 \n\
00309 uint32 height # image height, that is, number of rows\n\
00310 uint32 width # image width, that is, number of columns\n\
00311 \n\
00312 # The legal values for encoding are in file src/image_encodings.cpp\n\
00313 # If you want to standardize a new string format, join\n\
00314 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00315 \n\
00316 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00317 # taken from the list of strings in src/image_encodings.cpp\n\
00318 \n\
00319 uint8 is_bigendian # is this data bigendian?\n\
00320 uint32 step # Full row length in bytes\n\
00321 uint8[] data # actual matrix data, size is (step * rows)\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: calibration_msgs/CalibrationPattern\n\
00325 Header header\n\
00326 geometry_msgs/Point32[] object_points\n\
00327 ImagePoint[] image_points\n\
00328 uint8 success\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: geometry_msgs/Point32\n\
00332 # This contains the position of a point in free space(with 32 bits of precision).\n\
00333 # It is recommeded to use Point wherever possible instead of Point32. \n\
00334 # \n\
00335 # This recommendation is to promote interoperability. \n\
00336 #\n\
00337 # This message is designed to take up less space when sending\n\
00338 # lots of points at once, as in the case of a PointCloud. \n\
00339 \n\
00340 float32 x\n\
00341 float32 y\n\
00342 float32 z\n\
00343 ================================================================================\n\
00344 MSG: calibration_msgs/LaserMeasurement\n\
00345 Header header\n\
00346 string laser_id\n\
00347 sensor_msgs/JointState[] joint_points\n\
00348 \n\
00349 # True -> The extra debugging fields are populated\n\
00350 bool verbose\n\
00351 \n\
00352 # Extra, partially processed data. Only needed for debugging\n\
00353 calibration_msgs/DenseLaserSnapshot snapshot\n\
00354 sensor_msgs/Image laser_image\n\
00355 calibration_msgs/CalibrationPattern image_features\n\
00356 calibration_msgs/JointStateCalibrationPattern joint_features\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: sensor_msgs/JointState\n\
00360 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00361 #\n\
00362 # The state of each joint (revolute or prismatic) is defined by:\n\
00363 # * the position of the joint (rad or m),\n\
00364 # * the velocity of the joint (rad/s or m/s) and \n\
00365 # * the effort that is applied in the joint (Nm or N).\n\
00366 #\n\
00367 # Each joint is uniquely identified by its name\n\
00368 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00369 # in one message have to be recorded at the same time.\n\
00370 #\n\
00371 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00372 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00373 # effort associated with them, you can leave the effort array empty. \n\
00374 #\n\
00375 # All arrays in this message should have the same size, or be empty.\n\
00376 # This is the only way to uniquely associate the joint name with the correct\n\
00377 # states.\n\
00378 \n\
00379 \n\
00380 Header header\n\
00381 \n\
00382 string[] name\n\
00383 float64[] position\n\
00384 float64[] velocity\n\
00385 float64[] effort\n\
00386 \n\
00387 ================================================================================\n\
00388 MSG: calibration_msgs/DenseLaserSnapshot\n\
00389 # Provides all the state & sensor information for\n\
00390 # a single sweep of laser attached to some mechanism.\n\
00391 # Most likely, this will be used with PR2's tilting laser mechanism\n\
00392 Header header\n\
00393 \n\
00394 # Store the laser intrinsics. This is very similar to the\n\
00395 # intrinsics commonly stored in \n\
00396 float32 angle_min # start angle of the scan [rad]\n\
00397 float32 angle_max # end angle of the scan [rad]\n\
00398 float32 angle_increment # angular distance between measurements [rad]\n\
00399 float32 time_increment # time between measurements [seconds]\n\
00400 float32 range_min # minimum range value [m]\n\
00401 float32 range_max # maximum range value [m]\n\
00402 \n\
00403 # Define the size of the binary data\n\
00404 uint32 readings_per_scan # (Width)\n\
00405 uint32 num_scans # (Height)\n\
00406 \n\
00407 # 2D Arrays storing laser data.\n\
00408 # We can think of each type data as being a single channel image.\n\
00409 # Each row of the image has data from a single scan, and scans are\n\
00410 # concatenated to form the entire 'image'.\n\
00411 float32[] ranges # (Image data)\n\
00412 float32[] intensities # (Image data)\n\
00413 \n\
00414 # Store the start time of each scan\n\
00415 time[] scan_start\n\
00416 \n\
00417 ================================================================================\n\
00418 MSG: calibration_msgs/JointStateCalibrationPattern\n\
00419 Header header\n\
00420 geometry_msgs/Point32[] object_points\n\
00421 sensor_msgs/JointState[] joint_points\n\
00422 \n\
00423 \n\
00424 ================================================================================\n\
00425 MSG: calibration_msgs/ChainMeasurement\n\
00426 Header header\n\
00427 string chain_id\n\
00428 sensor_msgs/JointState chain_state\n\
00429 \n\
00430 "; }
00431 public:
00432 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00433
00434 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00435
00436 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00437 {
00438 ros::serialization::OStream stream(write_ptr, 1000000000);
00439 ros::serialization::serialize(stream, sample_id);
00440 ros::serialization::serialize(stream, target_id);
00441 ros::serialization::serialize(stream, chain_id);
00442 ros::serialization::serialize(stream, M_cam);
00443 ros::serialization::serialize(stream, M_laser);
00444 ros::serialization::serialize(stream, M_chain);
00445 return stream.getData();
00446 }
00447
00448 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00449 {
00450 ros::serialization::IStream stream(read_ptr, 1000000000);
00451 ros::serialization::deserialize(stream, sample_id);
00452 ros::serialization::deserialize(stream, target_id);
00453 ros::serialization::deserialize(stream, chain_id);
00454 ros::serialization::deserialize(stream, M_cam);
00455 ros::serialization::deserialize(stream, M_laser);
00456 ros::serialization::deserialize(stream, M_chain);
00457 return stream.getData();
00458 }
00459
00460 ROS_DEPRECATED virtual uint32_t serializationLength() const
00461 {
00462 uint32_t size = 0;
00463 size += ros::serialization::serializationLength(sample_id);
00464 size += ros::serialization::serializationLength(target_id);
00465 size += ros::serialization::serializationLength(chain_id);
00466 size += ros::serialization::serializationLength(M_cam);
00467 size += ros::serialization::serializationLength(M_laser);
00468 size += ros::serialization::serializationLength(M_chain);
00469 return size;
00470 }
00471
00472 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > Ptr;
00473 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> const> ConstPtr;
00474 };
00475 typedef ::calibration_msgs::RobotMeasurement_<std::allocator<void> > RobotMeasurement;
00476
00477 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement> RobotMeasurementPtr;
00478 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement const> RobotMeasurementConstPtr;
00479
00480
00481 template<typename ContainerAllocator>
00482 std::ostream& operator<<(std::ostream& s, const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v)
00483 {
00484 ros::message_operations::Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v);
00485 return s;}
00486
00487 }
00488
00489 namespace ros
00490 {
00491 namespace message_traits
00492 {
00493 template<class ContainerAllocator>
00494 struct MD5Sum< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00495 static const char* value()
00496 {
00497 return "5faeacd55902385628948423d864d702";
00498 }
00499
00500 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00501 static const uint64_t static_value1 = 0x5faeacd559023856ULL;
00502 static const uint64_t static_value2 = 0x28948423d864d702ULL;
00503 };
00504
00505 template<class ContainerAllocator>
00506 struct DataType< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00507 static const char* value()
00508 {
00509 return "calibration_msgs/RobotMeasurement";
00510 }
00511
00512 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00513 };
00514
00515 template<class ContainerAllocator>
00516 struct Definition< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > {
00517 static const char* value()
00518 {
00519 return "string sample_id # Tag to figure out which yaml file this was generated from\n\
00520 \n\
00521 string target_id # Defines the target that we were sensing.\n\
00522 string chain_id # Defines where this target was attached\n\
00523 \n\
00524 CameraMeasurement[] M_cam\n\
00525 LaserMeasurement[] M_laser\n\
00526 ChainMeasurement[] M_chain\n\
00527 \n\
00528 ================================================================================\n\
00529 MSG: calibration_msgs/CameraMeasurement\n\
00530 Header header\n\
00531 string camera_id\n\
00532 ImagePoint[] image_points\n\
00533 sensor_msgs/CameraInfo cam_info\n\
00534 \n\
00535 # True -> The extra debugging fields are populated\n\
00536 bool verbose\n\
00537 \n\
00538 # Extra, partially processed data. Only needed for debugging\n\
00539 sensor_msgs/Image image\n\
00540 sensor_msgs/Image image_rect\n\
00541 calibration_msgs/CalibrationPattern features\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: std_msgs/Header\n\
00545 # Standard metadata for higher-level stamped data types.\n\
00546 # This is generally used to communicate timestamped data \n\
00547 # in a particular coordinate frame.\n\
00548 # \n\
00549 # sequence ID: consecutively increasing ID \n\
00550 uint32 seq\n\
00551 #Two-integer timestamp that is expressed as:\n\
00552 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00553 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00554 # time-handling sugar is provided by the client library\n\
00555 time stamp\n\
00556 #Frame this data is associated with\n\
00557 # 0: no frame\n\
00558 # 1: global frame\n\
00559 string frame_id\n\
00560 \n\
00561 ================================================================================\n\
00562 MSG: calibration_msgs/ImagePoint\n\
00563 float32 x\n\
00564 float32 y\n\
00565 \n\
00566 ================================================================================\n\
00567 MSG: sensor_msgs/CameraInfo\n\
00568 # This message defines meta information for a camera. It should be in a\n\
00569 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00570 # image topics named:\n\
00571 #\n\
00572 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00573 # image - monochrome, distorted\n\
00574 # image_color - color, distorted\n\
00575 # image_rect - monochrome, rectified\n\
00576 # image_rect_color - color, rectified\n\
00577 #\n\
00578 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00579 # for producing the four processed image topics from image_raw and\n\
00580 # camera_info. The meaning of the camera parameters are described in\n\
00581 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00582 #\n\
00583 # The image_geometry package provides a user-friendly interface to\n\
00584 # common operations using this meta information. If you want to, e.g.,\n\
00585 # project a 3d point into image coordinates, we strongly recommend\n\
00586 # using image_geometry.\n\
00587 #\n\
00588 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00589 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00590 # indicates an uncalibrated camera.\n\
00591 \n\
00592 #######################################################################\n\
00593 # Image acquisition info #\n\
00594 #######################################################################\n\
00595 \n\
00596 # Time of image acquisition, camera coordinate frame ID\n\
00597 Header header # Header timestamp should be acquisition time of image\n\
00598 # Header frame_id should be optical frame of camera\n\
00599 # origin of frame should be optical center of camera\n\
00600 # +x should point to the right in the image\n\
00601 # +y should point down in the image\n\
00602 # +z should point into the plane of the image\n\
00603 \n\
00604 \n\
00605 #######################################################################\n\
00606 # Calibration Parameters #\n\
00607 #######################################################################\n\
00608 # These are fixed during camera calibration. Their values will be the #\n\
00609 # same in all messages until the camera is recalibrated. Note that #\n\
00610 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00611 # #\n\
00612 # The internal parameters can be used to warp a raw (distorted) image #\n\
00613 # to: #\n\
00614 # 1. An undistorted image (requires D and K) #\n\
00615 # 2. A rectified image (requires D, K, R) #\n\
00616 # The projection matrix P projects 3D points into the rectified image.#\n\
00617 #######################################################################\n\
00618 \n\
00619 # The image dimensions with which the camera was calibrated. Normally\n\
00620 # this will be the full camera resolution in pixels.\n\
00621 uint32 height\n\
00622 uint32 width\n\
00623 \n\
00624 # The distortion model used. Supported models are listed in\n\
00625 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00626 # simple model of radial and tangential distortion - is sufficent.\n\
00627 string distortion_model\n\
00628 \n\
00629 # The distortion parameters, size depending on the distortion model.\n\
00630 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00631 float64[] D\n\
00632 \n\
00633 # Intrinsic camera matrix for the raw (distorted) images.\n\
00634 # [fx 0 cx]\n\
00635 # K = [ 0 fy cy]\n\
00636 # [ 0 0 1]\n\
00637 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00638 # coordinates using the focal lengths (fx, fy) and principal point\n\
00639 # (cx, cy).\n\
00640 float64[9] K # 3x3 row-major matrix\n\
00641 \n\
00642 # Rectification matrix (stereo cameras only)\n\
00643 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00644 # stereo image plane so that epipolar lines in both stereo images are\n\
00645 # parallel.\n\
00646 float64[9] R # 3x3 row-major matrix\n\
00647 \n\
00648 # Projection/camera matrix\n\
00649 # [fx' 0 cx' Tx]\n\
00650 # P = [ 0 fy' cy' Ty]\n\
00651 # [ 0 0 1 0]\n\
00652 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00653 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00654 # is the normal camera intrinsic matrix for the rectified image.\n\
00655 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00656 # coordinates using the focal lengths (fx', fy') and principal point\n\
00657 # (cx', cy') - these may differ from the values in K.\n\
00658 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00659 # also have R = the identity and P[1:3,1:3] = K.\n\
00660 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00661 # position of the optical center of the second camera in the first\n\
00662 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00663 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00664 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00665 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00666 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00667 # the rectified image is given by:\n\
00668 # [u v w]' = P * [X Y Z 1]'\n\
00669 # x = u / w\n\
00670 # y = v / w\n\
00671 # This holds for both images of a stereo pair.\n\
00672 float64[12] P # 3x4 row-major matrix\n\
00673 \n\
00674 \n\
00675 #######################################################################\n\
00676 # Operational Parameters #\n\
00677 #######################################################################\n\
00678 # These define the image region actually captured by the camera #\n\
00679 # driver. Although they affect the geometry of the output image, they #\n\
00680 # may be changed freely without recalibrating the camera. #\n\
00681 #######################################################################\n\
00682 \n\
00683 # Binning refers here to any camera setting which combines rectangular\n\
00684 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00685 # resolution of the output image to\n\
00686 # (width / binning_x) x (height / binning_y).\n\
00687 # The default values binning_x = binning_y = 0 is considered the same\n\
00688 # as binning_x = binning_y = 1 (no subsampling).\n\
00689 uint32 binning_x\n\
00690 uint32 binning_y\n\
00691 \n\
00692 # Region of interest (subwindow of full camera resolution), given in\n\
00693 # full resolution (unbinned) image coordinates. A particular ROI\n\
00694 # always denotes the same window of pixels on the camera sensor,\n\
00695 # regardless of binning settings.\n\
00696 # The default setting of roi (all values 0) is considered the same as\n\
00697 # full resolution (roi.width = width, roi.height = height).\n\
00698 RegionOfInterest roi\n\
00699 \n\
00700 ================================================================================\n\
00701 MSG: sensor_msgs/RegionOfInterest\n\
00702 # This message is used to specify a region of interest within an image.\n\
00703 #\n\
00704 # When used to specify the ROI setting of the camera when the image was\n\
00705 # taken, the height and width fields should either match the height and\n\
00706 # width fields for the associated image; or height = width = 0\n\
00707 # indicates that the full resolution image was captured.\n\
00708 \n\
00709 uint32 x_offset # Leftmost pixel of the ROI\n\
00710 # (0 if the ROI includes the left edge of the image)\n\
00711 uint32 y_offset # Topmost pixel of the ROI\n\
00712 # (0 if the ROI includes the top edge of the image)\n\
00713 uint32 height # Height of ROI\n\
00714 uint32 width # Width of ROI\n\
00715 \n\
00716 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00717 # ROI in this message. Typically this should be False if the full image\n\
00718 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00719 # used).\n\
00720 bool do_rectify\n\
00721 \n\
00722 ================================================================================\n\
00723 MSG: sensor_msgs/Image\n\
00724 # This message contains an uncompressed image\n\
00725 # (0, 0) is at top-left corner of image\n\
00726 #\n\
00727 \n\
00728 Header header # Header timestamp should be acquisition time of image\n\
00729 # Header frame_id should be optical frame of camera\n\
00730 # origin of frame should be optical center of cameara\n\
00731 # +x should point to the right in the image\n\
00732 # +y should point down in the image\n\
00733 # +z should point into to plane of the image\n\
00734 # If the frame_id here and the frame_id of the CameraInfo\n\
00735 # message associated with the image conflict\n\
00736 # the behavior is undefined\n\
00737 \n\
00738 uint32 height # image height, that is, number of rows\n\
00739 uint32 width # image width, that is, number of columns\n\
00740 \n\
00741 # The legal values for encoding are in file src/image_encodings.cpp\n\
00742 # If you want to standardize a new string format, join\n\
00743 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00744 \n\
00745 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00746 # taken from the list of strings in src/image_encodings.cpp\n\
00747 \n\
00748 uint8 is_bigendian # is this data bigendian?\n\
00749 uint32 step # Full row length in bytes\n\
00750 uint8[] data # actual matrix data, size is (step * rows)\n\
00751 \n\
00752 ================================================================================\n\
00753 MSG: calibration_msgs/CalibrationPattern\n\
00754 Header header\n\
00755 geometry_msgs/Point32[] object_points\n\
00756 ImagePoint[] image_points\n\
00757 uint8 success\n\
00758 \n\
00759 ================================================================================\n\
00760 MSG: geometry_msgs/Point32\n\
00761 # This contains the position of a point in free space(with 32 bits of precision).\n\
00762 # It is recommeded to use Point wherever possible instead of Point32. \n\
00763 # \n\
00764 # This recommendation is to promote interoperability. \n\
00765 #\n\
00766 # This message is designed to take up less space when sending\n\
00767 # lots of points at once, as in the case of a PointCloud. \n\
00768 \n\
00769 float32 x\n\
00770 float32 y\n\
00771 float32 z\n\
00772 ================================================================================\n\
00773 MSG: calibration_msgs/LaserMeasurement\n\
00774 Header header\n\
00775 string laser_id\n\
00776 sensor_msgs/JointState[] joint_points\n\
00777 \n\
00778 # True -> The extra debugging fields are populated\n\
00779 bool verbose\n\
00780 \n\
00781 # Extra, partially processed data. Only needed for debugging\n\
00782 calibration_msgs/DenseLaserSnapshot snapshot\n\
00783 sensor_msgs/Image laser_image\n\
00784 calibration_msgs/CalibrationPattern image_features\n\
00785 calibration_msgs/JointStateCalibrationPattern joint_features\n\
00786 \n\
00787 ================================================================================\n\
00788 MSG: sensor_msgs/JointState\n\
00789 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00790 #\n\
00791 # The state of each joint (revolute or prismatic) is defined by:\n\
00792 # * the position of the joint (rad or m),\n\
00793 # * the velocity of the joint (rad/s or m/s) and \n\
00794 # * the effort that is applied in the joint (Nm or N).\n\
00795 #\n\
00796 # Each joint is uniquely identified by its name\n\
00797 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00798 # in one message have to be recorded at the same time.\n\
00799 #\n\
00800 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00801 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00802 # effort associated with them, you can leave the effort array empty. \n\
00803 #\n\
00804 # All arrays in this message should have the same size, or be empty.\n\
00805 # This is the only way to uniquely associate the joint name with the correct\n\
00806 # states.\n\
00807 \n\
00808 \n\
00809 Header header\n\
00810 \n\
00811 string[] name\n\
00812 float64[] position\n\
00813 float64[] velocity\n\
00814 float64[] effort\n\
00815 \n\
00816 ================================================================================\n\
00817 MSG: calibration_msgs/DenseLaserSnapshot\n\
00818 # Provides all the state & sensor information for\n\
00819 # a single sweep of laser attached to some mechanism.\n\
00820 # Most likely, this will be used with PR2's tilting laser mechanism\n\
00821 Header header\n\
00822 \n\
00823 # Store the laser intrinsics. This is very similar to the\n\
00824 # intrinsics commonly stored in \n\
00825 float32 angle_min # start angle of the scan [rad]\n\
00826 float32 angle_max # end angle of the scan [rad]\n\
00827 float32 angle_increment # angular distance between measurements [rad]\n\
00828 float32 time_increment # time between measurements [seconds]\n\
00829 float32 range_min # minimum range value [m]\n\
00830 float32 range_max # maximum range value [m]\n\
00831 \n\
00832 # Define the size of the binary data\n\
00833 uint32 readings_per_scan # (Width)\n\
00834 uint32 num_scans # (Height)\n\
00835 \n\
00836 # 2D Arrays storing laser data.\n\
00837 # We can think of each type data as being a single channel image.\n\
00838 # Each row of the image has data from a single scan, and scans are\n\
00839 # concatenated to form the entire 'image'.\n\
00840 float32[] ranges # (Image data)\n\
00841 float32[] intensities # (Image data)\n\
00842 \n\
00843 # Store the start time of each scan\n\
00844 time[] scan_start\n\
00845 \n\
00846 ================================================================================\n\
00847 MSG: calibration_msgs/JointStateCalibrationPattern\n\
00848 Header header\n\
00849 geometry_msgs/Point32[] object_points\n\
00850 sensor_msgs/JointState[] joint_points\n\
00851 \n\
00852 \n\
00853 ================================================================================\n\
00854 MSG: calibration_msgs/ChainMeasurement\n\
00855 Header header\n\
00856 string chain_id\n\
00857 sensor_msgs/JointState chain_state\n\
00858 \n\
00859 ";
00860 }
00861
00862 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00863 };
00864
00865 }
00866 }
00867
00868 namespace ros
00869 {
00870 namespace serialization
00871 {
00872
00873 template<class ContainerAllocator> struct Serializer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >
00874 {
00875 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00876 {
00877 stream.next(m.sample_id);
00878 stream.next(m.target_id);
00879 stream.next(m.chain_id);
00880 stream.next(m.M_cam);
00881 stream.next(m.M_laser);
00882 stream.next(m.M_chain);
00883 }
00884
00885 ROS_DECLARE_ALLINONE_SERIALIZER;
00886 };
00887 }
00888 }
00889
00890 namespace ros
00891 {
00892 namespace message_operations
00893 {
00894
00895 template<class ContainerAllocator>
00896 struct Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >
00897 {
00898 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v)
00899 {
00900 s << indent << "sample_id: ";
00901 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.sample_id);
00902 s << indent << "target_id: ";
00903 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.target_id);
00904 s << indent << "chain_id: ";
00905 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.chain_id);
00906 s << indent << "M_cam[]" << std::endl;
00907 for (size_t i = 0; i < v.M_cam.size(); ++i)
00908 {
00909 s << indent << " M_cam[" << i << "]: ";
00910 s << std::endl;
00911 s << indent;
00912 Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_cam[i]);
00913 }
00914 s << indent << "M_laser[]" << std::endl;
00915 for (size_t i = 0; i < v.M_laser.size(); ++i)
00916 {
00917 s << indent << " M_laser[" << i << "]: ";
00918 s << std::endl;
00919 s << indent;
00920 Printer< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_laser[i]);
00921 }
00922 s << indent << "M_chain[]" << std::endl;
00923 for (size_t i = 0; i < v.M_chain.size(); ++i)
00924 {
00925 s << indent << " M_chain[" << i << "]: ";
00926 s << std::endl;
00927 s << indent;
00928 Printer< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_chain[i]);
00929 }
00930 }
00931 };
00932
00933
00934 }
00935 }
00936
00937 #endif // CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H
00938