image_warp_util.cpp
Go to the documentation of this file.
1 // *****************************************************************************
2 //
3 // Copyright (c) 2014, Southwest Research Institute® (SwRI®)
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are met:
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright
11 // notice, this list of conditions and the following disclaimer in the
12 // documentation and/or other materials provided with the distribution.
13 // * Neither the name of Southwest Research Institute® (SwRI®) nor the
14 // names of its contributors may be used to endorse or promote products
15 // derived from this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
21 // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 //
28 // *****************************************************************************
29 
32 
33 #include <algorithm>
34 
35 namespace swri_image_util
36 {
37  cv::Mat WarpImage(const cv::Mat& image, double roll, double pitch)
38  {
39  cv::Mat warped;
40 
41  // Initialize the camera matrix:
42  cv::Mat K = cv::Mat::eye(cv::Size(3, 3), CV_32F);
43  K.at<float>(0, 2) = static_cast<double>(image.cols - 1) / 2.0;
44  K.at<float>(1, 2) = static_cast<double>(image.rows - 1) / 2.0;
45 
46  cv::Mat T = cv::Mat::zeros(cv::Size(3, 1), CV_32F);
47 
48  cv::Mat R = GetR(pitch, roll);
49 
50  cv::detail::PlaneWarper warper;
51  warper.warp(image, K, R, T, cv::INTER_LANCZOS4, 0, warped);
52 
53  // TODO(malban): This warp can cause problems because it can change the
54  // image size. The result should be cropped or padded. The
55  // warp points function will need to be modified accordingly.
56 
57  return warped;
58  }
59 
60  void WarpPoints(
61  double pitch,
62  double roll,
63  const cv::Size& image_size,
64  const cv::Mat& pts_in,
65  cv::Mat& pts_out)
66  {
67  // Initialize the camera matrix:
68  cv::Mat K = cv::Mat::eye(cv::Size(3, 3), CV_32F);
69  K.at<float>(0, 2) = static_cast<double>(image_size.width - 1) / 2.0;
70  K.at<float>(1, 2) = static_cast<double>(image_size.height - 1) / 2.0;
71 
72  cv::detail::PlaneWarper warper;
73 
74  cv::Mat T = cv::Mat::zeros(cv::Size(3, 1), CV_32F);
75  cv::Mat R = GetR(pitch, roll);
76  pts_in.copyTo(pts_out);
77  for (int32_t i = 0; i < pts_in.rows; ++i)
78  {
79  cv::Point2f pt;
80  pt.x = pts_in.at<cv::Vec2f>(i, 0).val[0];
81  pt.y = pts_in.at<cv::Vec2f>(i, 0).val[1];
82  cv::Point2f pt2 = warper.warpPoint(pt, K, R, T);
83  pts_out.at<cv::Vec2f>(i, 0).val[0] = pt2.x + K.at<float>(0, 2);
84  pts_out.at<cv::Vec2f>(i, 0).val[1] = pt2.y + K.at<float>(1, 2);
85  }
86  }
87 
88  void WarpPoints(
89  double pitch,
90  double roll,
91  const cv::Size& image_size,
92  const std::vector<cv::KeyPoint>& pts_in,
93  std::vector<cv::KeyPoint>& pts_out)
94  {
95  pts_out = pts_in;
96 
97  // Initialize the camera matrix:
98  cv::Mat K = cv::Mat::eye(cv::Size(3, 3), CV_32F);
99  K.at<float>(0, 2) = static_cast<double>(image_size.width - 1) / 2.0;
100  K.at<float>(1, 2) = static_cast<double>(image_size.height - 1) / 2.0;
101 
102  cv::detail::PlaneWarper warper;
103 
104  cv::Mat T = cv::Mat::zeros(cv::Size(3, 1), CV_32F);
105  cv::Mat R = GetR(pitch, roll);
106 
107  for (uint32_t i = 0; i < pts_in.size(); i++)
108  {
109  pts_out[i].pt = warper.warpPoint(pts_in[i].pt, K, R, T);
110  pts_out[i].pt.x += K.at<float>(0, 2);
111  pts_out[i].pt.y += K.at<float>(1, 2);
112  }
113  }
114 
115 
116  cv::Mat GetR(double pitch, double roll, double yaw)
117  {
118  cv::Mat R1 = cv::Mat::eye(cv::Size(3, 3), CV_32F);
119  cv::Mat R2 = cv::Mat::eye(cv::Size(3, 3), CV_32F);
120  cv::Mat R3 = cv::Mat::eye(cv::Size(3, 3), CV_32F);
121 
122  // do pitch first:
123  R1.at<float>(0, 0) = std::cos(pitch);
124  R1.at<float>(0, 2) = -std::sin(pitch);
125  R1.at<float>(2, 0) = std::sin(pitch);
126  R1.at<float>(2, 2) = std::cos(pitch);
127 
128  // Then roll
129  R2.at<float>(1, 1) = std::cos(roll);
130  R2.at<float>(1, 2) = std::sin(roll);
131  R2.at<float>(2, 1) = -std::sin(roll);
132  R2.at<float>(2, 2) = std::cos(roll);
133 
134  // Finally yaw
135  R3.at<float>(0, 0) = std::cos(yaw);
136  R3.at<float>(0, 1) = std::sin(yaw);
137  R3.at<float>(1, 0) = -std::sin(yaw);
138  R3.at<float>(1, 1) = std::cos(yaw);
139 
140  cv::Mat R = R3 * R2 * R1;
141 
142  return R;
143  }
144 
146  double& nominal_pitch,
147  double& nominal_roll,
148  bool show_image_diff)
149  {
150  if (kp1_matched_.empty() || kp2_matched_.empty())
151  {
152  return cv::Mat();
153  }
154 
156  cv::Mat T_rigid = EstimateNominalAngle(kp1_matched_,
157  kp2_matched_,
158  cv::Size(im1_.cols, im1_.rows),
159  nominal_pitch,
160  nominal_roll);
161 
163 
164  ROS_ERROR("Estimate Nominal Angle time = %g", (T2 - T1).toSec());
165  cv::Mat R = GetR(nominal_pitch, nominal_roll);
166 
167  if (show_image_diff)
168  {
169  // Do the warping and transformation and show the results
170  cv::Mat warped_im1;
171  cv::Mat warped_im2;
172 
173  warper_.warp(im1_, K_, R, T_, cv::INTER_LANCZOS4, 0, warped_im1);
174  warper_.warp(im2_, K_, R, T_, cv::INTER_LANCZOS4, 0, warped_im2);
175 
176  cv::Mat temp_im;
177  cv::warpAffine(warped_im1,
178  temp_im,
179  T_rigid,
180  cv::Size(warped_im1.cols, warped_im1.rows));
181 
182  cv::Mat sub = warped_im2 - temp_im;
183 
184  cv::namedWindow("Warped Subtraction");
185  cv::imshow("Warped Subtraction", sub);
186 
187  // Now compare the result to the unwarped, transformed result:
188 
189  cv::warpAffine(im1_,
190  temp_im,
191  T_rigid,
192  cv::Size(im1_.cols, im1_.rows));
193 
194  cv::Mat sub2 = im2_ - temp_im;
195  cv::namedWindow("Subtraction");
196  cv::imshow("Subtraction", sub2);
197 
198  cv::namedWindow("im2_");
199  cv::imshow("im2_", im2_);
200  cv::waitKey(0);
201  }
202 
203  return R;
204  }
205 
207  const cv::Mat& points1,
208  const cv::Mat& points2,
209  const cv::Size& image_size,
210  double& nominal_pitch,
211  double& nominal_roll)
212  {
213  // Max number of iterations per angle, per scale
214  const int32_t max_iterations = 5;
215  const int32_t num_octaves = 5;
216 
217  double pitch_range = 0.02 * 3.14159/180.0;
218  double min_pitch = -std::abs(pitch_range / 2.0);
219  double max_pitch = std::abs(pitch_range / 2.0);
220 
221  double roll_range = 0.02*3.14159/180.0;
222  double min_roll = -std::abs(roll_range / 2.0);
223  double max_roll = std::abs(roll_range / 2.0);
224 
225  cv::Mat T_rigid_final = cv::Mat();
226  for (int32_t octave_idx = 0; octave_idx < num_octaves; ++octave_idx)
227  {
228  double dp = (max_pitch - min_pitch) /
229  static_cast<double>(max_iterations - 1);
230  double dr = (max_roll - min_roll) /
231  static_cast<double>(max_iterations - 1);
232 
233  double min_diff = 1e20;
234  nominal_pitch = 0.0;
235  nominal_roll = 0.0;
236 
237 
238  for (int32_t pitch_idx = 0; pitch_idx < max_iterations; ++pitch_idx)
239  {
240  double cur_pitch = min_pitch + dp * pitch_idx;
241  for (int32_t roll_idx = 0; roll_idx < max_iterations; ++roll_idx)
242  {
243  double cur_roll = min_roll + dr * roll_idx;
244 
245  cv::Mat kp1_warped;
246  swri_image_util::WarpPoints(cur_pitch,
247  cur_roll,
248  image_size,
249  points1,
250  kp1_warped);
251 
252  cv::Mat kp2_warped;
253  swri_image_util::WarpPoints(cur_pitch,
254  cur_roll,
255  image_size,
256  points2,
257  kp2_warped);
258 
259  cv::Mat T_rigid;
260  cv::Mat T_affine;
261  double rms_error;
262  bool success = EstimateTransforms(kp1_warped,
263  kp2_warped,
264  T_affine,
265  T_rigid,
266  rms_error);
267  if (!success)
268  {
269  continue;
270  }
271 
272  double cur_diff = rms_error;
273 
274  if (cur_diff < min_diff)
275  {
276  min_diff = cur_diff;
277 
278  nominal_pitch = cur_pitch;
279  nominal_roll = cur_roll;
280  T_rigid_final = T_rigid;
281  }
282  }
283  }
284 
285  min_pitch = nominal_pitch - std::abs(dp * 2 / 3);
286  max_pitch = nominal_pitch + std::abs(dp * 2 / 3);
287 
288 
289  min_roll = nominal_roll - std::abs(dr * 2 / 3);
290  max_roll = nominal_roll + std::abs(dr * 2 / 3);
291  }
292 
293  cv::Mat R = GetR(nominal_pitch,
294  nominal_roll);
295 
296  return T_rigid_final;
297  }
298 
300  {
301  if (im1_.empty() || im2_.empty())
302  {
303  ROS_ERROR("No images defined");
304  return false;
305  }
306 
307  // perform the matching first:
308  // Compute the matching features between this frame and the previous one.
309  std::vector<cv::DMatch> matches;
310  cv::BFMatcher matcher;
311  matcher.match(descriptors1_, descriptors2_, matches);
312 
313  cv::Mat points1;
314  cv::Mat points2;
315  ConvertMatches(kp1_, kp2_, matches, points1, points2);
316 
317  // Compute the fundamental matrix which describes the camera motion
318  // between the frames using a RANSAC process and get the set of inlier
319  // matches which agree with the motion.
320  cv::Mat fundamental_matrix;
321  cv::Mat fund_inliers1;
322  cv::Mat fund_inliers2;
323  try
324  {
325  GetFundamentalInliers(points1,
326  points2,
327  fundamental_matrix,
328  fund_inliers1,
329  fund_inliers2);
330  }
331  catch (const std::exception& e)
332  {
333  ROS_ERROR("Caught an exception when computing fundamental inliers:"
334  " %s", e.what());
335  return false;
336  }
337 
338  ROS_INFO("Found %d fundamental inliers.", fund_inliers1.rows);
339 
340  cv::Mat inliers1;
341  cv::Mat inliers2;
342  std::vector<uint32_t> good_points;
343 
344  int32_t iterations;
346  fund_inliers1, fund_inliers2, inliers1, inliers2, good_points, iterations, 30.0);
347 
348  if (affine.empty())
349  {
350  ROS_ERROR("Failed to compute 2D affine transform.");
351  return false;
352  }
353 
354  kp1_matched_ = inliers1;
355  kp2_matched_ = inliers2;
356 
357  return true;
358  }
359 
361  cv::Mat& pts1,
362  cv::Mat& pts2,
363  cv::Mat& T_affine,
364  cv::Mat& T_rigid,
365  double& rms_error)
366  {
367  cv::Mat inliers1;
368  cv::Mat inliers2;
369  std::vector<uint32_t> good_points;
370 
371  int32_t iterations;
373  pts1, pts2, inliers1, inliers2, good_points, iterations, 30.0);
374 
376  pts1, pts2, inliers1, inliers2, good_points, iterations, 30.0);
377 
378  cv::Mat inliers1_t;
379  cv::transform(inliers1, inliers1_t, T_rigid);
380  double n = good_points.size();
381  rms_error = cv::norm(inliers2, inliers1_t, cv::NORM_L2) / std::sqrt(n);
382 
383  if (T_rigid.empty())
384  {
385  return false;
386  }
387 
388  return true;
389  }
390 
392  double pitch,
393  double roll,
394  const cv::Mat& pts_in,
395  cv::Mat& pts_out)
396  {
397  if (im1_.empty() || im2_.empty())
398  {
399  ROS_ERROR("Object not initialized. Pitch and roll not computed. Perhaps"
400  "call static implementation instead");
401  return;
402  }
403 
405  roll,
406  cv::Size(im1_.cols, im1_.rows),
407  pts_in,
408  pts_out);
409  }
410 
412  const cv::Mat& T,
413  const cv::Mat& pts_in,
414  cv::Mat& pts_out)
415  {
416  // Create augmented keypoint matrix:
417  cv::Mat aug_mat(cv::Size(3, pts_in.rows), CV_32F);
418 
419  for (int32_t i = 0; i < pts_in.rows; ++i)
420  {
421  aug_mat.at<float>(i, 0) = pts_in.at<cv::Vec2f>(0, i)[0];
422  aug_mat.at<float>(i, 1) = pts_in.at<cv::Vec2f>(0, i)[1];
423  aug_mat.at<float>(i, 2) = 1.0;
424  }
425 
426  cv::Mat T_temp = T.t();
427  cv::Mat pts_out_temp = aug_mat * T_temp;
428 
429  pts_out.release();
430  pts_out.create(cv::Size(1, pts_in.rows), CV_32FC2);
431  // Convert points back to proper form:
432  for (int32_t i = 0; i < pts_in.rows; ++i)
433  {
434  pts_out.at<cv::Vec2f>(0, i)[0] = pts_out_temp.at<float>(i, 0);
435  pts_out.at<cv::Vec2f>(0, i)[1] = pts_out_temp.at<float>(i, 1);
436  }
437  }
438 
446 
448  //
449  // PitchAndRollEstimatorQueue()
450  //
453  {
454  SetBufferSize();
455  ComputeStats();
456  }
457 
459  //
460  // SetBufferSize()
461  //
464  {
465  pitches_.set_capacity(buff_size);
466  rolls_.set_capacity(buff_size);
467  }
468 
469 
471  //
472  // WarpPoints()
473  //
475  void PitchAndRollEstimatorQueue::WarpPoints(const cv::Mat& points_in,
476  cv::Mat& points_out,
477  const cv::Size& image_size,
478  bool use_median)
479  {
480  double pitch;
481  double roll;
482  if (use_median)
483  {
484  GetMedianPitchAndRoll(pitch, roll);
485  }
486  else
487  {
488  GetMeanPitchAndRoll(pitch, roll);
489  }
490 
491  swri_image_util::WarpPoints(pitch, roll, image_size, points_in, points_out);
492  }
493 
495  //
496  // Clear()
497  //
500  {
501  pitches_.clear();
502  rolls_.clear();
503  ComputeStats();
504  }
505 
506 
508  //
509  // GenerateNewEstimate()
510  //
513  const cv::Mat& points1,
514  const cv::Mat& points2,
515  const cv::Size& image_size)
516  {
517  double pitch = 0.0;
518  double roll = 0.0;
520  points2,
521  image_size,
522  pitch,
523  roll);
524 
525  if (!T.empty())
526  {
527  LoadNewData(pitch, roll);
528  ComputeStats();
529  }
530  }
531 
533  //
534  // GetMeanPitchAndRoll()
535  //
538  double& roll)
539  {
540  pitch = mean_pitch_;
541  roll = mean_roll_;
542 
543  return pitches_.size() > 0;
544  }
545 
547  //
548  // GetMedianPitchAndRoll()
549  //
552  double& roll)
553  {
554  pitch = median_pitch_;
555  roll = median_roll_;
556 
557  return pitches_.size() > 0;
558  }
559 
560 
562  //
563  // LoadNewData()
564  //
567  double new_roll)
568  {
569  pitches_.push_back(new_pitch);
570  rolls_.push_back(new_roll);
571  ComputeStats();
572  }
573 
575  //
576  // ComputeStats()
577  //
580  {
581  mean_pitch_ = 0.0;
582  mean_roll_ = 0.0;
583  median_pitch_ = 0.0;
584  median_roll_ = 0.0;
585 
586  if (pitches_.empty())
587  {
588  return;
589  }
590 
591  std::vector<double> temp_pitch;
592  std::vector<double> temp_roll;
593  temp_pitch.assign(pitches_.begin(), pitches_.end());
594  temp_roll.assign(rolls_.begin(), rolls_.end());
595 
596  std::sort(temp_pitch.begin(), temp_pitch.end());
597  std::sort(temp_roll.begin(), temp_roll.end());
598 
599  double pitch_sum = 0.0;
600  double roll_sum = 0.0;
601 
602  for (int32_t i = 0; i < (int32_t)temp_pitch.size(); ++i)
603  {
604  pitch_sum += temp_pitch[i];
605  roll_sum += temp_roll[i];
606  }
607 
608  double N = static_cast<double>(temp_pitch.size());
609  mean_pitch_ = pitch_sum / N;
610  mean_roll_ = roll_sum / N;
611 
612  int32_t mid_idx = static_cast<int32_t>(temp_pitch.size() - 1) / 2;
613  if (temp_pitch.size() % 2 == 0)
614  {
615  median_pitch_ = (temp_pitch[mid_idx] + temp_pitch[mid_idx + 1]) / 2.0;
616  median_roll_ = (temp_roll[mid_idx] + temp_roll[mid_idx + 1]) / 2.0;
617  }
618  else
619  {
620  median_pitch_ = temp_pitch[mid_idx];
621  median_roll_ = temp_roll[mid_idx];
622  }
623  }
624 }
swri_image_util::PitchAndRollEstimatorQueue::GenerateNewEstimate
void GenerateNewEstimate(const cv::Mat &points1, const cv::Mat &points2, const cv::Size &image_size)
Estimates pitch and roll from corresponding points and loads the pitch and roll data onto the buffer.
Definition: image_warp_util.cpp:512
swri_image_util::ConvertMatches
void ConvertMatches(const std::vector< cv::KeyPoint > &kp1, const std::vector< cv::KeyPoint > &kp2, const std::vector< cv::DMatch > &matches, cv::Mat &kp1_out, cv::Mat &kp2_out)
Converts keypoints and matches into two cv::Mats in which the the matching keypoints from kp1 and kp2...
Definition: image_matching.cpp:109
swri_image_util::PitchAndRollEstimator::im2_
cv::Mat im2_
Definition: image_warp_util.h:139
swri_image_util::GetFundamentalInliers
void GetFundamentalInliers(const cv::Mat points1, const cv::Mat points2, cv::Mat &fundamental_matrix, cv::Mat &inliers1, cv::Mat &inliers2, double max_distance=1.0, double confidence=0.99)
Computes the fundamental matrix for a set of matching points in two different images....
Definition: image_matching.cpp:43
swri_image_util::PitchAndRollEstimator::im1_
cv::Mat im1_
Definition: image_warp_util.h:138
swri_image_util::WarpImage
cv::Mat WarpImage(const cv::Mat &image, double roll, double pitch)
Definition: image_warp_util.cpp:37
swri_image_util::PitchAndRollEstimatorQueue::median_pitch_
double median_pitch_
Definition: image_warp_util.h:302
swri_image_util::PitchAndRollEstimator::kp2_matched_
cv::Mat kp2_matched_
Definition: image_warp_util.h:150
swri_image_util::PitchAndRollEstimatorQueue::ComputeStats
void ComputeStats()
Computes the statistics on the data in the buffers.
Definition: image_warp_util.cpp:579
swri_image_util::PitchAndRollEstimatorQueue::pitches_
boost::circular_buffer< double > pitches_
Definition: image_warp_util.h:297
swri_image_util
Definition: draw_util.h:37
swri_image_util::PitchAndRollEstimator::kp2_
std::vector< cv::KeyPoint > kp2_
Definition: image_warp_util.h:145
swri_image_util::PitchAndRollEstimatorQueue::median_roll_
double median_roll_
Definition: image_warp_util.h:303
swri_image_util::GetR
cv::Mat GetR(double pitch, double roll, double yaw=0.0)
Gets the rotation matrix associated with the specified pitch and roll values.
Definition: image_warp_util.cpp:116
swri_image_util::PitchAndRollEstimatorQueue::GetMeanPitchAndRoll
bool GetMeanPitchAndRoll(double &pitch, double &roll)
Computes the mean pitch and roll.
Definition: image_warp_util.cpp:537
swri_image_util::PitchAndRollEstimator::EstimateTransforms
static bool EstimateTransforms(cv::Mat &pts1, cv::Mat &pts2, cv::Mat &T_affine, cv::Mat &T_rigid, double &rms_error)
Estimates the "nearest" rigid, and corresponding full affine transformation for a set of matching poi...
Definition: image_warp_util.cpp:360
swri_image_util::PitchAndRollEstimatorQueue::Clear
void Clear()
Clears the buffer.
Definition: image_warp_util.cpp:499
swri_image_util::PitchAndRollEstimator::WarpPoints
void WarpPoints(double pitch, double roll, const cv::Mat &pts_in, cv::Mat &pts_out)
Warps a matrix of points (in the same form as the inliers)
Definition: image_warp_util.cpp:391
swri_image_util::PitchAndRollEstimator::K_
cv::Mat K_
Definition: image_warp_util.h:141
swri_image_util::PitchAndRollEstimator::ComputeGeometricMatches
bool ComputeGeometricMatches()
Matches keypoints using loose geometric constraints and stores them in kp1_matched_ and kp2_matched_.
Definition: image_warp_util.cpp:299
ros::WallTime::now
static WallTime now()
swri_image_util::PitchAndRollEstimatorQueue::rolls_
boost::circular_buffer< double > rolls_
Definition: image_warp_util.h:298
swri_opencv_util::FindRigidTransform2d
cv::Mat FindRigidTransform2d(const cv::Mat &points1, const cv::Mat &points2, cv::Mat &inliers1, cv::Mat &inliers2, std::vector< uint32_t > &good_points, int32_t &iterations, double max_error=1.0, double confidence=0.9, int32_t max_iterations=1000, swri_math_util::RandomGeneratorPtr rng=swri_math_util::RandomGeneratorPtr())
image_warp_util.h
swri_image_util::PitchAndRollEstimator::WarpAffinePoints
void WarpAffinePoints(const cv::Mat &T, const cv::Mat &pts_in, cv::Mat &pts_out)
Warps a matrix of points (in the same form as the inliers)
Definition: image_warp_util.cpp:411
swri_image_util::PitchAndRollEstimator::kp1_
std::vector< cv::KeyPoint > kp1_
Definition: image_warp_util.h:144
swri_image_util::PitchAndRollEstimator::EstimateNominalAngle
cv::Mat EstimateNominalAngle(double &nominal_pitch, double &nominal_roll, bool show_image_diff=false)
Estimates the nominal pitch and roll of the camera (from perfectly vertical) from two overlapping ima...
Definition: image_warp_util.cpp:145
ros::WallTime
model_fit.h
swri_image_util::PitchAndRollEstimator::warper_
cv::detail::PlaneWarper warper_
Definition: image_warp_util.h:152
swri_image_util::PitchAndRollEstimatorQueue::mean_pitch_
double mean_pitch_
Definition: image_warp_util.h:300
swri_image_util::PitchAndRollEstimator::T_
cv::Mat T_
Definition: image_warp_util.h:142
swri_image_util::PitchAndRollEstimatorQueue::mean_roll_
double mean_roll_
Definition: image_warp_util.h:301
swri_image_util::PitchAndRollEstimator::kp1_matched_
cv::Mat kp1_matched_
Definition: image_warp_util.h:149
swri_image_util::WarpPoints
void WarpPoints(double pitch, double roll, const cv::Size &image_size, const cv::Mat &pts_in, cv::Mat &pts_out)
Definition: image_warp_util.cpp:60
swri_image_util::PitchAndRollEstimatorQueue::WarpPoints
void WarpPoints(const cv::Mat &points_in, cv::Mat &points_out, const cv::Size &image_size, bool use_median=true)
Warps points based on the stored estimated pitch and roll.
Definition: image_warp_util.cpp:475
ROS_ERROR
#define ROS_ERROR(...)
swri_image_util::PitchAndRollEstimatorQueue::GetMedianPitchAndRoll
bool GetMedianPitchAndRoll(double &pitch, double &roll)
Computes the median pitch and roll.
Definition: image_warp_util.cpp:551
swri_opencv_util::FindAffineTransform2d
cv::Mat FindAffineTransform2d(const cv::Mat &points1, const cv::Mat &points2, cv::Mat &inliers1, cv::Mat &inliers2, std::vector< uint32_t > &good_points, int32_t &iterations, double max_error=1.0, double confidence=0.9, int32_t max_iterations=1000, swri_math_util::RandomGeneratorPtr rng=swri_math_util::RandomGeneratorPtr())
swri_image_util::PitchAndRollEstimatorQueue::SetBufferSize
void SetBufferSize(int32_t buff_size=50)
Sets the circular buffer capacity for computing statistics.
Definition: image_warp_util.cpp:463
swri_image_util::PitchAndRollEstimatorQueue::LoadNewData
void LoadNewData(double new_pitch, double new_roll)
Loads new pitch and roll data directly onto the buffer.
Definition: image_warp_util.cpp:566
swri_image_util::PitchAndRollEstimator::descriptors1_
cv::Mat descriptors1_
Definition: image_warp_util.h:146
ROS_INFO
#define ROS_INFO(...)
swri_image_util::PitchAndRollEstimatorQueue::PitchAndRollEstimatorQueue
PitchAndRollEstimatorQueue()
Constructor.
Definition: image_warp_util.cpp:452
swri_image_util::PitchAndRollEstimator::descriptors2_
cv::Mat descriptors2_
Definition: image_warp_util.h:147


swri_image_util
Author(s): Kris Kozak
autogenerated on Fri Aug 2 2024 08:39:19