test_KalmanFilter.py
Go to the documentation of this file.
1 """
2 GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
3 Atlanta, Georgia 30332-0415
4 All Rights Reserved
5 
6 See LICENSE for the license information
7 
8 KalmanFilter unit tests.
9 Author: Frank Dellaert & Duy Nguyen Ta (Python)
10 """
11 import unittest
12 
13 import numpy as np
14 
15 import gtsam
16 from gtsam.utils.test_case import GtsamTestCase
17 
18 
20 
21  def test_KalmanFilter(self):
22  """
23  Kalman Filter Definitions:
24  F - State Transition Model
25  B - Control Input Model
26  u - Control Vector
27  modelQ - Covariance of the process Noise (input for KalmanFilter object) - sigma as input
28  Q - Covariance of the process Noise (for reference calculation) - sigma^2 as input
29  H - Observation Model
30  z1 - Observation iteration 1
31  z2 - Observation iteration 2
32  z3 - observation iteration 3
33  modelR - Covariance of the observation Noise (input for KalmanFilter object) - sigma as input
34  R - Covariance of the observation Noise (for reference calculation) - sigma^2 as input
35  """
36 
37  F = np.eye(2)
38  B = np.eye(2)
39  u = np.array([1.0, 0.0])
40  modelQ = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.1]))
41  Q = 0.01 * np.eye(2)
42  H = np.eye(2)
43  z1 = np.array([1.0, 0.0])
44  z2 = np.array([2.0, 0.0])
45  z3 = np.array([3.0, 0.0])
46  modelR = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.1]))
47  R = 0.01 * np.eye(2)
48 
49  # Create the set of expected output TestValues
50  expected0 = np.array([0.0, 0.0])
51  P00 = 0.01 * np.eye(2)
52 
53  expected1 = np.array([1.0, 0.0])
54  P01 = P00 + Q
55  I11 = np.linalg.inv(P01) + np.linalg.inv(R)
56 
57  expected2 = np.array([2.0, 0.0])
58  P12 = np.linalg.inv(I11) + Q
59  I22 = np.linalg.inv(P12) + np.linalg.inv(R)
60 
61  expected3 = np.array([3.0, 0.0])
62  P23 = np.linalg.inv(I22) + Q
63  I33 = np.linalg.inv(P23) + np.linalg.inv(R)
64 
65  # Create an KalmanFilter object
66  KF = gtsam.KalmanFilter(n=2)
67 
68  # Create the Kalman Filter initialization point
69  x_initial = np.array([0.0, 0.0])
70  P_initial = 0.01 * np.eye(2)
71 
72  # Create an KF object
73  state = KF.init(x_initial, P_initial)
74  self.assertTrue(np.allclose(expected0, state.mean()))
75  self.assertTrue(np.allclose(P00, state.covariance()))
76 
77  # Run iteration 1
78  state = KF.predict(state, F, B, u, modelQ)
79  self.assertTrue(np.allclose(expected1, state.mean()))
80  self.assertTrue(np.allclose(P01, state.covariance()))
81  state = KF.update(state, H, z1, modelR)
82  self.assertTrue(np.allclose(expected1, state.mean()))
83  self.assertTrue(np.allclose(I11, state.information()))
84 
85  # Run iteration 2
86  state = KF.predict(state, F, B, u, modelQ)
87  self.assertTrue(np.allclose(expected2, state.mean()))
88  state = KF.update(state, H, z2, modelR)
89  self.assertTrue(np.allclose(expected2, state.mean()))
90 
91  # Run iteration 3
92  state = KF.predict(state, F, B, u, modelQ)
93  self.assertTrue(np.allclose(expected3, state.mean()))
94  state = KF.update(state, H, z3, modelR)
95  self.assertTrue(np.allclose(expected3, state.mean()))
96 
97 if __name__ == "__main__":
98  unittest.main()
gtsam::noiseModel::Diagonal::Sigmas
static shared_ptr Sigmas(const Vector &sigmas, bool smart=true)
Definition: NoiseModel.cpp:291
test_KalmanFilter.TestKalmanFilter.test_KalmanFilter
def test_KalmanFilter(self)
Definition: test_KalmanFilter.py:21
gtsam::utils.test_case
Definition: test_case.py:1
test_KalmanFilter.TestKalmanFilter
Definition: test_KalmanFilter.py:19
gtsam::KalmanFilter
Definition: KalmanFilter.h:41
gtsam::utils.test_case.GtsamTestCase
Definition: test_case.py:15


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:07:05