schur_complex.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <limits>
12 #include <Eigen/Eigenvalues>
13 
14 template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
15 {
16  typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
17  typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
18 
19  // Test basic functionality: T is triangular and A = U T U*
20  for(int counter = 0; counter < g_repeat; ++counter) {
21  MatrixType A = MatrixType::Random(size, size);
24  ComplexMatrixType U = schurOfA.matrixU();
25  ComplexMatrixType T = schurOfA.matrixT();
26  for(int row = 1; row < size; ++row) {
27  for(int col = 0; col < row; ++col) {
28  VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
29  }
30  }
31  VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
32  }
33 
34  // Test asserts when not initialized
35  ComplexSchur<MatrixType> csUninitialized;
36  VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
37  VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
38  VERIFY_RAISES_ASSERT(csUninitialized.info());
39 
40  // Test whether compute() and constructor returns same result
41  MatrixType A = MatrixType::Random(size, size);
43  cs1.compute(A);
47  VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
48  VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
49 
50  // Test maximum number of iterations
54  VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
55  VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
56  cs3.setMaxIterations(1).compute(A);
59 
60  MatrixType Atriangular = A;
61  Atriangular.template triangularView<StrictlyLower>().setZero();
62  cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
64  VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
65  VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
66 
67  // Test computation of only T, not U
68  ComplexSchur<MatrixType> csOnlyT(A, false);
69  VERIFY_IS_EQUAL(csOnlyT.info(), Success);
70  VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
71  VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
72 
73  if (size > 1 && size < 20)
74  {
75  // Test matrix with NaN
76  A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
79  }
80 }
81 
82 EIGEN_DECLARE_TEST(schur_complex)
83 {
84  CALL_SUBTEST_1(( schur<Matrix4cd>() ));
85  CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
86  CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
88 
89  // Test problem size constructors
91 }
Eigen::ComplexSchur::setMaxIterations
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: ComplexSchur.h:228
col
m col(1)
MatrixType
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
Eigen::ComplexSchur::matrixT
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition: ComplexSchur.h:162
schur
void schur(int size=MatrixType::ColsAtCompileTime)
Definition: schur_complex.cpp:14
Eigen::Success
@ Success
Definition: Constants.h:442
T
Eigen::Triplet< double > T
Definition: Tutorial_sparse_example.cpp:6
schurOfA
cout<< "Here is a random 4x4 matrix, A:"<< endl<< A<< endl<< endl;ComplexSchur< MatrixXcf > schurOfA(A, false)
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(schur_complex)
Definition: schur_complex.cpp:82
VERIFY_RAISES_ASSERT
#define VERIFY_RAISES_ASSERT(a)
Definition: main.h:340
A
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:48
size
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
Eigen::ComplexSchur::getMaxIterations
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: ComplexSchur.h:235
CALL_SUBTEST_4
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22
Eigen::ComplexSchur::info
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: ComplexSchur.h:217
CALL_SUBTEST_3
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
CALL_SUBTEST_1
#define CALL_SUBTEST_1(FUNC)
Definition: split_test_helper.h:4
Eigen::NoConvergence
@ NoConvergence
Definition: Constants.h:446
CALL_SUBTEST_5
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
Eigen::g_repeat
static int g_repeat
Definition: main.h:169
Eigen::Triplet< double >
CALL_SUBTEST_2
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
VERIFY_IS_APPROX
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:15
Eigen::ComplexSchur::compute
ComplexSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
main.h
Eigen::ComplexSchur::matrixU
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition: ComplexSchur.h:138
row
m row(1)
EIGEN_TEST_MAX_SIZE
#define EIGEN_TEST_MAX_SIZE
Definition: boostmultiprec.cpp:16
U
@ U
Definition: testDecisionTree.cpp:349
Eigen::Matrix
The matrix class, also used for vectors and row-vectors.
Definition: 3rdparty/Eigen/Eigen/src/Core/Matrix.h:178
Eigen::ComplexSchur
Performs a complex Schur decomposition of a real or complex square matrix.
Definition: ComplexSchur.h:51
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
VERIFY
#define VERIFY(a)
Definition: main.h:380


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:04:02