GeodesicExactC4.cpp
Go to the documentation of this file.
1 
16 
17 namespace GeographicLib {
18 
19  using namespace std;
20 
21  // If the coefficient is greater or equal to 2^63, express it as a pair [a,
22  // b] which is combined with a*2^52 + b. The largest coefficient is
23  // 831281402884796906843926125 = 0x2af9eaf25d149c52a73ee6d
24  // = 184581550685 * 2^52 + 0x149c52a73ee6d which is less than 2^90. Both a
25  // and b are less that 2^52 and so are exactly representable by doubles; then
26  // the computation of the full double coefficient involves only a single
27  // rounding operation. (Actually integers up to and including 2^53 can be
28  // represented exactly as doubles. Limiting b to 52 bits allows it to be
29  // represented in 13 digits in hex.)
30 
31  // If the coefficient is less than 2^63, cast it to real if it isn't exactly
32  // representable as a float. Thus 121722048 = 1901907*2^6 and 1901907 < 2^24
33  // so the cast is not needed; 21708121824 = 678378807*2^5 and 678378807 >=
34  // 2^24 so the cast is needed.
35 
37  // Generated by Maxima on 2017-05-27 10:17:57-04:00
38 #if GEOGRAPHICLIB_GEODESICEXACT_ORDER == 24
39  static const real coeff[] = {
40  // C4[0], coeff of eps^23, polynomial in n of order 0
41  2113,real(34165005),
42  // C4[0], coeff of eps^22, polynomial in n of order 1
43  5189536,1279278,real(54629842995LL),
44  // C4[0], coeff of eps^21, polynomial in n of order 2
45  real(19420000),-9609488,7145551,real(87882790905LL),
46  // C4[0], coeff of eps^20, polynomial in n of order 3
47  real(223285780800LL),-real(146003016320LL),real(72167144896LL),
48  real(17737080900LL),real(0x205dc0bcbd6d7LL),
49  // C4[0], coeff of eps^19, polynomial in n of order 4
50  real(0x4114538e4c0LL),-real(0x2f55bac3db0LL),real(0x1ee26e63c60LL),
51  -real(0xf3f108c690LL),real(777582423783LL),real(0x19244124e56e27LL),
52  // C4[0], coeff of eps^18, polynomial in n of order 5
53  real(0x303f35e1bc93a0LL),-real(0x24e1f056b1d580LL),
54  real(0x1ab9fe0d1d4d60LL),-real(0x1164c583e996c0LL),
55  real(0x892da1e80cb20LL),real(0x2194519fdb596LL),
56  reale(3071,0xfdd7cc41833d5LL),
57  // C4[0], coeff of eps^17, polynomial in n of order 6
58  real(0x4aad22c875ed20LL),-real(0x3a4801a1c6bad0LL),
59  real(0x2c487fb318d4c0LL),-real(0x1ff24d7cfd75b0LL),
60  real(0x14ba39245f1460LL),-real(0xa32e190328e90LL),
61  real(0x78c93074dfcffLL),reale(3071,0xfdd7cc41833d5LL),
62  // C4[0], coeff of eps^16, polynomial in n of order 7
63  real(0x33d84b92096e100LL),-real(0x286d35d824ffe00LL),
64  real(0x1f3d33e2e951300LL),-real(0x178f58435181400LL),
65  real(0x10e7992a3756500LL),-real(0xaed7fa8609aa00LL),
66  real(0x55d8ac87b09700LL),real(0x14e51e43945a10LL),
67  reale(21503,0xf0e695ca96ad3LL),
68  // C4[0], coeff of eps^15, polynomial in n of order 8
69  real(0x577cdb6aaee0d80LL),-real(0x4283c1e96325470LL),
70  real(0x32feef20b794020LL),-real(0x26ea2e388de1a50LL),
71  real(0x1d13f6131e5d6c0LL),-real(0x14b9aa66e270230LL),
72  real(0xd5657196ac0560LL),-real(0x6880b0118a9810LL),
73  real(0x4d0f1755168ee7LL),reale(21503,0xf0e695ca96ad3LL),
74  // C4[0], coeff of eps^14, polynomial in n of order 9
75  real(0xa82410caed14920LL),-real(0x774e0539d2de300LL),
76  real(0x57ddc01c62bc8e0LL),-real(0x41de50dfff43e40LL),
77  real(0x31742450a1bdca0LL),-real(0x248524531975180LL),
78  real(0x19d013c6e35ec60LL),-real(0x1084c003a0434c0LL),
79  real(0x8103758ad86020LL),real(0x1f2409edf5e286LL),
80  reale(21503,0xf0e695ca96ad3LL),
81  // C4[0], coeff of eps^13, polynomial in n of order 10
82  real(0x1c6d2d6120015ca0LL),-real(0x104cedef383403b0LL),
83  real(0xab9dd58c3e3d880LL),-real(0x78a4e83e5604750LL),
84  real(0x57aa7cf5406e460LL),-real(0x4067a93ceeb2cf0LL),
85  real(0x2ed62190d975c40LL),-real(0x20c076adcb21890LL),
86  real(0x14cfa9cb9e01c20LL),-real(0xa1e25734956e30LL),
87  real(0x76afbfe4ae6c4dLL),reale(21503,0xf0e695ca96ad3LL),
88  // C4[0], coeff of eps^12, polynomial in n of order 11
89  real(0x500e39e18e75c40LL),-real(0xb866fe4aaa63680LL),
90  real(0x4337db32e526ac0LL),-real(0x264cce8c21af200LL),
91  real(0x18fb7ba247a4140LL),-real(0x115709558576d80LL),
92  real(0xc5be96cd3dcfc0LL),-real(0x8cdca1395db900LL),
93  real(0x611fe1a7e00640LL),-real(0x3d26e46827e480LL),
94  real(0x1d93970a8fd4c0LL),real(0x70bf87cc17354LL),
95  reale(3071,0xfdd7cc41833d5LL),
96  // C4[0], coeff of eps^11, polynomial in n of order 12
97  -real(0x158a522ca96a9f40LL),real(0x14d4e49882e048f0LL),
98  real(0x51a6258bc6026a0LL),-real(0xc07af3677bdc6b0LL),
99  real(0x45ac09bc3b66080LL),-real(0x275e4ef59a8b450LL),
100  real(0x195f928e5402a60LL),-real(0x114aa7eeb31a3f0LL),
101  real(0xbf706c784da040LL),-real(0x817ec7d97ab990LL),
102  real(0x508b8ca80cde20LL),-real(0x26b120ea091930LL),
103  real(0x1c1ab3faf18ecdLL),reale(3071,0xfdd7cc41833d5LL),
104  // C4[0], coeff of eps^10, polynomial in n of order 13
105  real(0x85cd94c7a43620LL),real(0x41534458719f180LL),
106  -real(0x1688b497e3eabf20LL),real(0x15fa3ad6bcd8bd40LL),
107  real(0x531c27984875fa0LL),-real(0xc9b33381ee39f00LL),
108  real(0x485a2b8a7ad1a60LL),-real(0x286be979df41b40LL),
109  real(0x199b6e19072f920LL),-real(0x10f769bc7a1af80LL),
110  real(0xb2b30e0b2b83e0LL),-real(0x6d4c30bc0953c0LL),
111  real(0x3405b9397b42a0LL),real(0xc1ffd0ada51beLL),
112  reale(3071,0xfdd7cc41833d5LL),
113  // C4[0], coeff of eps^9, polynomial in n of order 14
114  real(0x77c3b2fb788360LL),real(0x12370e8b6ebba50LL),
115  real(0x3ce89570a2d35c0LL),real(0x1ddd463aa5801f30LL),
116  -reale(2652,0xb61760f09fe0LL),reale(2613,0x24df88b461210LL),
117  real(0x24dea39341926e80LL),-real(0x5ce704fae2f44110LL),
118  real(0x20ecef343dc3cce0LL),-real(0x121947a4ab4bae30LL),
119  real(0xb2a76f84c78e740LL),-real(0x70dd3a5c9a20950LL),
120  real(0x43604f2667d29a0LL),-real(0x1fa7f2abdd82670LL),
121  real(0x169d55eb03244c1LL),reale(21503,0xf0e695ca96ad3LL),
122  // C4[0], coeff of eps^8, polynomial in n of order 15
123  real(0x21331eec152c80LL),real(0x3c94fa87392d00LL),
124  real(0x7bff534019c580LL),real(0x12eee208e5fe200LL),
125  real(0x3f965ae4945ee80LL),real(0x1f56cb06e4e85700LL),
126  -reale(2802,0x46e8e19f880LL),reale(2796,0xadb20bd4ec00LL),
127  real(0x251d0efe774e7080LL),-real(0x625b74d58e27ff00LL),
128  real(0x224674d7e8ab8980LL),-real(0x1260f3bdc69c0a00LL),
129  real(0xad7256a98d1b280LL),-real(0x63bd65ce944d500LL),
130  real(0x2df89c0cd0d4b80LL),real(0xa46618fc50ff08LL),
131  reale(21503,0xf0e695ca96ad3LL),
132  // C4[0], coeff of eps^7, polynomial in n of order 16
133  real(0xcb641c2517300LL),real(0x1435342f6c1790LL),
134  real(0x2223c168d902a0LL),real(0x3e90a70fac72b0LL),
135  real(0x80a310c4f84640LL),real(0x13bcb7c20d40bd0LL),
136  real(0x42a5540b0e391e0LL),real(0x210e40977bd376f0LL),
137  -reale(2980,0x94d9def1cc680LL),reale(3022,0x503caf61c4810LL),
138  real(0x24d397da2b859120LL),-real(0x68d822cc2f04ecd0LL),
139  real(0x23a043b28810ecc0LL),-real(0x125159fafe6e93b0LL),
140  real(0x9e1bc8a31f5a060LL),-real(0x46aed7b45d01890LL),
141  real(0x30c71f0f146542fLL),reale(21503,0xf0e695ca96ad3LL),
142  // C4[0], coeff of eps^6, polynomial in n of order 17
143  real(0x5c9c64c833ea0LL),real(0x87cba49bc6200LL),real(0xcee016a8ff560LL),
144  real(0x14a860e941a1c0LL),real(0x231567934bf020LL),
145  real(0x40a648fc642980LL),real(0x85b2123b2c36e0LL),
146  real(0x14a4159e5b98140LL),real(0x462d226dee7d1a0LL),
147  real(0x2316888f6f2f3100LL),-reale(3198,0x3491a799c37a0LL),
148  reale(3311,0xbf8f265e6c0c0LL),real(0x2372de10575f2320LL),
149  -real(0x70af5543c56e4780LL),real(0x24bbd6e6395ee9e0LL),
150  -real(0x116009bab4325fc0LL),real(0x75b7dfa9c5a24a0LL),
151  real(0x17de90e4beab49eLL),reale(21503,0xf0e695ca96ad3LL),
152  // C4[0], coeff of eps^5, polynomial in n of order 18
153  real(0x6a525328e6e0LL),real(0x93f17033fb30LL),real(0xd36a04706f00LL),
154  real(0x137db4aaadad0LL),real(0x1de17febed720LL),real(0x300ece09a4c70LL),
155  real(0x5230537724340LL),real(0x98911a7bab410LL),real(0x13df6f0042d760LL),
156  real(0x317f809c6f75b0LL),real(0xa9d28ba9acb780LL),
157  real(0x55d121ad9d8f550LL),-real(0x1efee1555125f860LL),
158  real(0x21073529064696f0LL),real(0x486394f46ccebc0LL),
159  -real(0x11777145e6374170LL),real(0x54159fc268987e0LL),
160  -real(0x1fa4dd5835d2fd0LL),real(0x13d87fc86cca643LL),
161  reale(3071,0xfdd7cc41833d5LL),
162  // C4[0], coeff of eps^4, polynomial in n of order 19
163  real(0x3804d31f10c0LL),real(0x4b2ec20ad280LL),real(0x66f0ea418040LL),
164  real(0x903f2204b400LL),real(0xcfad72d447c0LL),real(0x134cb9fa41580LL),
165  real(0x1dd70e331b740LL),real(0x306dd8a084700LL),real(0x53a0a0b201ec0LL),
166  real(0x9cd7c33c89880LL),real(0x14a7b599a9ce40LL),
167  real(0x340e256f2c5a00LL),real(0xb4e7d2cf7515c0LL),
168  real(0x5cc8e678862db80LL),-real(0x22304c48df63bac0LL),
169  real(0x25f7d3a888bb6d00LL),real(0x3210c8a6905acc0LL),
170  -real(0x131873ea3222a180LL),real(0x4a33217f63b9c40LL),
171  real(0xaa39109cb79b1cLL),reale(3071,0xfdd7cc41833d5LL),
172  // C4[0], coeff of eps^3, polynomial in n of order 20
173  real(0x1d8a60744340LL),real(0x26a12f47d0f0LL),real(0x3353c9ffe420LL),
174  real(0x4570fd193850LL),real(0x5fe8194aa900LL),real(0x87a7057de1b0LL),
175  real(0xc54ab4558de0LL),real(0x12897a64b8910LL),real(0x1d013b7f18ec0LL),
176  real(0x2fb033b96ea70LL),real(0x5384f3e45a7a0LL),real(0x9f10eb531c1d0LL),
177  real(0x154d17c994d480LL),real(0x36ab828088cb30LL),
178  real(0xc1d47f99841160LL),real(0x65b5717bb21c290LL),
179  -real(0x269fd1ef6edfa5c0LL),real(0x2dc2d3f3f9f963f0LL),
180  -real(0xf46c321c1b54e0LL),-real(0x14642b52c5fe94b0LL),
181  real(0x6b46a122c3b5c05LL),reale(3071,0xfdd7cc41833d5LL),
182  // C4[0], coeff of eps^2, polynomial in n of order 21
183  real(0x65e46db33460LL),real(0x82b39a7b3380LL),real(0xa9e8c6cf36a0LL),
184  real(0xe0317d0fa0c0LL),real(0x12cd0399df4e0LL),real(0x19b576ed17600LL),
185  real(0x23ecb07d1c720LL),real(0x33785d3e48b40LL),real(0x4bedad56b0560LL),
186  real(0x73f4d1eccb880LL),real(0xb8a5a1bdc07a0LL),real(0x1359aad161d5c0LL),
187  real(0x22a518d96d25e0LL),real(0x43a50f3643bb00LL),
188  real(0x95133a4d60b820LL),real(0x18b02de0f4e4040LL),
189  real(0x5ac287501571660LL),real(0x31a5fa2db58d3d80LL),
190  -reale(5087,0xbd2e8f8d6760LL),reale(6752,0x2ce8487308ac0LL),
191  -reale(2184,0x86ffdb3446920LL),-real(0x199994ff919cd3b6LL),
192  reale(21503,0xf0e695ca96ad3LL),
193  // C4[0], coeff of eps^1, polynomial in n of order 22
194  real(0xd0da1980ba0LL),real(0x10803fb20d70LL),real(0x151a70ced0c0LL),
195  real(0x1b569dc61a10LL),real(0x23ecd2ce6de0LL),real(0x2ff80cba60b0LL),
196  real(0x413672596700LL),real(0x5a7b8b75a550LL),real(0x8082f2984020LL),
197  real(0xbb859b75abf0LL),real(0x11a6bf1637d40LL),real(0x1b9a143813890LL),
198  real(0x2d2aacb8da260LL),real(0x4e2c5253a0f30LL),real(0x914a9e2ed3380LL),
199  real(0x128a302f4ef3d0LL),real(0x2b2226f5e6b4a0LL),
200  real(0x7a36190e0daa70LL),real(0x1e8d8643836a9c0LL),
201  real(0x129e3dd12414f710LL),-reale(2184,0x86ffdb3446920LL),
202  reale(3276,0xca7fc8ce69db0LL),-real(0x5999897e7da4e4fdLL),
203  reale(7167,0xfaf78743878f1LL),
204  // C4[0], coeff of eps^0, polynomial in n of order 23
205  real(0x71a68037fdf14LL),real(0x81ebac5d53b48LL),real(0x957440e8ac5fcLL),
206  real(0xad1ce56088670LL),real(0xca0c260c189e4LL),real(0xedd10e292f598LL),
207  real(0x11a912af9e18ccLL),real(0x1534f4af92bec0LL),
208  real(0x19c5b078ed00b4LL),real(0x1fc05a701dd7e8LL),
209  real(0x27bd1031afaf9cLL),real(0x32a7dc61183710LL),
210  real(0x41fc58560eb384LL),real(0x583759590a1238LL),
211  real(0x79bd058a3bfa6cLL),real(0xaecdc650561f60LL),
212  real(0x108312ea2251254LL),real(0x1abbd57b12fd488LL),
213  real(0x2fbd21c97d5693cLL),real(0x634bf45b6b1a7b0LL),
214  real(0x11110dffb6688d24LL),real(0x666653fe46734ed8LL),
215  -reale(5734,0x625f9f69393f4LL),reale(14335,0xf5ef0e870f1e2LL),
216  reale(21503,0xf0e695ca96ad3LL),
217  // C4[1], coeff of eps^23, polynomial in n of order 0
218  3401,real(512475075),
219  // C4[1], coeff of eps^22, polynomial in n of order 1
220  -5479232,3837834,real(163889528985LL),
221  // C4[1], coeff of eps^21, polynomial in n of order 2
222  -real(1286021216),real(571443856),real(142575393),real(0xef8343fb2e1LL),
223  // C4[1], coeff of eps^20, polynomial in n of order 3
224  -real(237999188352LL),real(138477414656LL),-real(77042430080LL),
225  real(53211242700LL),real(0x6119423638485LL),
226  // C4[1], coeff of eps^19, polynomial in n of order 4
227  -real(0x2066cb6031fc0LL),real(0x14c85e7394470LL),-real(0xf6b8f35571e0LL),
228  real(0x6ad3f08040d0LL),real(0x1aa3b2832565LL),real(0x230f8ed873f29c63LL),
229  // C4[1], coeff of eps^18, polynomial in n of order 5
230  -real(0x33e9644cad5b40LL),real(0x22b6849ca6a500LL),
231  -real(0x1ce364ad2a4ec0LL),real(0x104aaed8cf4680LL),
232  -real(0x949f0f8a89e40LL),real(0x64bcf4df920c2LL),
233  reale(9215,0xf98764c489b7fLL),
234  // C4[1], coeff of eps^17, polynomial in n of order 6
235  -real(0x50a85b2e2e4060LL),real(0x36bb9aa442c6f0LL),
236  -real(0x3029aafbbe0440LL),real(0x1dc29c0bd6ce90LL),
237  -real(0x16a422844d9020LL),real(0x9763b8d8ca030LL),
238  real(0x25b8d7edff7ebLL),reale(9215,0xf98764c489b7fLL),
239  // C4[1], coeff of eps^16, polynomial in n of order 7
240  -real(0x3822c174e5c7e00LL),real(0x25fbaf973d78c00LL),
241  -real(0x222a860fbdb7a00LL),real(0x15dabd7a0984800LL),
242  -real(0x129f00215535600LL),real(0xa0e9e0ae9b8400LL),
243  -real(0x5ee97a6d2d5200LL),real(0x3eaf5acabd0e30LL),
244  reale(64511,0xd2b3c15fc4079LL),
245  // C4[1], coeff of eps^15, polynomial in n of order 8
246  -real(0x5ec1dcd7666b480LL),real(0x3ed4935a3fd8cd0LL),
247  -real(0x38014f5e5d79960LL),real(0x240af6a53256570LL),
248  -real(0x2049d0fb0404a40LL),real(0x12efbc065d3f410LL),
249  -real(0xee9d804d5d8320LL),real(0x5ed209adebbcb0LL),
250  real(0x1798ea7fdd6773LL),reale(64511,0xd2b3c15fc4079LL),
251  // C4[1], coeff of eps^14, polynomial in n of order 9
252  -real(0x19f69929deb8bc0LL),real(0x1054723730b1600LL),
253  -real(0xdce6aeb616e040LL),real(0x8c0069813d6480LL),
254  -real(0x7e59f70027c8c0LL),real(0x4bea01551feb00LL),
255  -real(0x42bb28790cad40LL),real(0x21dd61f97d4180LL),
256  -real(0x14f93d4343f5c0LL),real(0xd58968a8df35eLL),
257  reale(9215,0xf98764c489b7fLL),
258  // C4[1], coeff of eps^13, polynomial in n of order 10
259  -real(0x1ecd4a3794400de0LL),real(0x101df33ec1bb0110LL),
260  -real(0xbc64ec7794b2980LL),real(0x71d5f4e2a637ff0LL),
261  -real(0x625888ecafc7520LL),real(0x3aa6879742ff4d0LL),
262  -real(0x3585f7f60d164c0LL),real(0x1d18174ef21abb0LL),
263  -real(0x18117eb39416c60LL),real(0x8df7a42ab2f090LL),
264  real(0x23413de9276581LL),reale(64511,0xd2b3c15fc4079LL),
265  // C4[1], coeff of eps^12, polynomial in n of order 11
266  -real(0x113775cb09582880LL),real(0x5790112bb17c4700LL),
267  -real(0x204e01ed2b929d80LL),real(0x1063af9e8d99cc00LL),
268  -real(0xc3ef805036ada80LL),real(0x701a56aa2d31100LL),
269  -real(0x63910631abdcf80LL),real(0x368e0c562512600LL),
270  -real(0x31ed34307286c80LL),real(0x170e89cb9dd1b00LL),
271  -real(0xf5f0efdd07a180LL),real(0x93fb623bde75e4LL),
272  reale(64511,0xd2b3c15fc4079LL),
273  // C4[1], coeff of eps^11, polynomial in n of order 12
274  real(0x13635f7860ae69c0LL),-real(0x169d904d9d4691d0LL),
275  -real(0x2254277308cd9e0LL),real(0xd20446e8d8a9710LL),
276  -real(0x4df2aedeefd1980LL),real(0x25e2aff2baec9f0LL),
277  -real(0x1d3856fa2b08920LL),real(0xf7cadc640f92d0LL),
278  -real(0xe3d2f6c9ad5cc0LL),real(0x6e412eaf297db0LL),
279  -real(0x62000ef613c860LL),real(0x201266fb021690LL),
280  real(0x7ee4c480c21e1LL),reale(9215,0xf98764c489b7fLL),
281  // C4[1], coeff of eps^10, polynomial in n of order 13
282  -real(0x5fe482817c4c40LL),-real(0x3373730b4b79d00LL),
283  real(0x140f919171472640LL),-real(0x17f10e5417ef9980LL),
284  -real(0x1b454cf244cf340LL),real(0xdd42319af5c0200LL),
285  -real(0x530205145e450c0LL),real(0x25eec00584a7d80LL),
286  -real(0x1e9e562555aaa40LL),real(0xe85806d73b2100LL),
287  -real(0xde44387c5bb7c0LL),real(0x581f06023d3480LL),
288  -real(0x421ccd71c33140LL),real(0x245ff7208ef53aLL),
289  reale(9215,0xf98764c489b7fLL),
290  // C4[1], coeff of eps^9, polynomial in n of order 14
291  -real(0x47f3709eaa4320LL),-real(0xbb640bc2e1ae70LL),
292  -real(0x2a7854a3ead7b40LL),-real(0x1701de8d91314210LL),
293  reale(2329,0x5f8472b9624a0LL),-reale(2855,0xe7c1182872fb0LL),
294  -real(0x785bf95be998780LL),real(0x66690260b30024b0LL),
295  -real(0x272595745774a3a0LL),real(0x104f772bee315710LL),
296  -real(0xe11ad02f34b53c0LL),real(0x5a192e055800370LL),
297  -real(0x58d8bfb781fbbe0LL),real(0x17a156426e4c5d0LL),
298  real(0x5c88907e67c575LL),reale(64511,0xd2b3c15fc4079LL),
299  // C4[1], coeff of eps^8, polynomial in n of order 15
300  -real(0x1138d3e7324700LL),-real(0x210a1008a4f200LL),
301  -real(0x47b7d2285e8500LL),-real(0xbbe3dba17a1400LL),
302  -real(0x2aeb63e9e4cb300LL),-real(0x1781d8a9c80b7600LL),
303  reale(2419,0xe4212c9be8f00LL),-reale(3063,0xd7c230ad9b800LL),
304  -real(0x116171a56015f00LL),real(0x6cc31b4079da8600LL),
305  -real(0x2af22cc657d11d00LL),real(0xf75e4ec12d0a400LL),
306  -real(0xeb60cc0dd754b00LL),real(0x472a49a74880200LL),
307  -real(0x4174f343c328900LL),real(0x1ed324af4f2fd18LL),
308  reale(64511,0xd2b3c15fc4079LL),
309  // C4[1], coeff of eps^7, polynomial in n of order 16
310  -real(0xd56426d4f700LL),-real(0x15fa65017d450LL),
311  -real(0x26ba18ad11e20LL),-real(0x4a9605f1a58f0LL),
312  -real(0xa2b494aee2940LL),-real(0x1ad07f38fd2390LL),
313  -real(0x62deb836d71c60LL),-real(0x36d68c47bf27830LL),
314  real(0x167d3fa4abc50480LL),-real(0x1d9b2fd161b99ad0LL),
315  real(0x13a59aea9293560LL),real(0x10886ca52ccf3090LL),
316  -real(0x6e8a4c27dbf8dc0LL),real(0x1f02cd8f1f8a5f0LL),
317  -real(0x2216230a1ac48e0LL),real(0x5f13c815b08150LL),
318  real(0x1666b06ca8f56dLL),reale(9215,0xf98764c489b7fLL),
319  // C4[1], coeff of eps^6, polynomial in n of order 17
320  -real(0x2678d0ed9f140LL),-real(0x39d0dbe263c00LL),
321  -real(0x5aa623a5216c0LL),-real(0x95d2f30c44880LL),
322  -real(0x108ea4db631840LL),-real(0x2005d27e0acd00LL),
323  -real(0x463ad5e0e22dc0LL),-real(0xba80ab02c40180LL),
324  -real(0x2b67c47d5d48f40LL),-real(0x186d6a49f7da1e00LL),
325  reale(2625,0x9832921f08b40LL),-reale(3627,0xa72ee4675a80LL),
326  real(0x17be252bac67e9c0LL),real(0x7a8f5366d9ba1100LL),
327  -real(0x38a15d77b043abc0LL),real(0x9cd4e0bf35fec80LL),
328  -real(0xceae5004f176d40LL),real(0x479bb2ae3c01ddaLL),
329  reale(64511,0xd2b3c15fc4079LL),
330  // C4[1], coeff of eps^5, polynomial in n of order 18
331  -real(0x11dc9e54dea60LL),-real(0x193ec5647cdf0LL),
332  -real(0x24bda460ceb00LL),-real(0x3760182d9a010LL),
333  -real(0x5717ea0e54ba0LL),-real(0x907095ecddc30LL),
334  -real(0x10063188dee040LL),-real(0x1f228e862f9650LL),
335  -real(0x44adcde9a37ce0LL),-real(0xb7cbf8f2d0e270LL),
336  -real(0x2b3f803c770f580LL),-real(0x18c05d008644d490LL),
337  reale(2737,0x3ce4b1d74e1e0LL),-reale(4017,0xdf79eceb980b0LL),
338  real(0x30ac41edd5123540LL),real(0x7e3ade121a8e0530LL),
339  -real(0x45ec5d28a0fecf60LL),real(0x3577aaf625fa910LL),
340  real(0x7292b77d2ccfc9LL),reale(64511,0xd2b3c15fc4079LL),
341  // C4[1], coeff of eps^4, polynomial in n of order 19
342  -real(0x14469ef39280LL),-real(0x1b74a6d65900LL),-real(0x25fc6724f380LL),
343  -real(0x35e25bf6c800LL),-real(0x4eb76c6a3c80LL),-real(0x771a92ddb700LL),
344  -real(0xbc1644489d80LL),-real(0x13946cde25600LL),
345  -real(0x22eaf36054680LL),-real(0x44349dbbbd500LL),
346  -real(0x976a625a56780LL),-real(0x1989ef99e16400LL),
347  -real(0x6150e2c16e3080LL),-real(0x38c68feccea3300LL),
348  real(0x1963a1a8e71b2e80LL),-real(0x2849f713f5ed7200LL),
349  real(0xd30bac57bb18580LL),real(0x105e1a36741daf00LL),
350  -real(0xc8c696e03b05b80LL),real(0x1feab31d626d154LL),
351  reale(9215,0xf98764c489b7fLL),
352  // C4[1], coeff of eps^3, polynomial in n of order 20
353  -real(0xa4172dfa1c0LL),-real(0xd77fb109ed0LL),-real(0x11fc3eda7860LL),
354  -real(0x1879b9235cf0LL),-real(0x2209eb95db00LL),-real(0x308bcfa5f110LL),
355  -real(0x47510fa29da0LL),-real(0x6c88ffcf6f30LL),-real(0xac6dd3019440LL),
356  -real(0x120fcca63eb50LL),-real(0x206b8121592e0LL),
357  -real(0x3fc3a9ace7970LL),-real(0x8ea4f3b556d80LL),
358  -real(0x18488ccc5b2d90LL),-real(0x5db9d9787df820LL),
359  -real(0x37d6c7544511bb0LL),real(0x1a02f9f8abfbf940LL),
360  -real(0x2d9fe91163ac57d0LL),real(0x18b01234447992a0LL),
361  real(0x46ed1c414c80a10LL),-real(0x57c56c90ceabfa7LL),
362  reale(9215,0xf98764c489b7fLL),
363  // C4[1], coeff of eps^2, polynomial in n of order 21
364  -real(0x2271f7278cc0LL),-real(0x2c3f5c6ec900LL),-real(0x399dc5a18140LL),
365  -real(0x4c2bebb96280LL),-real(0x6670101499c0LL),-real(0x8c75450f5400LL),
366  -real(0xc4e9f8733e40LL),-real(0x11b3ff75a0580LL),
367  -real(0x1a3e7cf3fd6c0LL),-real(0x2853a9e02df00LL),
368  -real(0x40b8bca6ccb40LL),-real(0x6da2a9d234880LL),
369  -real(0xc6fc7477c83c0LL),-real(0x18bdddb834aa00LL),
370  -real(0x37ff6cf7616840LL),-real(0x9a5f4811c06b80LL),
371  -real(0x25bde21729de0c0LL),-real(0x16ea24b2a28ff500LL),
372  reale(2841,0x69c686bdbaac0LL),-reale(5560,0x9d73ff6dcae80LL),
373  reale(4369,0xdffb6688d240LL),-real(0x4cccbefeb4d67b22LL),
374  reale(64511,0xd2b3c15fc4079LL),
375  // C4[1], coeff of eps^1, polynomial in n of order 22
376  -real(0xd0da1980ba0LL),-real(0x10803fb20d70LL),-real(0x151a70ced0c0LL),
377  -real(0x1b569dc61a10LL),-real(0x23ecd2ce6de0LL),-real(0x2ff80cba60b0LL),
378  -real(0x413672596700LL),-real(0x5a7b8b75a550LL),-real(0x8082f2984020LL),
379  -real(0xbb859b75abf0LL),-real(0x11a6bf1637d40LL),
380  -real(0x1b9a143813890LL),-real(0x2d2aacb8da260LL),
381  -real(0x4e2c5253a0f30LL),-real(0x914a9e2ed3380LL),
382  -real(0x128a302f4ef3d0LL),-real(0x2b2226f5e6b4a0LL),
383  -real(0x7a36190e0daa70LL),-real(0x1e8d8643836a9c0LL),
384  -real(0x129e3dd12414f710LL),reale(2184,0x86ffdb3446920LL),
385  -reale(3276,0xca7fc8ce69db0LL),real(0x5999897e7da4e4fdLL),
386  reale(64511,0xd2b3c15fc4079LL),
387  // C4[2], coeff of eps^23, polynomial in n of order 0
388  10384,real(854125125),
389  // C4[2], coeff of eps^22, polynomial in n of order 1
390  real(61416608),15713412,real(0x35f1be97217LL),
391  // C4[2], coeff of eps^21, polynomial in n of order 2
392  real(1053643008),-real(709188480),real(436906360),real(0x18f301bf7f77LL),
393  // C4[2], coeff of eps^20, polynomial in n of order 3
394  real(0x45823cb069c0LL),-real(0x3dc56cd10180LL),real(0x15b4532d4340LL),
395  real(0x5946b207ad8LL),real(0xf72bf6e15a9abe5LL),
396  // C4[2], coeff of eps^19, polynomial in n of order 4
397  real(0x1b1b08a8c6e00LL),-real(0x1a1dea5249180LL),real(0xc1b857255700LL),
398  -real(0x8a94db95d080LL),real(0x5209b9749ec8LL),
399  real(0x3a6f4368c13f04a5LL),
400  // C4[2], coeff of eps^18, polynomial in n of order 5
401  real(0x13c972f90d64d60LL),-real(0x12d8369dbbbb080LL),
402  real(0xa013fa80d7c1a0LL),-real(0x95d1a2bb4de840LL),
403  real(0x30a495fb9aa5e0LL),real(0xc95efc891d64cLL),
404  reale(107519,0xb480ecf4f161fLL),
405  // C4[2], coeff of eps^17, polynomial in n of order 6
406  real(0x4b31e4eff4bc00LL),-real(0x4190c8b5d5de00LL),
407  real(0x27770ac0842800LL),-real(0x270a0d33995200LL),
408  real(0x10c9f01b859400LL),-real(0xd056352974600LL),
409  real(0x74f9dc1f6f260LL),reale(15359,0xf536fd4790329LL),
410  // C4[2], coeff of eps^16, polynomial in n of order 7
411  real(0x39908ef33285d00LL),-real(0x2a7d467835cbe00LL),
412  real(0x1e0505551ade700LL),-real(0x1bf3204cf26d400LL),
413  real(0xe195527d96f100LL),-real(0xe0af5ccd52ea00LL),
414  real(0x41681113e87b00LL),real(0x1112b429bab2a0LL),
415  reale(107519,0xb480ecf4f161fLL),
416  // C4[2], coeff of eps^15, polynomial in n of order 8
417  real(0xf8fa0142055000LL),-real(0x8f8aa7832e8a00LL),
418  real(0x7d6f3ddfb47c00LL),-real(0x62d1e182b7be00LL),
419  real(0x3bb149eddea800LL),-real(0x3be3b3e26a7200LL),
420  real(0x175d0d17dad400LL),-real(0x14371cfc4fa600LL),
421  real(0xa8f8f5855a060LL),reale(15359,0xf536fd4790329LL),
422  // C4[2], coeff of eps^14, polynomial in n of order 9
423  real(0x21490cd145715e0LL),-real(0xe087822f191900LL),
424  real(0xf91f2bb3d29820LL),-real(0x949428c90dc2c0LL),
425  real(0x7371ad50b34a60LL),-real(0x63c52e9a850c80LL),
426  real(0x301579a22c8ca0LL),-real(0x33552a69ca1640LL),
427  real(0xcc2c8c733bee0LL),real(0x35f5f30acfbecLL),
428  reale(15359,0xf536fd4790329LL),
429  // C4[2], coeff of eps^13, polynomial in n of order 10
430  real(0x29bb6acaa073ef00LL),-real(0xc930d526d728e80LL),
431  real(0xf55c2b3103d0c00LL),-real(0x63b9281a5449980LL),
432  real(0x6acdfd5dbb92900LL),-real(0x441c8fce3be0480LL),
433  real(0x2be797a45cb8600LL),-real(0x2aec3395f438f80LL),
434  real(0xec70ff5d376300LL),-real(0xedc27143c9fa80LL),
435  real(0x7039bcd0124e68LL),reale(107519,0xb480ecf4f161fLL),
436  // C4[2], coeff of eps^12, polynomial in n of order 11
437  -real(0x17ce935fc610ad40LL),-real(0x5d5bbde81a902580LL),
438  real(0x2dcc12fb45c89240LL),-real(0xc1c61e98a479e00LL),
439  real(0x10183633a5ddf1c0LL),-real(0x672de318faa1680LL),
440  real(0x64ee85310393140LL),-real(0x481cf983db0cf00LL),
441  real(0x2299f24f52810c0LL),-real(0x271fc56086d0780LL),
442  real(0x79dac155045040LL),real(0x20c44d35dada38LL),
443  reale(107519,0xb480ecf4f161fLL),
444  // C4[2], coeff of eps^11, polynomial in n of order 12
445  -real(0x6b8bdbaa2666e600LL),reale(2706,0x6d4e4332c7e80LL),
446  -real(0x201eb2939ffc7500LL),-real(0x605f6d97c740b880LL),
447  real(0x32fb1ca66ccebc00LL),-real(0xb85f2dd585e0f80LL),
448  real(0x10b7dbe9dec0ed00LL),-real(0x6e454f6a0fd4680LL),
449  real(0x594f6f139205e00LL),-real(0x4c204810d601d80LL),
450  real(0x16a875347934f00LL),-real(0x1be72589c185480LL),
451  real(0xb5a396e2ccd788LL),reale(107519,0xb480ecf4f161fLL),
452  // C4[2], coeff of eps^10, polynomial in n of order 13
453  real(0x332d666e095e20LL),real(0x205e97ebfb32780LL),
454  -real(0xf80bf36cd359f20LL),real(0x19615ff8d71e0640LL),
455  -real(0x61aef235a414c60LL),-real(0xe1fda0393083b00LL),
456  real(0x83e2ad192fc7660LL),-real(0x18ece140ef0fc40LL),
457  real(0x26bbb213037c920LL),-real(0x11a4c9418dd9d80LL),
458  real(0x9ec708de66cbe0LL),-real(0xaee5994e9b7ec0LL),
459  real(0x1626e135e59ea0LL),real(0x610ef2b6b35c4LL),
460  reale(15359,0xf536fd4790329LL),
461  // C4[2], coeff of eps^9, polynomial in n of order 14
462  real(0x1b709db1871200LL),real(0x51a2a024c26b00LL),
463  real(0x157c554050bb400LL),real(0xddb41f944653d00LL),
464  -real(0x6d182f563006aa00LL),reale(2991,0xf7eb0ae304f00LL),
465  -real(0x387b65599c618800LL),-real(0x64242336a83ddf00LL),
466  real(0x4282c6eaa3899a00LL),-real(0xa8fc3afb1e6cd00LL),
467  real(0x1040dddbf0493c00LL),-real(0x9184bc07b2bfb00LL),
468  real(0x281ea22622bde00LL),-real(0x3dc59bc648ee900LL),
469  real(0x13fb78815b4ca90LL),reale(107519,0xb480ecf4f161fLL),
470  // C4[2], coeff of eps^8, polynomial in n of order 15
471  real(0xacc0646b5180LL),real(0x1753663f74b00LL),real(0x3994d0061e480LL),
472  real(0xadc1fbdd72e00LL),real(0x2e87a44adab780LL),
473  real(0x1eaeb3451821100LL),-real(0xf937e414930b580LL),
474  real(0x1c27d8b21df37400LL),-real(0xaa5908f76fee280LL),
475  -real(0xe1c8d327ee92900LL),real(0xb2675f22d49b080LL),
476  -real(0x19e66cd66684600LL),real(0x1f3a47aa5ea8380LL),
477  -real(0x18da246c74e6300LL),real(0x10dd3b80dd1680LL),
478  real(0x3f21f272d2a30LL),reale(15359,0xf536fd4790329LL),
479  // C4[2], coeff of eps^7, polynomial in n of order 16
480  real(0x2957d7da1000LL),real(0x4c28ba8a3700LL),real(0x9714a6610e00LL),
481  real(0x14a5ff52a4500LL),real(0x33af2f78d8c00LL),real(0x9e87298409300LL),
482  real(0x2b4e15dbd10a00LL),real(0x1d4c6da210ea100LL),
483  -real(0xf6c4a6847e2f800LL),real(0x1da98c51a6b5ef00LL),
484  -real(0xe1270d810dcfa00LL),-real(0xd23a021f3080300LL),
485  real(0xd3b280b26948400LL),-real(0x22fd890d309b500LL),
486  real(0x119ef453c630200LL),-real(0x1959af9980da700LL),
487  real(0x5959078fa70870LL),reale(15359,0xf536fd4790329LL),
488  // C4[2], coeff of eps^6, polynomial in n of order 17
489  real(0x511612baa2a0LL),real(0x87a79de92a00LL),real(0xee2dd20af160LL),
490  real(0x1bbcfaf32f4c0LL),real(0x37ba524fb5020LL),real(0x7b9b8f2a45f80LL),
491  real(0x13a76fcf6fdee0LL),real(0x3d717a0fbe0a40LL),
492  real(0x112dc752f02bda0LL),real(0xbfa002cc4689500LL),
493  -real(0x694405622017f3a0LL),reale(3484,0x979f3cbb89fc0LL),
494  -reale(2088,0x4fe2045ae14e0LL),-real(0x49f87439584d3580LL),
495  real(0x6c3e90c1455479e0LL),-real(0x1afff07538f04ac0LL),
496  -real(0x1a0f4cdf3b62760LL),-real(0x112f9b85f9ebf7cLL),
497  reale(107519,0xb480ecf4f161fLL),
498  // C4[2], coeff of eps^5, polynomial in n of order 18
499  real(0x181437e05500LL),real(0x25c7b1fe6a80LL),real(0x3d5ebd606800LL),
500  real(0x67dd27f0e580LL),real(0xb8ac7d2a7b00LL),real(0x15ce71e5cc080LL),
501  real(0x2c7c6a3654e00LL),real(0x6460c05d0bb80LL),real(0x1046637cd7a100LL),
502  real(0x340d46956b9680LL),real(0xef5f1bde883400LL),
503  real(0xacec6aed73c1180LL),-real(0x63ea680d7ea23900LL),
504  reale(3605,0xecc3861a0ec80LL),-reale(2759,0xc804a6c40e600LL),
505  -real(0x212a787bd0571880LL),real(0x70c6a0884332ed00LL),
506  -real(0x31a5fa2db58d3d80LL),real(0x5033807138f7d98LL),
507  reale(107519,0xb480ecf4f161fLL),
508  // C4[2], coeff of eps^4, polynomial in n of order 19
509  real(0x6f3f0983c40LL),real(0xa6cf9192980LL),real(0x100e50e166c0LL),
510  real(0x197f658cec00LL),real(0x29f706a6f140LL),real(0x480b7a0eae80LL),
511  real(0x821ecd9c1bc0LL),real(0xfa1d1da0b100LL),real(0x2081a78802640LL),
512  real(0x4aefd4add3380LL),real(0xc730805b650c0LL),real(0x28f491e04e7600LL),
513  real(0xc2d07512dddb40LL),real(0x92e539684c6b880LL),
514  -real(0x5a2096cfc695fa40LL),reale(3598,0x9cd1e91b83b00LL),
515  -reale(3553,0x1d49601c5efc0LL),real(0x31a5fa2db58d3d80LL),
516  real(0x3760835a5e313ac0LL),-real(0x1bed5cb9b61f7298LL),
517  reale(107519,0xb480ecf4f161fLL),
518  // C4[2], coeff of eps^3, polynomial in n of order 20
519  real(273006835200LL),real(395945493120LL),real(586817304320LL),
520  real(891220401024LL),real(0x1440886f800LL),real(0x20a73015480LL),
521  real(0x36a4a027900LL),real(0x5f8b4acad80LL),real(0xb01798c3a00LL),
522  real(0x15a2eb8a6680LL),real(0x2e235b147b00LL),real(0x6d6a30f2bf80LL),
523  real(0x12c54474b7c00LL),real(0x40129870df880LL),real(0x13e41ecc817d00LL),
524  real(0xfcf67c8cf45180LL),-real(0xa65f288fe794200LL),
525  real(0x1cea83a477ce0a80LL),-real(0x240239aaff748100LL),
526  real(0x1547221396f36380LL),-real(0x4e04d247d427178LL),
527  reale(15359,0xf536fd4790329LL),
528  // C4[2], coeff of eps^2, polynomial in n of order 21
529  real(317370445920LL),real(448806691200LL),real(646426411680LL),
530  real(950282020800LL),real(0x14ccaecc4e0LL),real(0x201acdf4e00LL),
531  real(0x33093819720LL),real(0x53ed06eb440LL),real(0x8f8eb441960LL),
532  real(0x1013bf0bfa80LL),real(0x1e750d7baba0LL),real(0x3dc4346800c0LL),
533  real(0x88729901ade0LL),real(0x150e863aba700LL),real(0x3c89c1e8d8020LL),
534  real(0xd9efed463cd40LL),real(0x47e39644808260LL),
535  real(0x3d1b0c8706d5380LL),-real(0x2af704cef0cdeb60LL),
536  real(0x7c1ef17245e119c0LL),-reale(2184,0x86ffdb3446920LL),
537  real(0x333329ff2339a76cLL),reale(107519,0xb480ecf4f161fLL),
538  // C4[3], coeff of eps^23, polynomial in n of order 0
539  70576,real(29211079275LL),
540  // C4[3], coeff of eps^22, polynomial in n of order 1
541  -real(31178752),real(16812224),real(0x192c8c2464fLL),
542  // C4[3], coeff of eps^21, polynomial in n of order 2
543  -real(135977211392LL),real(37023086848LL),real(9903771944LL),
544  real(0xb98f5d0044051LL),
545  // C4[3], coeff of eps^20, polynomial in n of order 3
546  -real(0x30f8b0f5c00LL),real(0x12d79f66800LL),-real(0x115c7023400LL),
547  real(606224480400LL),real(0xa7c6f527b4f7c7LL),
548  // C4[3], coeff of eps^19, polynomial in n of order 4
549  -real(0x3317d68847dc00LL),real(0x19fc69dd236700LL),
550  -real(0x1c6d14df7ace00LL),real(0x6cfe4fac52d00LL),
551  real(0x1d99f24357808LL),reale(30105,0x847604e86c8c1LL),
552  // C4[3], coeff of eps^18, polynomial in n of order 5
553  -real(0x15b0eba45ef8000LL),real(0xf79bdd24a10000LL),
554  -real(0xf32a8559288000LL),real(0x563281b24a8000LL),
555  -real(0x5920796c2f8000LL),real(0x29f7b73471c480LL),
556  reale(150527,0x964e188a1ebc5LL),
557  // C4[3], coeff of eps^17, polynomial in n of order 6
558  -real(0x1c02d0336ef1800LL),real(0x1d91ba24525dc00LL),
559  -real(0x163d203e4811000LL),real(0xb8e8b252aa8400LL),
560  -real(0xd2485de6110800LL),real(0x2a40e341b4ac00LL),
561  real(0xbb70f2cbcf360LL),reale(150527,0x964e188a1ebc5LL),
562  // C4[3], coeff of eps^16, polynomial in n of order 7
563  -real(0x58b4aa16ae3000LL),real(0x7fa0a14380e000LL),
564  -real(0x429ab6e3829000LL),real(0x383428ed0d4000LL),
565  -real(0x32e93ebd99f000LL),real(0x108fe88bbda000LL),
566  -real(0x13ba86ffa65000LL),real(0x868b4ab8e3340LL),
567  reale(21503,0xf0e695ca96ad3LL),
568  // C4[3], coeff of eps^15, polynomial in n of order 8
569  -real(0xaedfc7febee000LL),real(0xe403ca9386ec00LL),
570  -real(0x5568aa53f7a800LL),real(0x76f3d9af940400LL),
571  -real(0x475f28b7bb7000LL),real(0x29018461d69c00LL),
572  -real(0x2ed89591f13800LL),real(0x74380445fb400LL),
573  real(0x21274712bcba0LL),reale(21503,0xf0e695ca96ad3LL),
574  // C4[3], coeff of eps^14, polynomial in n of order 9
575  -real(0x231ca125e5c8000LL),real(753027184687LL<<17),
576  -real(0x97f88531f38000LL),real(0xee839ade908000LL),
577  -real(0x572a9cdd748000LL),real(0x65a05d4f5f0000LL),
578  -real(0x4ce11756538000LL),real(0x177f524c958000LL),
579  -real(0x20e57338048000LL),real(0xc4518e260f380LL),
580  reale(21503,0xf0e695ca96ad3LL),
581  // C4[3], coeff of eps^13, polynomial in n of order 10
582  -real(0x44ebd4477ad4f200LL),real(0x9a6a6024b320f00LL),
583  -real(0xe915ce102d6a800LL),real(0xb28d5273bcee100LL),
584  -real(0x37fa968ec235e00LL),real(0x68974b850671300LL),
585  -real(0x2a735b9bf505400LL),real(0x20513dd7a7f6500LL),
586  -real(0x220360a9be2ca00LL),real(0x36d1c1a3f49700LL),
587  real(0x10369a2227fd98LL),reale(150527,0x964e188a1ebc5LL),
588  // C4[3], coeff of eps^12, polynomial in n of order 11
589  real(0x52462bb828351400LL),real(0x4a4d1c14e6172800LL),
590  -real(0x4ced32c430d22400LL),real(0xb52b1b0c2492000LL),
591  -real(0xd058359466b1c00LL),real(0xd07709dd3bd1800LL),
592  -real(0x30072e56aae5400LL),real(0x605c027d5629000LL),
593  -real(0x32e58b8ebb44c00LL),real(0x108221f23a90800LL),
594  -real(0x1a7ac7295958400LL),real(0x836be4086f28d0LL),
595  reale(150527,0x964e188a1ebc5LL),
596  // C4[3], coeff of eps^11, polynomial in n of order 12
597  real(0x48f7bc8748dd3400LL),-reale(2561,0x7f9f9673a4700LL),
598  real(0x601d0ed1c7f2b600LL),real(0x449204e4f86d4300LL),
599  -real(0x56194f80f81a8800LL),real(0xea108cfa6f6ed00LL),
600  -real(0xa7ad46bd016c600LL),real(0xef32c344e507700LL),
601  -real(0x30a1762ff0e4400LL),real(0x4a78ea25c4fa100LL),
602  -real(0x3c3cca9d1bd4200LL),real(0x22cbd76a022b00LL),
603  real(0x9df3abb037278LL),reale(150527,0x964e188a1ebc5LL),
604  // C4[3], coeff of eps^10, polynomial in n of order 13
605  -real(0x9607df2a17c000LL),-real(0x739371b7f3d8000LL),
606  real(0x4688c366039fc000LL),-reale(2611,0x8a66cbfc04000LL),
607  real(0x7056fbc7b1c24000LL),real(0x3af7506941670000LL),
608  -real(0x601cadbaecf24000LL),real(0x14affbea17164000LL),
609  -real(0x6daccbfd0bfc000LL),real(0x1036680bb42b8000LL),
610  -real(0x42f04a7d6e84000LL),real(0x246d9b6ab84c000LL),
611  -real(0x37cce3b53adc000LL),real(0xd43660c7def0c0LL),
612  reale(150527,0x964e188a1ebc5LL),
613  // C4[3], coeff of eps^9, polynomial in n of order 14
614  -real(0x115a7e31ff400LL),-real(0x3c90c47c29600LL),
615  -real(0x1311ab10640800LL),-real(0xf2246746703a00LL),
616  real(0x99b5e8c5c68e400LL),-real(0x179a6d9c8ead9e00LL),
617  real(0x12bd250608495000LL),real(0x63777cc9563be00LL),
618  -real(0xf1ef7972c204400LL),real(0x47367775d725a00LL),
619  -real(0x63378c7bb15800LL),real(0x22d63078c5cb600LL),
620  -real(0xf8707c83e76c00LL),-real(0xb0e06786eae00LL),
621  -real(0x5e4438ea922f0LL),reale(21503,0xf0e695ca96ad3LL),
622  // C4[3], coeff of eps^8, polynomial in n of order 15
623  -real(0x1fe011d85800LL),-real(0x4f422fb05000LL),-real(0xe40060fc8800LL),
624  -real(0x32e664e9c2000LL),-real(0x1078ec0ef63800LL),
625  -real(0xd864902b71f000LL),real(0x8fab71292d19800LL),
626  -real(0x179bbec0170ac000LL),real(0x15c925f1e4f1e800LL),
627  real(0x2c36e0d96c07000LL),-real(0x100d07856dfe4800LL),
628  real(0x6d9c3efea16a000LL),-real(0x13ac4a3567f800LL),
629  real(0x15b22a4de1ed000LL),-real(0x1452d18e2b42800LL),
630  real(0x32eab893d697a0LL),reale(21503,0xf0e695ca96ad3LL),
631  // C4[3], coeff of eps^7, polynomial in n of order 16
632  -real(0x5003ad66000LL),-real(0xa79ae296200LL),-real(0x17d9e9f5d400LL),
633  -real(0x3c8762ad2600LL),-real(0xb232a56ac800LL),-real(0x28dbf6ee52a00LL),
634  -real(0xda6199e36bc00LL),-real(0xba74c6aa46ee00LL),
635  real(0x825959cb764d000LL),-real(0x17232e4c4e57f200LL),
636  real(0x190bf0598fc65c00LL),-real(0x27c51cb844db600LL),
637  -real(0xf8735fc98339800LL),real(0xa28217eef524600LL),
638  -real(0xfc87c9cb4a8c00LL),-real(0x3228ffc0ed7e00LL),
639  -real(0x387bf611406670LL),reale(21503,0xf0e695ca96ad3LL),
640  // C4[3], coeff of eps^6, polynomial in n of order 17
641  -real(0x62d694dc000LL),-real(97716157LL<<17),-real(0x173b38f24000LL),
642  -real(0x319b0ca1c000LL),-real(0x7361a893c000LL),-real(0x12be5bef38000LL),
643  -real(0x38b3402cc4000LL),-real(0xd6a4403694000LL),
644  -real(0x4a69cc1535c000LL),-real(0x42816c266fd0000LL),
645  real(0x315cb6a39d95c000LL),-reale(2449,0xcf91c36a8c000LL),
646  reale(3143,0x2391393fc4000LL),-real(0x466890d45f668000LL),
647  -real(0x50368754849c4000LL),real(0x594b313771cfc000LL),
648  -real(0x1cc16f4e99cdc000LL),real(0x1e8d8643836a9c0LL),
649  reale(150527,0x964e188a1ebc5LL),
650  // C4[3], coeff of eps^5, polynomial in n of order 18
651  -real(0x1136c8f5600LL),-real(0x1e3b013df00LL),-real(0x37550c23000LL),
652  -real(0x6a508e10100LL),-real(0xd872daf0a00LL),-real(0x1d8dd6618300LL),
653  -real(0x468422b6a400LL),-real(0xbc9d06f02500LL),-real(0x24d784d09be00LL),
654  -real(0x90d122dffa700LL),-real(0x347ca809f91800LL),
655  -real(0x31861ec3b2ac900LL),real(0x276d051382ba8e00LL),
656  -reale(2163,0x55347fa444b00LL),reale(3319,0x8d7da907400LL),
657  -reale(2191,0xdbae56666ed00LL),-real(0x47e396448082600LL),
658  real(0x3577aaf625fa9100LL),-real(0x1449fb28d544cb98LL),
659  reale(150527,0x964e188a1ebc5LL),
660  // C4[3], coeff of eps^4, polynomial in n of order 19
661  -real(58538142720LL),-real(97662466048LL),-real(168340530176LL),
662  -real(301206585344LL),-real(562729180160LL),-real(0x1017e988800LL),
663  -real(0x21987b95400LL),-real(0x4b78a99d000LL),-real(0xb9ccd9f8c00LL),
664  -real(0x202de3701800LL),-real(0x68b6655d0400LL),-real(0x1af3df037e000LL),
665  -real(0xa515b5f563c00LL),-real(0xa65924698da800LL),
666  real(0x8fc72c890104c00LL),-real(0x226e597c6e0df000LL),
667  real(0x3ee7237bf0721400LL),-real(0x3d1b0c8706d53800LL),
668  real(0x1e8d8643836a9c00LL),-real(0x634bf45b6b1a7b0LL),
669  reale(50175,0xdcc4b2d8b4e97LL),
670  // C4[3], coeff of eps^3, polynomial in n of order 20
671  -real(16545868800LL),-real(26558972160LL),-real(43799006720LL),
672  -real(74458311424LL),-real(131016159232LL),-real(239806362880LL),
673  -real(459418505728LL),-real(928488660736LL),-real(0x1d19ea9f400LL),
674  -real(0x43b761f2900LL),-real(0xad7cf6b5600LL),-real(0x1f71d9841300LL),
675  -real(0x6bcf7c0df800LL),-real(0x1d7abbebd1d00LL),
676  -real(0xc1b8d2e919a00LL),-real(0xd3e226aef40700LL),
677  real(0xc94a0b2634a0400LL),-real(0x3577aaf625fa9100LL),
678  real(0x6aef55ec4bf52200LL),-real(0x634bf45b6b1a7b00LL),
679  real(0x22221bff6cd11a48LL),reale(150527,0x964e188a1ebc5LL),
680  // C4[4], coeff of eps^23, polynomial in n of order 0
681  567424,real(87633237825LL),
682  // C4[4], coeff of eps^22, polynomial in n of order 1
683  real(2135226368),real(598833664),real(0x1358168b64fd9LL),
684  // C4[4], coeff of eps^21, polynomial in n of order 2
685  real(23101878272LL),-real(26986989568LL),real(11760203136LL),
686  real(0x4f869592664b5LL),
687  // C4[4], coeff of eps^20, polynomial in n of order 3
688  real(0xa4d4b674a00LL),-real(0xbdc38ed8400LL),real(0x20274dfee00LL),
689  real(635330794560LL),real(0x436914c918b5d6dLL),
690  // C4[4], coeff of eps^19, polynomial in n of order 4
691  real(0x481bf9079c000LL),-real(0x3c015f7917000LL),real(0x133447522e000LL),
692  -real(0x195b19983d000LL),real(0xa0f15f7a8700LL),
693  reale(3518,0xd3a367a37a66dLL),
694  // C4[4], coeff of eps^18, polynomial in n of order 5
695  real(0x1e9f26efa689000LL),-real(0x100c94382c2c000LL),
696  real(0xabead3c2e1f000LL),-real(0xc04c79a6f96000LL),
697  real(0x18fb8548735000LL),real(0x76d40a3ef6c00LL),
698  reale(193535,0x781b441f4c16bLL),
699  // C4[4], coeff of eps^17, polynomial in n of order 6
700  real(0x780536a0606000LL),-real(0x28779739e97000LL),
701  real(0x3a9fdf130c4000LL),-real(0x2860390cb81000LL),
702  real(0xcce73d3902000LL),-real(0x1322aa5844b000LL),
703  real(0x6bd0a3ad69900LL),reale(27647,0xec962e4d9d27dLL),
704  // C4[4], coeff of eps^16, polynomial in n of order 7
705  real(0x45af61c2ad1f800LL),-real(0x1b140a5252fd000LL),
706  real(0x348e789bd7f6800LL),-real(0x137ac7aed3be000LL),
707  real(0x11da35dc2ded800LL),-real(0x12097ef153ff000LL),
708  real(0x186b19645c4800LL),real(0x7935fe20ccb00LL),
709  reale(193535,0x781b441f4c16bLL),
710  // C4[4], coeff of eps^15, polynomial in n of order 8
711  real(0x788485be348000LL),-real(0xbf417480965000LL),
712  real(0xbdad05e3bd6000LL),-real(0x306dcc448df000LL),
713  real(0x6c08266aea4000LL),-real(0x364dbd52879000LL),
714  real(0x13468d692f2000LL),-real(0x1f6575294f3000LL),
715  real(0x97982d7211100LL),reale(27647,0xec962e4d9d27dLL),
716  // C4[4], coeff of eps^14, polynomial in n of order 9
717  real(0x99754be5293000LL),-real(0x273b2ae73028000LL),
718  real(0xa610233e31d000LL),-real(0x8ee7336f99e000LL),
719  real(0xd7a1a110827000LL),-real(0x2f0d74b9c14000LL),
720  real(0x4f375451ab1000LL),-real(0x4002b6db48a000LL),
721  real(0x20d804cbbb000LL),real(0xa41d3b221400LL),
722  reale(27647,0xec962e4d9d27dLL),
723  // C4[4], coeff of eps^13, polynomial in n of order 10
724  real(0x6016f6408271a000LL),-real(0x1e7546e7a0d1b000LL),
725  real(0x18e4e98f72c8000LL),-real(0x113f96068e695000LL),
726  real(0x6af41cd57176000LL),-real(0x2590480c1d6f000LL),
727  real(0x61253410a664000LL),-real(0x1c92661c6269000LL),
728  real(0xfa686d5b4d2000LL),-real(0x188238347643000LL),
729  real(0x60544135abb900LL),reale(193535,0x781b441f4c16bLL),
730  // C4[4], coeff of eps^12, polynomial in n of order 11
731  -reale(2096,0xf9dac0e4d8600LL),-real(0xa96847f4d191400LL),
732  real(0x644f115411ee9e00LL),-real(0x2912ee32dfa61000LL),
733  -real(0x81eeabcb01be00LL),-real(0xfba8345c9670c00LL),
734  real(0x9bbda8340726600LL),-real(0x11537009b3f0800LL),
735  real(0x51c2ea8aa8c0a00LL),-real(0x2bb89caf7310400LL),
736  -real(0x162bd9b163d200LL),-real(0xac0895744a3c0LL),
737  reale(193535,0x781b441f4c16bLL),
738  // C4[4], coeff of eps^11, polynomial in n of order 12
739  -real(0x296aa6e320b86000LL),real(0x7d9f9f72af514800LL),
740  -reale(2284,0xfefdd7e855000LL),real(0x8d22edc50949800LL),
741  real(0x6581767b41ffc000LL),-real(0x371ad32683bb1800LL),
742  -real(0x915b5d6cd33000LL),-real(0xbce7db3a027c800LL),
743  real(0xd0ebaf65b57e000LL),-real(0x1274db255bb7800LL),
744  real(0x2970a5137d6f000LL),-real(0x30b8535f9002800LL),
745  real(0x8fa21d365c3780LL),reale(193535,0x781b441f4c16bLL),
746  // C4[4], coeff of eps^10, polynomial in n of order 13
747  real(0x73aaee373e800LL),real(0x6d942f05126000LL),
748  -real(0x55d059f7fa72800LL),real(0x114ee97e0f335000LL),
749  -real(0x16053fa9ce763800LL),real(0x4d23952dbcc4000LL),
750  real(0xdda0de6f17eb800LL),-real(0xa56bf33e63ad000LL),
751  real(0x90dadc83efa800LL),-real(0xbf52dd8df9e000LL),
752  real(0x2172ab2d7549800LL),-real(0x85ae20f708f000LL),
753  -real(0x10c904999a7800LL),-real(0xae78582fbfa00LL),
754  reale(27647,0xec962e4d9d27dLL),
755  // C4[4], coeff of eps^9, polynomial in n of order 14
756  real(0x19fde85a2f000LL),real(0x6b4aa2bef4800LL),real(0x28c46a7eab6000LL),
757  real(0x2827ed076a87800LL),-real(0x210a7394d5283000LL),
758  real(0x72396f4bbfb2a800LL),-reale(2620,0x4dc0771ddc000LL),
759  real(0x40dce91ee367d800LL),real(0x52592d2deb84b000LL),
760  -real(0x5a9bf1fdd05df800LL),real(0x10e48562d1f92000LL),
761  real(0x1d4b91258bb3800LL),real(0xaa81c5529799000LL),
762  -real(0x6eadf18b1729800LL),real(0xd0db43634fa080LL),
763  reale(193535,0x781b441f4c16bLL),
764  // C4[4], coeff of eps^8, polynomial in n of order 15
765  real(0x45bda664400LL),real(0xc8c97088800LL),real(0x2a5a46b84c00LL),
766  real(0xb467fe915000LL),real(0x471c8a3c15400LL),real(0x49361b74ae1800LL),
767  -real(0x3fb304ab7e4a400LL),real(0xedcc81cc3d0e000LL),
768  -real(0x1834aac92fbf9c00LL),real(0xe864613c6aba800LL),
769  real(0x759492ec34a6c00LL),-real(0xea1e49c1b0f9000LL),
770  real(0x5db63d617b37400LL),real(0x31083890113800LL),
771  -real(0xa60c227ea8400LL),-real(0x3b3da9a3dab180LL),
772  reale(27647,0xec962e4d9d27dLL),
773  // C4[4], coeff of eps^7, polynomial in n of order 16
774  real(469241266176LL),real(0x10545cac800LL),real(0x2adf04bd000LL),
775  real(0x7eec6985800LL),real(0x1ba16d402000LL),real(0x7a072d7ae800LL),
776  real(0x322ca20e07000LL),real(0x3657aa17207800LL),
777  -real(0x3263434d5c54000LL),real(0xcd0703e8db70800LL),
778  -real(0x17ea571d4aa2f000LL),real(0x141161dbf7ec9800LL),
779  -real(0x57d62fedaaa000LL),-real(0xce7cd449810d800LL),
780  real(0x99132fccc31b000LL),-real(0x27598ad75934800LL),
781  real(0x18a5cd1eccf980LL),reale(27647,0xec962e4d9d27dLL),
782  // C4[4], coeff of eps^6, polynomial in n of order 17
783  real(341540329472LL),real(727668064256LL),real(0x180da872800LL),
784  real(0x3b0b3acd000LL),real(0x9f94c3e7800LL),real(0x1e8177ec2000LL),
785  real(0x6e3ee471c800LL),real(0x1fbe99a5b7000LL),real(0xdb641b5c91800LL),
786  real(0xfc08a38932c000LL),-real(0xfb6a7929bd39800LL),
787  real(0x466e762d282a1000LL),-reale(2430,0x8d7c552bc4800LL),
788  reale(2721,0xe81cb8f96000LL),-real(0x4dc0eea70f08f800LL),
789  -real(0x1b9eda123c275000LL),real(0x2eba54dfb9ee5800LL),
790  -real(0xf46c321c1b54e00LL),reale(193535,0x781b441f4c16bLL),
791  // C4[4], coeff of eps^5, polynomial in n of order 18
792  real(31160807424LL),real(61322082304LL),real(3864763LL<<15),
793  real(276675840000LL),real(646157094912LL),real(0x17cd936d800LL),
794  real(0x429614e2000LL),real(0xd3b41886800LL),real(0x31f7c0917000LL),
795  real(0xf21fb6ecf800LL),real(0x6ee892beec000LL),real(0x889688d5b28800LL),
796  -real(0x944ac482b6bf000LL),real(0x2e4469f00aa71800LL),
797  -real(0x73c7760d5050a000LL),reale(2642,0x7d1cf3a18a800LL),
798  -reale(2185,0x6d0b55a915000LL),real(0x3d1b0c8706d53800LL),
799  -real(0xb7512595147fa80LL),reale(193535,0x781b441f4c16bLL),
800  // C4[4], coeff of eps^4, polynomial in n of order 19
801  real(1806732800),real(3354817536LL),real(6474635776LL),
802  real(13058088960LL),real(27705484800LL),real(62364503040LL),
803  real(150565728768LL),real(395569133568LL),real(0x10ca075be00LL),
804  real(0x37f6c332400LL),real(0xdf0e61c4a00LL),real(0x47dfa8095000LL),
805  real(0x236014b495600LL),real(0x2f60ae04237c00LL),
806  -real(0x38c125ca4a81e00LL),real(0x13dd33a066e0a800LL),
807  -real(0x389cd322becd1200LL),real(0x5ba892ca8a3fd400LL),
808  -real(0x4c61cfa8c88a8600LL),real(0x18d2fd16dac69ec0LL),
809  reale(193535,0x781b441f4c16bLL),
810  // C4[5], coeff of eps^23, polynomial in n of order 0
811  14777984,real(0xd190230980fLL),
812  // C4[5], coeff of eps^22, polynomial in n of order 1
813  -real(104833024),real(39440128),real(0x62c2748ec71LL),
814  // C4[5], coeff of eps^21, polynomial in n of order 2
815  -real(45133008896LL),real(5079242752LL),real(1557031040),
816  real(0x4f869592664b5LL),
817  // C4[5], coeff of eps^20, polynomial in n of order 3
818  -real(0xecd417f0000LL),real(40869997LL<<17),-real(0x78cb3050000LL),
819  real(0x28d58610800LL),real(0x5263fcf5c8de3f7LL),
820  // C4[5], coeff of eps^19, polynomial in n of order 4
821  -real(0xf4977948ac000LL),real(0xfebd5b2ac3000LL),
822  -real(0xf90c852576000LL),real(0x1257a8b1e1000LL),real(0x5e1a6b95fb00LL),
823  reale(21503,0xf0e695ca96ad3LL),
824  // C4[5], coeff of eps^18, polynomial in n of order 5
825  -real(0x25dd48c154000LL),real(0x596953f850000LL),
826  -real(0x2b40cdd44c000LL),real(8741106765LL<<15),-real(0x1ab27f0a04000LL),
827  real(0x7e701f145600LL),reale(3071,0xfdd7cc41833d5LL),
828  // C4[5], coeff of eps^17, polynomial in n of order 6
829  -real(0x4776cd8c606000LL),real(0x6d8a47bfe9f000LL),
830  -real(0x187da0ea944000LL),real(0x2b758d37739000LL),
831  -real(0x22fd5e6d302000LL),real(0x107133def3000LL),real(0x56ef801cd100LL),
832  reale(33791,0xe845c6d0a3a27LL),
833  // C4[5], coeff of eps^16, polynomial in n of order 7
834  -real(0x6b41dfbb0208000LL),real(0x3281e67a9bd0000LL),
835  -real(0x11e76a3ab618000LL),real(0x2fa8791e0ae0000LL),
836  -real(0xef00faafea8000LL),real(0x82642584ff0000LL),
837  -real(0xce6c8b206b8000LL),real(0x33a2c6e1f0cc00LL),
838  reale(236543,0x59e86fb479711LL),
839  // C4[5], coeff of eps^15, polynomial in n of order 8
840  -real(0xd8a9f7e5e7f8000LL),real(0x75ff062faeb000LL),
841  -real(0x57d41a79bb5a000LL),real(0x470a22b15ed1000LL),
842  -real(0x941305430fc000LL),real(0x2571b5b524d7000LL),
843  -real(0x15ee8622281e000LL),-real(0x810fd11a43000LL),
844  -real(0x3b143f8fcc100LL),reale(236543,0x59e86fb479711LL),
845  // C4[5], coeff of eps^14, polynomial in n of order 9
846  -real(0x11e2c065bec000LL),real(597104820847LL<<17),
847  -real(0x2505ead2add4000LL),real(0x375d7cf9da8000LL),
848  -real(0x7d85d31b2fc000LL),real(0xc6e2597bcf0000LL),
849  -real(0x1c3d1fca5e4000LL),real(0x26eff911138000LL),
850  -real(0x32d040ac10c000LL),real(0xa3358a5620200LL),
851  reale(33791,0xe845c6d0a3a27LL),
852  // C4[5], coeff of eps^13, polynomial in n of order 10
853  -real(0x4e0fa2600780a000LL),real(0x4e911c6aabd6b000LL),
854  -real(0x693532675088000LL),real(0x218ccc46e845000LL),
855  -real(0x117da33185e06000LL),real(0x4517905378bf000LL),
856  -real(0x10ba1c1d3344000LL),real(0x5399b73b0419000LL),
857  -real(0x1d57ddd62302000LL),-real(0x2b67cba006d000LL),
858  -real(0x17851f6bed3f00LL),reale(236543,0x59e86fb479711LL),
859  // C4[5], coeff of eps^12, polynomial in n of order 11
860  reale(2256,0x5da9961330000LL),-real(0x4ad304d1312a0000LL),
861  -real(0x4061e93f2b8f0000LL),real(0xb6157e3bfe7LL<<19),
862  -real(0x11e106d1afa10000LL),-real(0x36aeeaeb6e60000LL),
863  -real(0xfcdce3949630000LL),real(0x8af39fd661c0000LL),
864  real(0x3d8b99e8cb0000LL),real(0x2f252d98fde0000LL),
865  -real(0x29a890537770000LL),real(0x62af9738c95800LL),
866  reale(236543,0x59e86fb479711LL),
867  // C4[5], coeff of eps^11, polynomial in n of order 12
868  real(0x2c14f5cef5da000LL),-real(0xb44f7f3a7637800LL),
869  real(0x144dd8529649b000LL),-real(0xdf6b3f6a9dda800LL),
870  -real(0x611b67a2b3c4000LL),real(0xe4e2f0fafbb2800LL),
871  -real(0x51c03e2adea3000LL),-real(0xd7c7b9cb0f0800LL),
872  -real(0x16096a592762000LL),real(0x1c9393e7a4dc800LL),
873  -real(0x381de14f961000LL),-real(0xdc6f16ca46800LL),
874  -real(0xd4311572ebf80LL),reale(33791,0xe845c6d0a3a27LL),
875  // C4[5], coeff of eps^10, polynomial in n of order 13
876  -real(0x1f7df788da000LL),-real(0x249f1260a08000LL),
877  real(0x2485dbf6336a000LL),-real(0x9fd55d1961bc000LL),
878  real(0x13ee6db114d4e000LL),-real(0x114ab28a688b0000LL),
879  -real(0x1759d6f434ee000LL),real(0xe5435dae775c000LL),
880  -real(0x883ae4654d0a000LL),real(0x6d085594a8000LL),
881  -real(0x3b594ff4c6000LL),real(0x18b250a1c574000LL),
882  -real(0xc2af3f725e2000LL),real(0x11b5d0e5824b00LL),
883  reale(33791,0xe845c6d0a3a27LL),
884  // C4[5], coeff of eps^9, polynomial in n of order 14
885  -real(0x45be4df1f000LL),-real(0x154928d5d8800LL),
886  -real(0x9c093f54d6000LL),-real(0xbe1dac855c3800LL),
887  real(0xc8c35d9371b3000LL),-real(0x3b27b3be7f71e800LL),
888  reale(2105,0xa27ce5e51c000LL),-reale(2266,0x2251e75549800LL),
889  real(0x215c4ca42d605000LL),real(0x52b0fbc40a45b800LL),
890  -real(0x52abb6acf6af2000LL),real(0x14cab8bdb5a70800LL),
891  real(0x422bb90412d7000LL),real(0xaa8f3f42195800LL),
892  -real(0x18c864fb5207380LL),reale(236543,0x59e86fb479711LL),
893  // C4[5], coeff of eps^8, polynomial in n of order 15
894  -real(0x323b5354000LL),-real(0xa77c1e58000LL),-real(0x297150a3c000LL),
895  -real(0xd25b36ef0000LL),-real(0x64c6f9d464000LL),
896  -real(0x816d981c288000LL),real(0x91bbe6aceeb4000LL),
897  -real(0x2ea0d03ef98a0000LL),real(0x748c356a9df8c000LL),
898  -reale(2463,0x44f7c770b8000LL),real(0x55038197b9ea4000LL),
899  real(0x24c2f502435b0000LL),-real(0x557a28e333384000LL),
900  real(0x319d6c472db18000LL),-real(0xa981b88bf66c000LL),
901  real(0x2452a78bb4ce00LL),reale(236543,0x59e86fb479711LL),
902  // C4[5], coeff of eps^7, polynomial in n of order 16
903  -real(864347LL<<15),-real(77318326272LL),-real(233990443008LL),
904  -real(807704598528LL),-real(0x306255a2000LL),-real(0x100b9fcf2800LL),
905  -real(0x8171cf3d7000LL),-real(0xb08a440213800LL),
906  real(0xd5be3a4ba94000LL),-real(0x4af12ff99ea4800LL),
907  real(0xd4237986197f000LL),-real(0x15530c89262c5800LL),
908  real(0x12c48ba350cca000LL),-real(0x590f07b7ee96800LL),
909  -real(0x53e376c2a7ab000LL),real(0x5b3d559eedc8800LL),
910  -real(0x1b37127cacfe280LL),reale(33791,0xe845c6d0a3a27LL),
911  // C4[5], coeff of eps^6, polynomial in n of order 17
912  -real(10859667456LL),-real(199353LL<<17),-real(67565166592LL),
913  -real(190510645248LL),-real(597656199168LL),-real(65543051LL<<15),
914  -real(0x869fe272000LL),-real(0x2f027b014000LL),-real(0x19275e39a6000LL),
915  -real(0x24c57351390000LL),real(0x305c8c1f55c6000LL),
916  -real(0x12c56d86cea0c000LL),real(0x3c958c9a69892000LL),
917  -real(0x75427b7d716c8000LL),reale(2264,0x2021045b7e000LL),
918  -real(0x686da1b1a7d04000LL),real(0x2b2226f5e6b4a000LL),
919  -real(0x7a36190e0daa700LL),reale(236543,0x59e86fb479711LL),
920  // C4[5], coeff of eps^5, polynomial in n of order 18
921  -real(392933376),-real(865908736),-real(61523<<15),-real(5002905600LL),
922  -real(13385551872LL),-real(39200544768LL),-real(128292691968LL),
923  -real(483473385472LL),-real(0x1ffab8af000LL),-real(0xbdf5200f800LL),
924  -real(0x6d0cb854c000LL),-real(0xacf22c5668800LL),
925  real(0xfa276dd8697000LL),-real(0x6c92e41ed151800LL),
926  real(0x18f8d3300c4da000LL),-real(0x382fdb2c1baea800LL),
927  real(0x4f13f21826f5d000LL),-real(0x3d1b0c8706d53800LL),
928  real(0x131873ea3222a180LL),reale(236543,0x59e86fb479711LL),
929  // C4[6], coeff of eps^23, polynomial in n of order 0
930  real(20016128),real(0x45dab658805LL),
931  // C4[6], coeff of eps^22, polynomial in n of order 1
932  real(12387831808LL),real(4069857792LL),real(0x1b45118f2c973bLL),
933  // C4[6], coeff of eps^21, polynomial in n of order 2
934  real(828267LL<<17),-real(2724645LL<<16),real(52104335360LL),
935  real(0x22cae1700cc0f3LL),
936  // C4[6], coeff of eps^20, polynomial in n of order 3
937  real(0x94a2566a8000LL),-real(0x7736ce990000LL),real(0x345f5a38000LL),
938  real(0x11f45dc9000LL),real(0x36c560e36413be89LL),
939  // C4[6], coeff of eps^19, polynomial in n of order 4
940  real(6043548407LL<<18),-real(7867012491LL<<16),real(0xfe56696e0000LL),
941  -real(6798211929LL<<16),real(0x66855efe5000LL),
942  reale(3630,0x89164e7bf8313LL),
943  // C4[6], coeff of eps^18, polynomial in n of order 5
944  real(0x588efe4c176000LL),-real(0xcc317e9b08000LL),
945  real(0x2e65271667a000LL),-real(0x1cb46908f84000LL),
946  -real(0x7bc8d2682000LL),-real(0x36524dd3a400LL),
947  reale(39935,0xe3f55f53aa1d1LL),
948  // C4[6], coeff of eps^17, polynomial in n of order 6
949  real(0x2dbd6ef2050000LL),-real(0x356ee7ee5e8000LL),
950  real(0x65e2c9482e0000LL),-real(0x1247a684858000LL),
951  real(84899613015LL<<16),-real(0x1b548eba6c8000LL),
952  real(0x5c900466be800LL),reale(39935,0xe3f55f53aa1d1LL),
953  // C4[6], coeff of eps^16, polynomial in n of order 7
954  -real(0x3fff5b5aa54000LL),-real(0x6a2cbaeaf348000LL),
955  real(0x2b55e8782dc4000LL),-real(0x69f22faba30000LL),
956  real(0x26e11f54b9dc000LL),-real(0x105d41b83118000LL),
957  -real(0x12eb1ab4e0c000LL),-real(0x9530f9646a800LL),
958  reale(279551,0x3bb59b49a6cb7LL),
959  // C4[6], coeff of eps^15, polynomial in n of order 8
960  real(0xf488f4012440000LL),-real(0xb16a4f02dfc8000LL),
961  -real(0x103bba4a90d0000LL),-real(0x4da08c72a3d8000LL),
962  real(0x45a11acaf220000LL),-real(0x25f21bc63e8000LL),
963  real(0x12fccd9d4510000LL),-real(0x13e0eb3687f8000LL),
964  real(0x356c2e9517d800LL),reale(279551,0x3bb59b49a6cb7LL),
965  // C4[6], coeff of eps^14, polynomial in n of order 9
966  real(0x28c5c3199aad2000LL),real(0x80d5fb17a810000LL),
967  real(0x9c623a70694e000LL),-real(0xf23c0600f3f4000LL),
968  real(0x6928769f1ca000LL),-real(0x1e8f96869bf8000LL),
969  real(0x4f9253e0b846000LL),-real(0x11e4e806cbfc000LL),
970  -real(0x2dad19c0f3e000LL),-real(0x1f2fac1e88dc00LL),
971  reale(279551,0x3bb59b49a6cb7LL),
972  // C4[6], coeff of eps^13, polynomial in n of order 10
973  -real(0xdb139b99ca0000LL),-real(0x5dbaf74a92790000LL),
974  real(0x76a096067dfLL<<19),real(0x39f346109690000LL),
975  real(964470918621LL<<17),-real(0x10aa5a9917350000LL),
976  real(0x49bc5039b7c0000LL),real(0x92ae304aad0000LL),
977  real(0x32f3e8ddd3e0000LL),-real(0x233311e51f10000LL),
978  real(0x4483a6a16dd000LL),reale(279551,0x3bb59b49a6cb7LL),
979  // C4[6], coeff of eps^12, polynomial in n of order 11
980  -real(0xfbf5c5edd078000LL),real(0x1202fde81d5f0000LL),
981  -real(0x454a07e84fa8000LL),-real(0xbd470dafdb40000LL),
982  real(0xb3ba7d182928000LL),-real(0x155dacd6cc70000LL),
983  -real(0xdc21a82d608000LL),-real(0xe96f98256dLL<<17),
984  real(0x167a9a9742c8000LL),-real(0x7d81f52ed0000LL),
985  -real(0x7ffde3fc68000LL),-real(0xe287c62fa3000LL),
986  reale(39935,0xe3f55f53aa1d1LL),
987  // C4[6], coeff of eps^11, polynomial in n of order 12
988  -real(283480971297LL<<18),real(0x5885fb25bf70000LL),
989  -real(0xe5dec7019ee0000LL),real(0x13305b31e4ed0000LL),
990  -real(0x9278e6008580000LL),-real(0x855a0cffe9d0000LL),
991  real(0xd3d848f453e0000LL),-real(0x4a9f485fda70000LL),
992  -real(0xfb7b0fc02c0000LL),-real(0x691c2e87310000LL),
993  real(806997945397LL<<17),-real(0x9585db4a3b0000LL),
994  real(0xa77dc54c8f000LL),reale(39935,0xe3f55f53aa1d1LL),
995  // C4[6], coeff of eps^10, polynomial in n of order 13
996  real(0x6d0001099000LL),real(0x9a74d7ec5c000LL),-real(0xc18676170e1000LL),
997  real(0x45ad31c7f8a2000LL),-real(0xc7369375e55b000LL),
998  real(0x1364b97f822e8000LL),-real(0xe19539447ad5000LL),
999  -real(0x26bf9b041ad2000LL),real(0xce71cc8200b1000LL),
1000  -real(0x8c822446468c000LL),real(0x12e554ec5f37000LL),
1001  real(0xa6c4f3e59ba000LL),real(0x30bb36a52bd000LL),
1002  -real(0x34440d2d335600LL),reale(39935,0xe3f55f53aa1d1LL),
1003  // C4[6], coeff of eps^9, polynomial in n of order 14
1004  real(0x8fcb3bf8000LL),real(0x33bb5d994000LL),real(7630295323LL<<16),
1005  real(0x2a77da91fcc000LL),-real(0x38ac5a4a0098000LL),
1006  real(0x160f7571fbc04000LL),-real(0x45e92df7f7ee0000LL),
1007  real(0x7f01d3c372a3c000LL),-real(0x7edcf27daed28000LL),
1008  real(0x27dfe4585e674000LL),real(0x38a548f303090000LL),
1009  -real(0x4b87231069354000LL),real(0x24d2adef05648000LL),
1010  -real(0x6a5625dbc71c000LL),-real(0x18371a5d233400LL),
1011  reale(279551,0x3bb59b49a6cb7LL),
1012  // C4[6], coeff of eps^8, polynomial in n of order 15
1013  real(257397153792LL),real(991547604992LL),real(0x42cbc6ea000LL),
1014  real(843451707LL<<15),real(0xe8a206ec6000LL),real(0x170dd449e34000LL),
1015  -real(0x2102346c3b5e000LL),real(0xe0052eca6690000LL),
1016  -real(0x318a0eacb0b82000LL),real(0x690a1407d3eec000LL),
1017  -reale(2182,0xb601e615a6000LL),real(0x61bf435eea348000LL),
1018  -real(0xe133a8622dca000LL),-real(0x2748b26bf705c000LL),
1019  real(0x220d7d12f9812000LL),-real(0x98dbd66bee38400LL),
1020  reale(279551,0x3bb59b49a6cb7LL),
1021  // C4[6], coeff of eps^7, polynomial in n of order 16
1022  real(9867LL<<18),real(8045019136LL),real(854413LL<<15),
1023  real(6856031LL<<14),real(8304289LL<<16),real(0x3232f0a4000LL),
1024  real(0x1ec960fb8000LL),real(0x3439f07dcc000LL),-real(0x50f0148aea0000LL),
1025  real(0x25bf6de530f4000LL),-real(0x9635a567bcf8000LL),
1026  real(0x1735ee17e1e1c000LL),-real(0x25a38fef60750000LL),
1027  real(0x2834884b55944000LL),-real(0x1b3dfda8c79a8000LL),
1028  real(0xa981b88bf66c000LL),-real(0x1cc16f4e99cdc00LL),
1029  reale(93183,0xbe91de6de243dLL),
1030  // C4[6], coeff of eps^6, polynomial in n of order 17
1031  real(169275392),real(7007<<16),real(1348931584),real(4358086656LL),
1032  real(15819288576LL),real(66522136576LL),real(339738054656LL),
1033  real(0x214230b6000LL),real(0x15d36ff77000LL),real(0x2803a29af8000LL),
1034  -real(0x43d629aab87000LL),real(0x232131018d3a000LL),
1035  -real(0x9e155c86fb85000LL),real(0x1c3aabf38857c000LL),
1036  -real(0x361b1ee81aa83000LL),real(0x44dcb2f8dc1be000LL),
1037  -real(0x325282c98d281000LL),real(0xf46c321c1b54e00LL),
1038  reale(279551,0x3bb59b49a6cb7LL),
1039  // C4[7], coeff of eps^23, polynomial in n of order 0
1040  real(383798272),real(0x7ee24536c1115LL),
1041  // C4[7], coeff of eps^22, polynomial in n of order 1
1042  -real(127523LL<<20),real(34096398336LL),real(0x1f771442bd4c09LL),
1043  // C4[7], coeff of eps^21, polynomial in n of order 2
1044  -real(197998999LL<<19),-real(4877411LL<<18),-real(541336621056LL),
1045  real(0x3b1ebd1165abdce9LL),
1046  // C4[7], coeff of eps^20, polynomial in n of order 3
1047  -real(72076029LL<<20),real(33625235LL<<21),-real(96370351LL<<20),
1048  real(0x142b356fa000LL),real(0x3f32837c872a7963LL),
1049  // C4[7], coeff of eps^19, polynomial in n of order 4
1050  -real(2249063181LL<<20),real(51883720989LL<<18),-real(12233087197LL<<19),
1051  -real(1430728833LL<<18),-real(0x9e5c3c48b000LL),
1052  reale(46079,0xdfa4f7d6b097bLL),
1053  // C4[7], coeff of eps^18, polynomial in n of order 5
1054  -real(19747083035LL<<20),real(5938781185LL<<22),-real(1899464157LL<<20),
1055  real(2895955713LL<<21),-real(6730130079LL<<20),real(0x490d94cd2c000LL),
1056  reale(46079,0xdfa4f7d6b097bLL),
1057  // C4[7], coeff of eps^17, polynomial in n of order 6
1058  -real(0xf7ed31ddbc0000LL),real(90436020675LL<<17),
1059  -real(11671406741LL<<19),real(0x58222c9a6a0000LL),
1060  -real(28407954085LL<<18),-real(6936211449LL<<17),
1061  -real(0x1e088e877c800LL),reale(46079,0xdfa4f7d6b097bLL),
1062  // C4[7], coeff of eps^16, polynomial in n of order 7
1063  -real(688523975841LL<<19),-real(83606333811LL<<20),
1064  -real(805224840035LL<<19),real(106897379463LL<<21),
1065  real(22163836107LL<<19),real(88997602799LL<<20),
1066  -real(151227539575LL<<19),real(0x28435aa5d4b000LL),
1067  reale(322559,0x1d82c6ded425dLL),
1068  // C4[7], coeff of eps^15, polynomial in n of order 8
1069  real(557482450381LL<<20),real(0xfbb72a664ee0000LL),
1070  -real(0xa9b81eb4ea40000LL),-real(914196917515LL<<17),
1071  -real(409568792563LL<<19),real(0x4780d431da60000LL),
1072  -real(0x94b9eca98c0000LL),-real(82946761135LL<<17),
1073  -real(0x238b221440f800LL),reale(322559,0x1d82c6ded425dLL),
1074  // C4[7], coeff of eps^14, polynomial in n of order 9
1075  -real(0x59ec90b7ba5LL<<20),real(233491821731LL<<23),
1076  real(762388756437LL<<20),real(284558585577LL<<21),
1077  -real(0xf0573a4eb1LL<<20),real(25275836579LL<<22),
1078  real(22761999561LL<<20),real(112734627747LL<<21),
1079  -real(126941809085LL<<20),real(0x2fd680f7c84000LL),
1080  reale(322559,0x1d82c6ded425dLL),
1081  // C4[7], coeff of eps^13, polynomial in n of order 10
1082  real(0xaca84931355LL<<19),real(0x66fb36095adLL<<18),
1083  -real(0x2e7424117bfLL<<21),real(0xcac2488dd23LL<<18),
1084  real(762738574899LL<<19),-real(579380269895LL<<18),
1085  -real(968587667327LL<<20),real(0x73cbed27abc0000LL),
1086  real(75006191505LL<<19),-real(0xdb0f0aaec0000LL),
1087  -real(0x63c3eeba719000LL),reale(322559,0x1d82c6ded425dLL),
1088  // C4[7], coeff of eps^12, polynomial in n of order 11
1089  real(626455667783LL<<20),-real(567623567285LL<<21),
1090  real(0xf5d2e8872dLL<<20),-real(13896712169LL<<23),
1091  -real(798923144989LL<<20),real(364556664237LL<<21),
1092  -real(129034049335LL<<20),-real(20826366601LL<<22),
1093  -real(51607570881LL<<20),real(46156477135LL<<21),
1094  -real(30888509275LL<<20),real(0x6042659ec2000LL),
1095  reale(46079,0xdfa4f7d6b097bLL),
1096  // C4[7], coeff of eps^11, polynomial in n of order 12
1097  real(20777559885LL<<20),-real(569775860071LL<<18),
1098  real(0xe9ac41f6dbLL<<19),-real(0xef8ba34c8740000LL),
1099  real(598911876783LL<<21),-real(0x7cf99a74ecc0000LL),
1100  -real(957375911139LL<<19),real(0xc30e342965c0000LL),
1101  -real(423483761553LL<<20),real(35714168193LL<<18),
1102  real(79169625311LL<<19),real(68905136075LL<<18),
1103  -real(0x2f872ef9963000LL),reale(46079,0xdfa4f7d6b097bLL),
1104  // C4[7], coeff of eps^10, polynomial in n of order 13
1105  -real(18988489LL<<20),-real(129894471LL<<22),real(12886996881LL<<20),
1106  -real(47548938145LL<<21),real(367560238059LL<<20),
1107  -real(106884143981LL<<23),real(0x11c056e4d45LL<<20),
1108  -real(470740881351LL<<21),real(64061082015LL<<20),
1109  real(158992278163LL<<22),-real(634972709127LL<<20),
1110  real(135054066707LL<<21),-real(41343081645LL<<20),
1111  -real(0x7382e0581c000LL),reale(46079,0xdfa4f7d6b097bLL),
1112  // C4[7], coeff of eps^9, polynomial in n of order 14
1113  -real(7074089LL<<17),-real(95481295LL<<16),-real(249804765LL<<18),
1114  -real(0x6befb7d790000LL),real(0xb301172bea0000LL),
1115  -real(0x5978c2137030000LL),real(0x2fbc3e73e21LL<<19),
1116  -real(0x3f35c80b0f2d0000LL),real(0x6ce3ff0d91260000LL),
1117  -real(0x7761d1ce42b70000LL),real(0x468057c8ed840000LL),
1118  real(0x1bcb7dfb99f0000LL),-real(0x26d98474089e0000LL),
1119  real(0x1d375a3e49150000LL),-real(0x7d9dd8c3269dc00LL),
1120  reale(322559,0x1d82c6ded425dLL),
1121  // C4[7], coeff of eps^8, polynomial in n of order 15
1122  -real(47805LL<<18),-real(105987LL<<19),-real(1141959LL<<18),
1123  -real(2026311LL<<20),-real(89791009LL<<18),-real(1389164665LL<<19),
1124  real(79467759189LL<<18),-real(86766818957LL<<21),
1125  real(0xbfc5c91f6ec0000LL),-real(0x487b27f822fLL<<19),
1126  real(0x4a699e0854c40000LL),-real(0x69d85e75b6dLL<<20),
1127  real(0x66f7a9fb575c0000LL),-real(0x828d4038ea5LL<<19),
1128  real(0x60dc69748cdLL<<18),-real(0x3f90a5347c68800LL),
1129  reale(322559,0x1d82c6ded425dLL),
1130  // C4[7], coeff of eps^7, polynomial in n of order 16
1131  -real(143<<20),-real(8085<<16),-real(16121<<17),-real(9810411520LL),
1132  -real(212205LL<<18),-real(6380297LL<<16),-real(37701755LL<<17),
1133  -real(0x95a9db330000LL),real(9764754545LL<<19),-real(0xaf0fe765fd0000LL),
1134  real(0x3a2548493060000LL),-real(0xc8bdaa520270000LL),
1135  real(0x7871cc979b1LL<<18),-real(0x3353672f26710000LL),
1136  real(0x3c89c1e8d8020000LL),-real(0x2a606e22fd9b0000LL),
1137  real(0xc94a0b2634a0400LL),reale(322559,0x1d82c6ded425dLL),
1138  // C4[8], coeff of eps^23, polynomial in n of order 0
1139  real(7579<<15),real(0x4f56c0c24f87LL),
1140  // C4[8], coeff of eps^22, polynomial in n of order 1
1141  -real(1660549LL<<21),-real(23648625LL<<16),real(0x38232f25bccb5275LL),
1142  // C4[8], coeff of eps^21, polynomial in n of order 2
1143  real(9646043LL<<20),-real(24019457LL<<19),real(74048359LL<<15),
1144  real(0x99262e0aeeff091LL),
1145  // C4[8], coeff of eps^20, polynomial in n of order 3
1146  real(183351957435LL<<19),-real(32827160863LL<<20),
1147  -real(6509093591LL<<19),-real(0x6677b4e9b0000LL),
1148  reale(365566,0xff4ff27401803LL),
1149  // C4[8], coeff of eps^19, polynomial in n of order 4
1150  real(67207908275LL<<21),-real(201042891LL<<19),real(44011096899LL<<20),
1151  -real(85786308153LL<<19),real(0x195ba7c1ef8000LL),
1152  reale(365566,0xff4ff27401803LL),
1153  // C4[8], coeff of eps^18, polynomial in n of order 5
1154  -real(13677739LL<<21),-real(1155605701LL<<23),real(11263093395LL<<21),
1155  -real(1170886701LL<<22),-real(422863935LL<<21),-real(9609473031LL<<16),
1156  reale(52223,0xdb549059b7125LL),
1157  // C4[8], coeff of eps^17, polynomial in n of order 6
1158  -real(105328611LL<<20),-real(0xe3d4e1d7080000LL),real(9484526351LL<<21),
1159  real(4879307961LL<<19),real(13462873311LL<<20),-real(19014362253LL<<19),
1160  real(0x45bace6718000LL),reale(52223,0xdb549059b7125LL),
1161  // C4[8], coeff of eps^16, polynomial in n of order 7
1162  real(0x4802f7e045bLL<<18),-real(787109524929LL<<19),
1163  -real(616781829503LL<<18),-real(267630157067LL<<20),
1164  real(0xf57f439a67LL<<18),-real(26811748075LL<<19),
1165  -real(29646920051LL<<18),-real(0x25c0cef2988000LL),
1166  reale(365566,0xff4ff27401803LL),
1167  // C4[8], coeff of eps^15, polynomial in n of order 8
1168  real(61397460605LL<<22),real(0x9d011c37ef80000LL),
1169  real(907553463943LL<<20),-real(0xc0a473ee4980000LL),
1170  -real(21778698179LL<<21),-real(22179652453LL<<19),
1171  real(224024408237LL<<20),-real(212571195095LL<<19),
1172  real(0x216a7bfadc8000LL),reale(365566,0xff4ff27401803LL),
1173  // C4[8], coeff of eps^14, polynomial in n of order 9
1174  real(304663697949LL<<21),-real(51558232553LL<<24),
1175  real(126037118963LL<<21),real(28559389965LL<<22),real(12939195833LL<<21),
1176  -real(17167224841LL<<23),real(24466781775LL<<21),real(2302458607LL<<22),
1177  real(456812693LL<<21),-real(0xde9c5a4230000LL),
1178  reale(52223,0xdb549059b7125LL),
1179  // C4[8], coeff of eps^13, polynomial in n of order 10
1180  -real(0x71eca5b57e5LL<<20),real(0x8d98ab5c54bLL<<19),
1181  real(497026592783LL<<22),-real(0xacc7c9e1d9bLL<<19),
1182  real(0x35a7c7b51ddLL<<20),-real(81233361377LL<<19),
1183  -real(253988603057LL<<21),-real(954606696519LL<<19),
1184  real(577751554079LL<<20),-real(333997527437LL<<19),
1185  real(0x1689b847558000LL),reale(365566,0xff4ff27401803LL),
1186  // C4[8], coeff of eps^12, polynomial in n of order 11
1187  -real(0x367f7beda59LL<<19),real(0x45996b8ba21LL<<20),
1188  -real(0xdceb5493fc3LL<<19),real(0x18843cb160dLL<<22),
1189  -real(0x21789a51fedLL<<19),-real(0x41cde5aa8b9LL<<20),
1190  real(0x95638f58ea9LL<<19),-real(984566251123LL<<21),
1191  -real(435207598721LL<<19),real(219309948781LL<<20),
1192  real(274765170197LL<<19),-real(0x12cf88fa6ff0000LL),
1193  reale(365566,0xff4ff27401803LL),
1194  // C4[8], coeff of eps^11, polynomial in n of order 12
1195  -real(2296713447LL<<21),real(78660216877LL<<19),
1196  -real(180155131441LL<<20),real(0xeee01825bfLL<<19),
1197  -real(237440161933LL<<22),real(0x2042cbdcd31LL<<19),
1198  -real(652079196855LL<<20),-real(325903664957LL<<19),
1199  real(324695717299LL<<21),-real(0xf97e21ed4bLL<<19),
1200  real(203483994947LL<<20),-real(52367903417LL<<19),
1201  -real(0x8a9d0d3688000LL),reale(52223,0xdb549059b7125LL),
1202  // C4[8], coeff of eps^10, polynomial in n of order 13
1203  real(1140139LL<<21),real(9315711LL<<23),-real(1126319139LL<<21),
1204  real(5199009105LL<<22),-real(52132384161LL<<21),real(20770352565LL<<24),
1205  -real(357583911087LL<<21),real(262213551639LL<<22),
1206  -real(498523677485LL<<21),real(60302341333LL<<23),
1207  real(57310064901LL<<21),-real(90954779619LL<<22),
1208  real(124029244935LL<<21),-real(0xf0a5fe0ce50000LL),
1209  reale(52223,0xdb549059b7125LL),
1210  // C4[8], coeff of eps^9, polynomial in n of order 14
1211  real(54009LL<<20),real(849303LL<<19),real(2623117LL<<21),
1212  real(364892913LL<<19),-real(5919882885LL<<20),real(0xdd0128d3580000LL),
1213  -real(81910832913LL<<22),real(0x2229f5f9745LL<<19),
1214  -real(0x2a9587ee883LL<<20),real(0x982f47b44bfLL<<19),
1215  -real(0x30e1739ffd1LL<<21),real(0xb09887dee19LL<<19),
1216  -real(0x35101f0ee01LL<<20),real(0x25e6f19ce93LL<<19),
1217  -real(0x306e34ba4668000LL),reale(365566,0xff4ff27401803LL),
1218  // C4[8], coeff of eps^8, polynomial in n of order 15
1219  real(2295<<17),real(5831<<18),real(72709LL<<17),real(151011LL<<19),
1220  real(7936467LL<<17),real(147906885LL<<18),-real(0x4d5c1f23e0000LL),
1221  real(14228642337LL<<20),-real(697203474513LL<<17),
1222  real(0x51fe4e56b0c0000LL),-real(0xeb59f3d2e860000LL),
1223  real(0x3e0c14100a1LL<<19),-real(0x305340db42ea0000LL),
1224  real(0xd6c75923d41LL<<18),-real(0x2452a78bb4ce0000LL),
1225  real(0xa981b88bf66c000LL),reale(365566,0xff4ff27401803LL),
1226  // C4[9], coeff of eps^23, polynomial in n of order 0
1227  -real(45613<<15),real(0xa0b835899f381LL),
1228  // C4[9], coeff of eps^22, polynomial in n of order 1
1229  -real(4663637LL<<21),real(25498473LL<<16),real(0x8f68f0ea15ed989LL),
1230  // C4[9], coeff of eps^21, polynomial in n of order 2
1231  -real(313787291LL<<20),-real(89546863LL<<19),-real(880826107LL<<15),
1232  reale(5306,0x2ad1d52b570cdLL),
1233  // C4[9], coeff of eps^20, polynomial in n of order 3
1234  real(1691751267LL<<22),real(5868457511LL<<23),-real(9710518895LL<<22),
1235  real(43389881073LL<<17),reale(408574,0xe11d1e092eda9LL),
1236  // C4[9], coeff of eps^19, polynomial in n of order 4
1237  -real(45668361181LL<<21),real(290185772373LL<<19),
1238  -real(19310638221LL<<20),-real(10267037529LL<<19),
1239  -real(0x11435a10568000LL),reale(408574,0xe11d1e092eda9LL),
1240  // C4[9], coeff of eps^18, polynomial in n of order 5
1241  -real(206915608111LL<<21),real(8005795847LL<<23),real(6676372983LL<<21),
1242  real(24266221119LL<<22),-real(29173391667LL<<21),real(99595856143LL<<16),
1243  reale(408574,0xe11d1e092eda9LL),
1244  // C4[9], coeff of eps^17, polynomial in n of order 6
1245  -real(15515879355LL<<20),-real(36184750873LL<<19),
1246  -real(22177807609LL<<21),real(62194714929LL<<19),real(693176727LL<<20),
1247  -real(1189966821LL<<19),-real(0x5829503048000LL),
1248  reale(58367,0xd70428dcbd8cfLL),
1249  // C4[9], coeff of eps^16, polynomial in n of order 7
1250  real(38512528273LL<<23),real(67772681235LL<<24),-real(74410968653LL<<23),
1251  -real(3984568679LL<<25),-real(6152374683LL<<23),real(13551170801LL<<24),
1252  -real(11115057401LL<<23),real(24916219839LL<<18),
1253  reale(408574,0xe11d1e092eda9LL),
1254  // C4[9], coeff of eps^15, polynomial in n of order 8
1255  -real(162298412813LL<<22),real(0xff4317f5080000LL),
1256  real(119179074953LL<<20),real(0xf6d36e74980000LL),
1257  -real(63634032589LL<<21),real(61952932453LL<<19),real(10785104899LL<<20),
1258  real(4191026519LL<<19),-real(0xd59ae9d0e8000LL),
1259  reale(58367,0xd70428dcbd8cfLL),
1260  // C4[9], coeff of eps^14, polynomial in n of order 9
1261  real(162971496591LL<<21),real(33816350309LL<<24),
1262  -real(394783736543LL<<21),real(85862751303LL<<22),
1263  real(32462900611LL<<21),-real(6369607931LL<<23),-real(39152071083LL<<21),
1264  real(18189729581LL<<22),-real(9249690569LL<<21),real(6171570141LL<<16),
1265  reale(58367,0xd70428dcbd8cfLL),
1266  // C4[9], coeff of eps^13, polynomial in n of order 10
1267  real(0x52d38896f8bLL<<20),-real(0xd3acdf03195LL<<19),
1268  real(0x1195b2a1cffLL<<22),real(0xca9586e4a280000LL),
1269  -real(0x486f0b6e413LL<<20),real(0x7ca2ce8a83fLL<<19),
1270  -real(610236546241LL<<21),-real(717677267559LL<<19),
1271  real(159176229583LL<<20),real(291633515411LL<<19),
1272  -real(0x110150274e88000LL),reale(408574,0xe11d1e092eda9LL),
1273  // C4[9], coeff of eps^12, polynomial in n of order 11
1274  real(143956869023LL<<22),-real(243108013001LL<<23),
1275  real(0x101d5eb1615LL<<22),-real(213537904349LL<<25),
1276  real(0x183f300cffbLL<<22),-real(350529456991LL<<23),
1277  -real(545724783247LL<<22),real(274121340227LL<<24),
1278  -real(785966166377LL<<22),real(135225754699LL<<23),
1279  -real(28607511667LL<<22),-real(0x3ee3b308260000LL),
1280  reale(408574,0xe11d1e092eda9LL),
1281  // C4[9], coeff of eps^11, polynomial in n of order 12
1282  real(2520290511LL<<21),-real(0xc4ddd05ba80000LL),
1283  real(304931349961LL<<20),-real(0x21230116cd7LL<<19),
1284  real(735928623493LL<<22),-real(0x9d254a11d99LL<<19),
1285  real(0x6510e717cdfLL<<20),-real(0xa95d67804fbLL<<19),
1286  real(0x1055dd17e45LL<<21),real(0x239bcd685c3LL<<19),
1287  -real(0x22ba072788bLL<<20),real(0x2c142a0db61LL<<19),
1288  -real(0x59b3a2379f58000LL),reale(408574,0xe11d1e092eda9LL),
1289  // C4[9], coeff of eps^10, polynomial in n of order 13
1290  -real(29393LL<<21),-real(283917LL<<23),real(41246777LL<<21),
1291  -real(233407875LL<<22),real(2943398547LL<<21),-real(1525553871LL<<24),
1292  real(35837133917LL<<21),-real(38620600629LL<<22),
1293  real(123783976375LL<<21),-real(36640057007LL<<23),
1294  real(124599494337LL<<21),-real(35830670759LL<<22),
1295  real(24805848987LL<<21),-real(0x1ce0b816070000LL),
1296  reale(19455,0xf256b84994845LL),
1297  // C4[9], coeff of eps^9, polynomial in n of order 14
1298  -real(1615<<20),-real(29393LL<<19),-real(106267LL<<21),
1299  -real(17534055LL<<19),real(342711075LL<<20),-real(8430692445LL<<19),
1300  real(7306600119LL<<22),-real(270344204403LL<<19),
1301  real(450573674005LL<<20),-real(0x20c896b3e69LL<<19),
1302  real(0xfa29e850f7LL<<21),-real(0x5aaf3103bffLL<<19),
1303  real(0x3002653e387LL<<20),-real(0x3f2b92b02f5LL<<19),
1304  real(0x914a9e2ed338000LL),reale(408574,0xe11d1e092eda9LL),
1305  // C4[10], coeff of eps^23, polynomial in n of order 0
1306  real(137<<21),real(0x8757c14b789bLL),
1307  // C4[10], coeff of eps^22, polynomial in n of order 1
1308  -real(1152691LL<<20),-real(6743919LL<<17),real(0x9e817610332f06fLL),
1309  // C4[10], coeff of eps^21, polynomial in n of order 2
1310  real(79722199LL<<23),-real(113766289LL<<22),real(225212673LL<<18),
1311  reale(5864,0xb6105765cc00bLL),
1312  // C4[10], coeff of eps^20, polynomial in n of order 3
1313  real(64857768639LL<<21),-real(2220489243LL<<22),-real(2012833515LL<<21),
1314  -real(19551629405LL<<18),reale(451582,0xc2ea499e5c34fLL),
1315  // C4[10], coeff of eps^19, polynomial in n of order 4
1316  real(656353407LL<<24),real(1031809317LL<<22),real(12215335391LL<<23),
1317  -real(12759999497LL<<22),real(18944346729LL<<18),
1318  reale(451582,0xc2ea499e5c34fLL),
1319  // C4[10], coeff of eps^18, polynomial in n of order 5
1320  -real(62867132873LL<<20),-real(83127481829LL<<22),
1321  real(173460262689LL<<20),real(8415873627LL<<21),-real(1024568181LL<<20),
1322  -real(82657907689LL<<17),reale(451582,0xc2ea499e5c34fLL),
1323  // C4[10], coeff of eps^17, polynomial in n of order 6
1324  real(69839518785LL<<24),-real(46975322289LL<<23),-real(5175253237LL<<25),
1325  -real(10608265143LL<<23),real(12870275691LL<<24),-real(9303053053LL<<23),
1326  real(8528136981LL<<19),reale(451582,0xc2ea499e5c34fLL),
1327  // C4[10], coeff of eps^16, polynomial in n of order 7
1328  -real(12671764325LL<<22),real(11821938135LL<<23),real(23903917953LL<<22),
1329  -real(7023725731LL<<24),real(4254825447LL<<22),real(1372261021LL<<23),
1330  real(755775181LL<<22),-real(6809268397LL<<19),
1331  reale(64511,0xd2b3c15fc4079LL),
1332  // C4[10], coeff of eps^15, polynomial in n of order 8
1333  real(10583074157LL<<26),-real(84530118029LL<<23),real(12150058407LL<<24),
1334  real(12380362825LL<<23),-real(838454291LL<<25),-real(10410407457LL<<23),
1335  real(3974759309LL<<24),-real(1799658059LL<<23),real(156358707LL<<19),
1336  reale(64511,0xd2b3c15fc4079LL),
1337  // C4[10], coeff of eps^14, polynomial in n of order 9
1338  -real(922119298407LL<<20),real(52944024001LL<<23),
1339  real(329638564983LL<<20),-real(354979062141LL<<21),
1340  real(493120994773LL<<20),-real(24099541823LL<<22),
1341  -real(59503561293LL<<20),real(7459230081LL<<21),real(21243323153LL<<20),
1342  -real(75576440907LL<<17),reale(64511,0xd2b3c15fc4079LL),
1343  // C4[10], coeff of eps^13, polynomial in n of order 10
1344  -real(328595996641LL<<23),real(0x1245cb281e3LL<<22),
1345  -real(207527442829LL<<25),real(0x13d84cf39cdLL<<22),
1346  -real(169653271431LL<<23),-real(705690429577LL<<22),
1347  real(256163704307LL<<24),-real(657414782367LL<<22),
1348  real(103463476179LL<<23),-real(17233182197LL<<22),
1349  -real(65863805931LL<<18),reale(451582,0xc2ea499e5c34fLL),
1350  // C4[10], coeff of eps^12, polynomial in n of order 11
1351  -real(60530460661LL<<21),real(129708905557LL<<22),
1352  -real(783916037751LL<<21),real(215690023633LL<<24),
1353  -real(0x287cc397f79LL<<21),real(0x174d319d033LL<<22),
1354  -real(0x22bf2de15fbLL<<21),real(172524970961LL<<23),
1355  real(736992166659LL<<21),-real(554058611183LL<<22),
1356  real(665956259969LL<<21),-real(0x4d7d212a0a40000LL),
1357  reale(451582,0xc2ea499e5c34fLL),
1358  // C4[10], coeff of eps^11, polynomial in n of order 12
1359  -real(31220211LL<<24),real(1576100141LL<<22),-real(5588687797LL<<23),
1360  real(52675808031LL<<22),-real(22267080913LL<<25),
1361  real(449824279121LL<<22),-real(432213499347LL<<23),
1362  real(0x1275ac4a843LL<<22),-real(351080482641LL<<24),
1363  real(0x10853170e75LL<<22),-real(314682628337LL<<23),
1364  real(212227819111LL<<22),-real(520922828727LL<<18),
1365  reale(451582,0xc2ea499e5c34fLL),
1366  // C4[10], coeff of eps^10, polynomial in n of order 13
1367  real(46189LL<<20),real(522291LL<<22),-real(90008149LL<<20),
1368  real(613691925LL<<21),-real(9499950999LL<<20),real(6182507793LL<<23),
1369  -real(187536069721LL<<20),real(270344204403LL<<21),
1370  -real(0x11a7161219bLL<<20),real(533756506129LL<<22),
1371  -real(0x2a7db4d305dLL<<20),real(0x159e458acd1LL<<21),
1372  -real(0x1bcb7dfb99fLL<<20),real(0x7e5725605ea0000LL),
1373  reale(451582,0xc2ea499e5c34fLL),
1374  // C4[11], coeff of eps^23, polynomial in n of order 0
1375  -real(7309LL<<21),real(0x2c95e8ad321065LL),
1376  // C4[11], coeff of eps^22, polynomial in n of order 1
1377  -real(118877LL<<30),real(1675947LL<<23),real(0x7759dcb5574d50a7LL),
1378  // C4[11], coeff of eps^21, polynomial in n of order 2
1379  -real(9105745LL<<24),-real(49846181LL<<23),-real(2866583251LL<<18),
1380  reale(70655,0xce6359e2ca823LL),
1381  // C4[11], coeff of eps^20, polynomial in n of order 3
1382  -real(239228553LL<<25),real(1509768547LL<<26),-real(1393694995LL<<25),
1383  real(7195205325LL<<19),reale(494590,0xa4b77533898f5LL),
1384  // C4[11], coeff of eps^19, polynomial in n of order 4
1385  -real(10520646403LL<<25),real(16651704531LL<<23),real(1510969677LL<<24),
1386  real(227849937LL<<23),-real(40629886913LL<<18),
1387  reale(494590,0xa4b77533898f5LL),
1388  // C4[11], coeff of eps^18, polynomial in n of order 5
1389  -real(737236949LL<<28),-real(83959015LL<<31),-real(449296547LL<<28),
1390  real(188420603LL<<30),-real(243597193LL<<28),real(1420486123LL<<21),
1391  reale(494590,0xa4b77533898f5LL),
1392  // C4[11], coeff of eps^17, polynomial in n of order 6
1393  real(1797306345LL<<25),real(7110272827LL<<24),-real(1494242189LL<<26),
1394  real(407981949LL<<24),real(324085539LL<<25),real(232922271LL<<24),
1395  -real(6431919403LL<<19),reale(70655,0xce6359e2ca823LL),
1396  // C4[11], coeff of eps^16, polynomial in n of order 7
1397  -real(59422002475LL<<26),real(4462082415LL<<27),real(11958968063LL<<26),
1398  -real(116564371LL<<28),-real(9243946887LL<<26),real(3024840805LL<<27),
1399  -real(1229077213LL<<26),-real(836978961LL<<20),
1400  reale(494590,0xa4b77533898f5LL),
1401  // C4[11], coeff of eps^15, polynomial in n of order 8
1402  real(1450234755LL<<27),real(28955596425LL<<24),-real(20916501415LL<<25),
1403  real(24148276875LL<<24),-real(639979965LL<<26),-real(3796939603LL<<24),
1404  real(257117683LL<<25),real(1321384367LL<<24),-real(17153469915LL<<19),
1405  reale(70655,0xce6359e2ca823LL),
1406  // C4[11], coeff of eps^14, polynomial in n of order 9
1407  real(2991071409LL<<28),-real(215656441LL<<32),real(2375561279LL<<28),
1408  -real(29715609LL<<30),-real(1772722171LL<<28),real(262089343LL<<31),
1409  -real(1227751437LL<<28),real(88909853LL<<30),-real(21460999LL<<28),
1410  -real(1112906091LL<<21),reale(70655,0xce6359e2ca823LL),
1411  // C4[11], coeff of eps^13, polynomial in n of order 10
1412  real(48251719021LL<<24),-real(247802667483LL<<23),
1413  real(59903451769LL<<26),-real(693923403733LL<<23),
1414  real(362458490331LL<<24),-real(482970502063LL<<23),
1415  real(22585671353LL<<25),real(201583163607LL<<23),
1416  -real(128100703031LL<<24),real(147544368125LL<<23),
1417  -real(0x43bae67ca340000LL),reale(494590,0xa4b77533898f5LL),
1418  // C4[11], coeff of eps^12, polynomial in n of order 11
1419  real(488107587LL<<25),-real(1288790349LL<<26),real(9866997217LL<<25),
1420  -real(3570890001LL<<28),real(64004720367LL<<25),-real(56017267579LL<<26),
1421  real(152843494797LL<<25),-real(39981841137LL<<27),
1422  real(123894347227LL<<25),-real(33286009449LL<<26),
1423  real(21954601977LL<<25),-real(212227819111LL<<19),
1424  reale(494590,0xa4b77533898f5LL),
1425  // C4[11], coeff of eps^11, polynomial in n of order 12
1426  real(735471LL<<25),-real(44046541LL<<23),real(188198857LL<<24),
1427  -real(2177729631LL<<23),real(1156078693LL<<26),-real(30163144081LL<<23),
1428  real(38781185247LL<<24),-real(159433761571LL<<23),
1429  real(65649195941LL<<25),-real(342066863061LL<<23),
1430  real(168318615157LL<<24),-real(212227819111LL<<23),
1431  real(0x6f2df7ee67c0000LL),reale(494590,0xa4b77533898f5LL),
1432  // C4[12], coeff of eps^23, polynomial in n of order 0
1433  real(173LL<<24),real(0x88d5e64011771LL),
1434  // C4[12], coeff of eps^22, polynomial in n of order 1
1435  -real(163369LL<<28),-real(266903LL<<29),reale(14529,0xb09bccfe817bfLL),
1436  // C4[12], coeff of eps^21, polynomial in n of order 2
1437  real(26283479LL<<29),-real(21738605LL<<28),real(24285135LL<<24),
1438  reale(76799,0xca12f265d0fcdLL),
1439  // C4[12], coeff of eps^20, polynomial in n of order 3
1440  real(6122492151LL<<24),real(880448149LL<<25),real(269123645LL<<24),
1441  -real(4943792525LL<<21),reale(537598,0x8684a0c8b6e9bLL),
1442  // C4[12], coeff of eps^19, polynomial in n of order 4
1443  -real(616982441LL<<28),-real(2168310039LL<<26),real(1398586567LL<<27),
1444  -real(817632445LL<<26),real(450511215LL<<22),
1445  reale(537598,0x8684a0c8b6e9bLL),
1446  // C4[12], coeff of eps^18, polynomial in n of order 5
1447  real(1912616275LL<<26),-real(308159801LL<<28),-real(17594779LL<<26),
1448  real(72918855LL<<27),real(66311031LL<<26),-real(47313631LL<<26),
1449  reale(76799,0xca12f265d0fcdLL),
1450  // C4[12], coeff of eps^17, polynomial in n of order 6
1451  real(9134109LL<<27),real(1642561735LL<<26),real(58767343LL<<28),
1452  -real(1299624495LL<<26),real(374812639LL<<27),-real(137300677LL<<26),
1453  -real(61400001LL<<22),reale(76799,0xca12f265d0fcdLL),
1454  // C4[12], coeff of eps^16, polynomial in n of order 7
1455  real(118127909265LL<<25),-real(66457563795LL<<26),
1456  real(64469127555LL<<25),-real(134108625LL<<27),-real(12700511691LL<<25),
1457  real(295233743LL<<26),real(4531750951LL<<25),-real(13670656363LL<<22),
1458  reale(537598,0x8684a0c8b6e9bLL),
1459  // C4[12], coeff of eps^15, polynomial in n of order 8
1460  -real(10859744975LL<<29),real(49132517315LL<<26),real(5188275715LL<<27),
1461  -real(52074703975LL<<26),real(13295845745LL<<28),
1462  -real(28808201009LL<<26),real(3853119361LL<<27),-real(278992987LL<<26),
1463  -real(3626908831LL<<22),reale(537598,0x8684a0c8b6e9bLL),
1464  // C4[12], coeff of eps^14, polynomial in n of order 9
1465  -real(5262740745LL<<26),real(1142543055LL<<29),-real(12070462215LL<<26),
1466  real(5779723245LL<<27),-real(6878321925LL<<26),real(125534415LL<<28),
1467  real(3745400061LL<<26),-real(2112375473LL<<27),real(2351512319LL<<26),
1468  -real(573315259LL<<26),reale(76799,0xca12f265d0fcdLL),
1469  // C4[12], coeff of eps^13, polynomial in n of order 10
1470  -real(345262775LL<<27),real(2254590065LL<<26),-real(721021595LL<<29),
1471  real(11719656095LL<<26),-real(9489736865LL<<27),real(24346633325LL<<26),
1472  -real(6069982555LL<<28),real(18134544155LL<<26),-real(4742880779LL<<27),
1473  real(3068922857LL<<26),-real(7318200659LL<<22),
1474  reale(179199,0x822c35983cf89LL),
1475  // C4[12], coeff of eps^12, polynomial in n of order 11
1476  -real(58429085LL<<24),real(185910725LL<<25),-real(1747560815LL<<24),
1477  real(794345825LL<<27),-real(18392161025LL<<24),real(21545102915LL<<25),
1478  -real(82378334675LL<<24),real(32084193505LL<<26),
1479  -real(160420967525LL<<24),real(76723071425LL<<25),
1480  -real(95136608567LL<<24),real(212227819111LL<<21),
1481  reale(537598,0x8684a0c8b6e9bLL),
1482  // C4[13], coeff of eps^23, polynomial in n of order 0
1483  -real(34717LL<<24),real(0x4013d857859e5adLL),
1484  // C4[13], coeff of eps^22, polynomial in n of order 1
1485  -real(52837LL<<30),real(101283LL<<25),real(0x39b1009e5dec691dLL),
1486  // C4[13], coeff of eps^21, polynomial in n of order 2
1487  real(58223275LL<<29),real(25058159LL<<28),-real(597584743LL<<24),
1488  reale(580606,0x6851cc5de4441LL),
1489  // C4[13], coeff of eps^20, polynomial in n of order 3
1490  -real(38160201LL<<32),real(20133099LL<<33),-real(10736915LL<<32),
1491  real(8118075LL<<27),reale(580606,0x6851cc5de4441LL),
1492  // C4[13], coeff of eps^19, polynomial in n of order 4
1493  -real(246943573LL<<28),-real(102114339LL<<26),real(63266747LL<<27),
1494  real(72037887LL<<26),-real(711672919LL<<22),
1495  reale(82943,0xc5c28ae8d7777LL),
1496  // C4[13], coeff of eps^18, polynomial in n of order 5
1497  real(362438863LL<<28),real(29917105LL<<30),-real(313139991LL<<28),
1498  real(81176473LL<<29),-real(26857069LL<<28),-real(40519029LL<<23),
1499  reale(82943,0xc5c28ae8d7777LL),
1500  // C4[13], coeff of eps^17, polynomial in n of order 6
1501  -real(4194208665LL<<27),real(3411193933LL<<26),real(92059229LL<<28),
1502  -real(832792389LL<<26),-real(13821619LL<<27),real(313960329LL<<26),
1503  -real(1784908801LL<<22),reale(82943,0xc5c28ae8d7777LL),
1504  // C4[13], coeff of eps^16, polynomial in n of order 7
1505  real(4206195495LL<<29),real(1286394165LL<<30),-real(6553065099LL<<29),
1506  real(1494451903LL<<31),-real(3024727629LL<<29),real(374117415LL<<30),
1507  -real(7540351LL<<29),-real(836978961LL<<24),
1508  reale(580606,0x6851cc5de4441LL),
1509  // C4[13], coeff of eps^15, polynomial in n of order 8
1510  real(8293864515LL<<29),-real(80835230175LL<<26),real(35736027705LL<<27),
1511  -real(37780361325LL<<26),-real(587595645LL<<28),real(26485772901LL<<26),
1512  -real(13655575661LL<<27),real(14786628311LL<<26),
1513  -real(57193562335LL<<22),reale(580606,0x6851cc5de4441LL),
1514  // C4[13], coeff of eps^14, polynomial in n of order 9
1515  real(2173316805LL<<28),-real(627936225LL<<31),real(9404910795LL<<28),
1516  -real(7129362555LL<<29),real(17350941825LL<<28),-real(4150093185LL<<30),
1517  real(12011779143LL<<28),-real(3068922857LL<<29),real(1952950909LL<<28),
1518  -real(9206768571LL<<23),reale(580606,0x6851cc5de4441LL),
1519  // C4[13], coeff of eps^13, polynomial in n of order 10
1520  real(79676025LL<<27),-real(638856855LL<<26),real(256634805LL<<29),
1521  -real(5389330905LL<<26),real(5842215855LL<<27),-real(21011478075LL<<26),
1522  real(7804263285LL<<28),-real(37664053245LL<<26),real(17576558181LL<<27),
1523  -real(21482459999LL<<26),real(95136608567LL<<22),
1524  reale(580606,0x6851cc5de4441LL),
1525  // C4[14], coeff of eps^23, polynomial in n of order 0
1526  real(433LL<<27),real(0x16f0fb486be35c9LL),
1527  // C4[14], coeff of eps^22, polynomial in n of order 1
1528  real(938669LL<<29),-real(8460179LL<<26),reale(36683,0x318959e11f277LL),
1529  // C4[14], coeff of eps^21, polynomial in n of order 2
1530  real(1085551LL<<33),-real(531601LL<<32),real(109557LL<<28),
1531  reale(36683,0x318959e11f277LL),
1532  // C4[14], coeff of eps^20, polynomial in n of order 3
1533  -real(34899909LL<<31),real(11630633LL<<32),real(16602985LL<<31),
1534  -real(73138345LL<<28),reale(623614,0x4a1ef7f3119e7LL),
1535  // C4[14], coeff of eps^19, polynomial in n of order 4
1536  real(2603869LL<<34),-real(18588201LL<<32),real(4394077LL<<33),
1537  -real(1312099LL<<32),-real(1449057LL<<28),reale(89087,0xc172236bddf21LL),
1538  // C4[14], coeff of eps^18, polynomial in n of order 5
1539  real(1218191717LL<<27),real(79106081LL<<29),-real(371875421LL<<27),
1540  -real(20795103LL<<28),real(151229409LL<<27),-real(409250479LL<<24),
1541  reale(89087,0xc172236bddf21LL),
1542  // C4[14], coeff of eps^17, polynomial in n of order 6
1543  real(249532965LL<<30),-real(917899213LL<<29),real(191097911LL<<31),
1544  -real(363925371LL<<29),real(41606327LL<<30),real(1574359LL<<29),
1545  -real(54936843LL<<25),reale(89087,0xc172236bddf21LL),
1546  // C4[14], coeff of eps^16, polynomial in n of order 7
1547  -real(19067218845LL<<28),real(7820446095LL<<29),-real(7262714151LL<<28),
1548  -real(421931643LL<<30),real(6566089551LL<<28),-real(3155926907LL<<29),
1549  real(3340375493LL<<28),-real(6416838701LL<<25),
1550  reale(623614,0x4a1ef7f3119e7LL),
1551  // C4[14], coeff of eps^15, polynomial in n of order 8
1552  -real(353006415LL<<32),real(4931374455LL<<29),-real(3531935085LL<<30),
1553  real(8211223125LL<<29),-real(1894184271LL<<31),real(5332188211LL<<29),
1554  -real(1334642127LL<<30),real(836978961LL<<29),-real(1952950909LL<<25),
1555  reale(623614,0x4a1ef7f3119e7LL),
1556  // C4[14], coeff of eps^14, polynomial in n of order 9
1557  -real(436268025LL<<27),real(158349135LL<<30),-real(3064521495LL<<27),
1558  real(3110604525LL<<28),-real(10615555125LL<<27),real(3784676175LL<<29),
1559  -real(17712284499LL<<27),real(8090796623LL<<28),-real(9764754545LL<<27),
1560  real(21482459999LL<<24),reale(623614,0x4a1ef7f3119e7LL),
1561  // C4[15], coeff of eps^23, polynomial in n of order 0
1562  -real(11003LL<<27),real(0x6a44bb11ad2310dLL),
1563  // C4[15], coeff of eps^22, polynomial in n of order 1
1564  -real(28003LL<<36),real(3549LL<<30),reale(39213,0x11a47a8f8b3bdLL),
1565  // C4[15], coeff of eps^21, polynomial in n of order 2
1566  real(1243LL<<38),real(2249LL<<37),-real(577583LL<<28),
1567  reale(5601,0xddf2ecefef51bLL),
1568  // C4[15], coeff of eps^20, polynomial in n of order 3
1569  -real(28101LL<<40),real(24493LL<<39),-real(1645LL<<40),
1570  -real(318801LL<<29),reale(39213,0x11a47a8f8b3bdLL),
1571  // C4[15], coeff of eps^19, polynomial in n of order 4
1572  real(1359187LL<<38),-real(4447191LL<<36),-real(433293LL<<37),
1573  real(1982883LL<<36),-real(164770109LL<<28),
1574  reale(666622,0x2bec23883ef8dLL),
1575  // C4[15], coeff of eps^18, polynomial in n of order 5
1576  -real(6907451LL<<36),real(1332757LL<<38),-real(2401277LL<<36),
1577  real(253189LL<<37),real(26273LL<<36),-real(1574359LL<<30),
1578  reale(95231,0xbd21bbeee46cbLL),
1579  // C4[15], coeff of eps^17, polynomial in n of order 6
1580  real(60642045LL<<33),-real(48519929LL<<32),-real(5596337LL<<34),
1581  real(57431697LL<<32),-real(26089089LL<<33),real(27095547LL<<32),
1582  -real(828361417LL<<25),reale(95231,0xbd21bbeee46cbLL),
1583  // C4[15], coeff of eps^16, polynomial in n of order 7
1584  real(53036505LL<<34),-real(36153285LL<<35),real(80745483LL<<34),
1585  -real(18042031LL<<36),real(49556941LL<<34),-real(12180567LL<<35),
1586  real(7540351LL<<34),-real(278992987LL<<26),
1587  reale(222207,0x63f9612d6a52fLL),
1588  // C4[15], coeff of eps^15, polynomial in n of order 8
1589  real(5892945LL<<35),-real(106383165LL<<32),real(102040995LL<<33),
1590  -real(332742375LL<<32),real(114463377LL<<34),-real(521444273LL<<32),
1591  real(233750881LL<<33),-real(278992987LL<<32),real(9764754545LL<<25),
1592  reale(666622,0x2bec23883ef8dLL),
1593  // C4[16], coeff of eps^23, polynomial in n of order 0
1594  -real(1LL<<31),real(0x5f43434b6401e1LL),
1595  // C4[16], coeff of eps^22, polynomial in n of order 1
1596  real(4571LL<<36),-real(33945LL<<32),reale(5963,0x471b5f51fec25LL),
1597  // C4[16], coeff of eps^21, polynomial in n of order 2
1598  real(24269LL<<36),-real(5831LL<<35),-real(11703LL<<31),
1599  reale(5963,0x471b5f51fec25LL),
1600  // C4[16], coeff of eps^20, polynomial in n of order 3
1601  -real(224895LL<<36),-real(32277LL<<37),real(111531LL<<36),
1602  -real(139825LL<<34),reale(41742,0xf1bf9b3df7503LL),
1603  // C4[16], coeff of eps^19, polynomial in n of order 4
1604  real(978405LL<<37),-real(1674813LL<<35),real(162197LL<<36),
1605  real(29281LL<<35),-real(297087LL<<31),reale(41742,0xf1bf9b3df7503LL),
1606  // C4[16], coeff of eps^18, polynomial in n of order 5
1607  -real(15263501LL<<36),-real(3038189LL<<38),real(24413445LL<<36),
1608  -real(10587549LL<<37),real(10822455LL<<36),-real(41181917LL<<32),
1609  reale(709630,0xdb94f1d6c533LL),
1610  // C4[16], coeff of eps^17, polynomial in n of order 6
1611  -real(7565085LL<<36),real(16306961LL<<35),-real(3541967LL<<37),
1612  real(9518487LL<<35),-real(2301919LL<<36),real(1408637LL<<35),
1613  -real(3231579LL<<31),reale(101375,0xb8d15471eae75LL),
1614  // C4[16], coeff of eps^16, polynomial in n of order 7
1615  -real(57998985LL<<33),real(52955595LL<<34),-real(165927531LL<<33),
1616  real(55309177LL<<35),-real(246030477LL<<33),real(108465049LL<<34),
1617  -real(128185967LL<<33),real(278992987LL<<30),
1618  reale(709630,0xdb94f1d6c533LL),
1619  // C4[17], coeff of eps^23, polynomial in n of order 0
1620  -real(1121LL<<31),real(0x6ef59e61feaaea7LL),
1621  // C4[17], coeff of eps^22, polynomial in n of order 1
1622  -real(59LL<<37),-real(309LL<<32),real(0x14ce0db25fc00bf5LL),
1623  // C4[17], coeff of eps^21, polynomial in n of order 2
1624  -real(10703LL<<36),real(30413LL<<35),-real(148003LL<<31),
1625  reale(6324,0xb043d1b40e32fLL),
1626  // C4[17], coeff of eps^20, polynomial in n of order 3
1627  -real(177777LL<<38),real(15715LL<<39),real(4277LL<<38),
1628  -real(68103LL<<33),reale(44272,0xd1dabbec63649LL),
1629  // C4[17], coeff of eps^19, polynomial in n of order 4
1630  -real(407783LL<<37),real(2775087LL<<35),-real(1157751LL<<36),
1631  real(1167621LL<<35),-real(4428011LL<<31),reale(44272,0xd1dabbec63649LL),
1632  // C4[17], coeff of eps^18, polynomial in n of order 5
1633  real(1580535LL<<37),-real(334719LL<<39),real(882049LL<<37),
1634  -real(210231LL<<38),real(127323LL<<37),-real(580027LL<<32),
1635  reale(44272,0xd1dabbec63649LL),
1636  // C4[17], coeff of eps^17, polynomial in n of order 6
1637  real(801009LL<<36),-real(2422805LL<<35),real(785323LL<<37),
1638  -real(3419955LL<<35),real(1485435LL<<36),-real(1740081LL<<35),
1639  real(7540351LL<<31),reale(44272,0xd1dabbec63649LL),
1640  // C4[18], coeff of eps^23, polynomial in n of order 0
1641  -real(89LL<<35),real(0x3351994085c8a607LL),
1642  // C4[18], coeff of eps^22, polynomial in n of order 1
1643  real(763LL<<36),-real(1809LL<<33),real(0x15fe66403955fe03LL),
1644  // C4[18], coeff of eps^21, polynomial in n of order 2
1645  real(91LL<<39),real(35LL<<38),-real(235LL<<34),
1646  real(0x15fe66403955fe03LL),
1647  // C4[18], coeff of eps^20, polynomial in n of order 3
1648  real(667755LL<<37),-real(269591LL<<38),real(268793LL<<37),
1649  -real(508305LL<<34),reale(46802,0xb1f5dc9acf78fLL),
1650  // C4[18], coeff of eps^19, polynomial in n of order 4
1651  -real(51319LL<<40),real(132867LL<<38),-real(31255LL<<39),
1652  real(18753LL<<38),-real(42441LL<<34),reale(15600,0xe5fc9ede45285LL),
1653  // C4[18], coeff of eps^18, polynomial in n of order 5
1654  -real(1198615LL<<36),real(378917LL<<38),-real(1619009LL<<36),
1655  real(693861LL<<37),-real(806379LL<<36),real(1740081LL<<33),
1656  reale(46802,0xb1f5dc9acf78fLL),
1657  // C4[19], coeff of eps^23, polynomial in n of order 0
1658  -real(983LL<<35),real(0x3617bd362c26857dLL),
1659  // C4[19], coeff of eps^22, polynomial in n of order 1
1660  real(1LL<<46),-real(189LL<<37),reale(2596,0x737a284739077LL),
1661  // C4[19], coeff of eps^21, polynomial in n of order 2
1662  -real(473LL<<40),real(467LL<<39),-real(3525LL<<34),
1663  real(0x172ebece12ebf011LL),
1664  // C4[19], coeff of eps^20, polynomial in n of order 3
1665  real(2379LL<<41),-real(553LL<<42),real(329LL<<41),-real(2961LL<<35),
1666  reale(2596,0x737a284739077LL),
1667  // C4[19], coeff of eps^19, polynomial in n of order 4
1668  real(2405LL<<41),-real(10101LL<<39),real(4277LL<<40),-real(4935LL<<39),
1669  real(42441LL<<34),reale(2596,0x737a284739077LL),
1670  // C4[20], coeff of eps^23, polynomial in n of order 0
1671  -real(1LL<<38),real(0x1f5feefdb1f0c4fLL),
1672  // C4[20], coeff of eps^22, polynomial in n of order 1
1673  real(379LL<<42),-real(357LL<<40),reale(2729,0x9a383778d2ed9LL),
1674  // C4[20], coeff of eps^21, polynomial in n of order 2
1675  -real(249LL<<43),real(147LL<<42),-real(329LL<<38),
1676  reale(2729,0x9a383778d2ed9LL),
1677  // C4[20], coeff of eps^20, polynomial in n of order 3
1678  -real(4797LL<<40),real(2009LL<<41),-real(2303LL<<40),real(4935LL<<37),
1679  reale(2729,0x9a383778d2ed9LL),
1680  // C4[21], coeff of eps^23, polynomial in n of order 0
1681  -real(1327LL<<38),reale(2862,0xc0f646aa6cd3bLL),
1682  // C4[21], coeff of eps^22, polynomial in n of order 1
1683  real(11LL<<44),-real(49LL<<39),real(0x3ba4052178e24469LL),
1684  // C4[21], coeff of eps^21, polynomial in n of order 2
1685  real(473LL<<43),-real(539LL<<42),real(2303LL<<38),
1686  reale(2862,0xc0f646aa6cd3bLL),
1687  // C4[22], coeff of eps^23, polynomial in n of order 0
1688  -real(1LL<<41),real(0x5ac8f5f3162ebfdLL),
1689  // C4[22], coeff of eps^22, polynomial in n of order 1
1690  -real(23LL<<43),real(49LL<<40),real(0x1105ae1d9428c3f7LL),
1691  // C4[23], coeff of eps^23, polynomial in n of order 0
1692  real(1LL<<41),real(0xc5e28ed2c935abLL),
1693  }; // count = 2900
1694 #elif GEOGRAPHICLIB_GEODESICEXACT_ORDER == 27
1695  static const real coeff[] = {
1696  // C4[0], coeff of eps^26, polynomial in n of order 0
1697  4654,real(327806325),
1698  // C4[0], coeff of eps^25, polynomial in n of order 1
1699  -331600,247203,real(5135632425LL),
1700  // C4[0], coeff of eps^24, polynomial in n of order 2
1701  -real(30660788480LL),real(15209307520LL),real(3757742824LL),
1702  real(0xbd65c2e6062dLL),
1703  // C4[0], coeff of eps^23, polynomial in n of order 3
1704  -real(0x4a56872d110LL),real(0x30d818a0d20LL),-real(0x183639ebbb0LL),
1705  real(0x1207973318dLL),real(0x472c0a3d3d1ee9LL),
1706  // C4[0], coeff of eps^22, polynomial in n of order 4
1707  -real(0x743607eea80LL),real(0x5536ade42a0LL),-real(0x37e9933c940LL),
1708  real(0x1bb15f964e0LL),real(469120197546LL),real(0x472c0a3d3d1ee9LL),
1709  // C4[0], coeff of eps^21, polynomial in n of order 5
1710  -real(0x1a80e82073690LL),real(0x1485d9e7af5c0LL),-real(0xf039fc9e8ff0LL),
1711  real(0x9d5f26153ce0LL),-real(0x4ddf0f750f50LL),real(0x39e793daa6ebLL),
1712  real(0xadde5e94360277dLL),
1713  // C4[0], coeff of eps^20, polynomial in n of order 6
1714  -real(0xe72f9d31220580LL),real(0xb817a196612bc0LL),
1715  -real(0x8e0a680913c900LL),real(0x67a3067b290a40LL),
1716  -real(0x43c43707776c80LL),real(0x217ef7b84400c0LL),
1717  real(0x83b895ad56e94LL),reale(16517,0x8519000aea763LL),
1718  // C4[0], coeff of eps^19, polynomial in n of order 7
1719  -real(0x5be35cb0a188d670LL),real(0x49fb9f6e0e1fa420LL),
1720  -real(0x3a970b1601b36050LL),real(0x2d0406e3051baec0LL),
1721  -real(0x20bde41e80026c30LL),real(0x155cea808b65d160LL),
1722  -real(0xa8bc4b2c853c610LL),real(0x7d3acd77deac86fLL),
1723  reale(1139708,0xdfbd02f131dafLL),
1724  // C4[0], coeff of eps^18, polynomial in n of order 8
1725  -reale(2219,0x955c84d349100LL),real(0x6f523368eabed3a0LL),
1726  -real(0x58df9f4050ea48c0LL),real(0x45eb9b162449f0e0LL),
1727  -real(0x35736f4da3b86880LL),real(0x26bb8b2d01772220LL),
1728  -real(0x19350a3e2b857840LL),real(0xc6cd21a34a65f60LL),
1729  real(0x30a9f24aaae2862LL),reale(1139708,0xdfbd02f131dafLL),
1730  // C4[0], coeff of eps^17, polynomial in n of order 9
1731  -reale(3520,0x86c418e66b430LL),reale(2768,0x78979286ec480LL),
1732  -reale(2191,0xabc9bb4d59ed0LL),real(0x6c38e96882e6a560LL),
1733  -real(0x54765a5d7300bb70LL),real(0x402d11108cfc5240LL),
1734  -real(0x2e4c264c23518e10LL),real(0x1e09e0cfb5ca8720LL),
1735  -real(0xec7bce3f9449ab0LL),real(0xaf0b9139605a58dLL),
1736  reale(1139708,0xdfbd02f131dafLL),
1737  // C4[0], coeff of eps^16, polynomial in n of order 10
1738  -reale(6136,0x52223aecbfa00LL),reale(4597,0xf56d1171d1b00LL),
1739  -reale(3531,0xe10107f964800LL),reale(2747,0xc7a53bf3c9500LL),
1740  -reale(2142,0x9c25bfa8f9600LL),real(0x677abbdfa4dcef00LL),
1741  -real(0x4e0ad45efdfc2400LL),real(0x37ff2b5bd74de900LL),
1742  -real(0x2432b6ddc0003200LL),real(0x11c5dbb8178f4300LL),
1743  real(0x4536f43fdb6a550LL),reale(1139708,0xdfbd02f131dafLL),
1744  // C4[0], coeff of eps^15, polynomial in n of order 11
1745  -reale(13102,0xf96f6011eba70LL),reale(8724,0xbd02d5fc04060LL),
1746  -reale(6234,0x68dfd557291d0LL),reale(4636,0xd96d16348cb80LL),
1747  -reale(3525,0x47255186b7b30LL),reale(2702,0xc781c601a46a0LL),
1748  -reale(2062,0x7b91b55fb7290LL),real(0x60521f1f549575c0LL),
1749  -real(0x44a70474ce1373f0LL),real(0x2c2e0084319d1ce0LL),
1750  -real(0x15a2a473a1b17b50LL),real(0xff41fd49dab95d3LL),
1751  reale(1139708,0xdfbd02f131dafLL),
1752  // C4[0], coeff of eps^14, polynomial in n of order 12
1753  -reale(63391,0x70a4897dc9e80LL),reale(23343,0xc5a3f9fbbcce0LL),
1754  -reale(13453,0x278d24cdf3ac0LL),reale(8911,0x777a0315423a0LL),
1755  -reale(6323,0x2714f8a7fff00LL),reale(4656,0xe8c5e07109660LL),
1756  -reale(3491,0x6be5fd90e340LL),reale(2621,0xb84b17c4ad20LL),
1757  -real(0x78f908534453df80LL),real(0x55814182d129efe0LL),
1758  -real(0x36b7bc0c02deebc0LL),real(0x1ab5b755becbe6a0LL),
1759  real(0x672760e43e7e5beLL),reale(1139708,0xdfbd02f131dafLL),
1760  // C4[0], coeff of eps^13, polynomial in n of order 13
1761  reale(112706,0xdfd869d806ed0LL),reale(29093,0xf8d3fc140cbc0LL),
1762  -reale(65760,0x7b52c14019950LL),reale(24105,0xa651ba0482d20LL),
1763  -reale(13822,0xd4286a2c4c370LL),reale(9095,0xad3608e2bd280LL),
1764  -reale(6394,0x2414e7ceec390LL),reale(4646,0x4bdec656d47e0LL),
1765  -reale(3413,0x76099d6b04db0LL),reale(2482,0x54f2fd0561940LL),
1766  -real(0x6c7d891fb0df15d0LL),real(0x44efe2727b65d2a0LL),
1767  -real(0x2183dc0de2efcff0LL),real(0x189262ba581c6bf1LL),
1768  reale(1139708,0xdfbd02f131dafLL),
1769  // C4[0], coeff of eps^12, polynomial in n of order 14
1770  reale(22421,0x80a7495217980LL),-reale(122681,0x25b6cd6074ac0LL),
1771  reale(117806,0x7498b0aecaf00LL),reale(29700,0x9de1e174ab0c0LL),
1772  -reale(68413,0x428634ee0fb80LL),reale(24937,0xf2aac2170b440LL),
1773  -reale(14209,0x4f5514d0cb600LL),reale(9268,0x742c2dd2c8fc0LL),
1774  -reale(6433,0x2286f06b3b080LL),reale(4585,0x3348b70941340LL),
1775  -reale(3266,0x3bda622d31b00LL),reale(2252,0x1340649a90ec0LL),
1776  -real(0x589f5d02f1d02580LL),real(0x2adce3e44e715240LL),
1777  real(0xa36591ccc5a22bcLL),reale(1139708,0xdfbd02f131dafLL),
1778  // C4[0], coeff of eps^11, polynomial in n of order 15
1779  real(0x3845a63e874b7f90LL),reale(2990,0x790a9d44cfaa0LL),
1780  reale(23275,0xc0709755ecab0LL),-reale(127863,0x516b98584c9c0LL),
1781  reale(123656,0x74905ab09b3d0LL),reale(30291,0xc8698ff57f9e0LL),
1782  -reale(71410,0x2ebef8806f110LL),reale(25848,0x521bca14dd980LL),
1783  -reale(14605,0xac6deef7d4ff0LL),reale(9413,0x816443bfd6920LL),
1784  -reale(6415,0x315eed8f094d0LL),reale(4438,0xfed32587f3cc0LL),
1785  -reale(3002,0xabba02cdaebb0LL),real(0x74ba3cd78aa5e860LL),
1786  -real(0x3812b2b32b2f8090LL),real(0x28bab2d4ac11f317LL),
1787  reale(1139708,0xdfbd02f131dafLL),
1788  // C4[0], coeff of eps^10, polynomial in n of order 16
1789  real(0xbcd4fd6df5b2600LL),real(0x17fed2a1d906c020LL),
1790  real(0x3a338f7e05a82540LL),reale(3102,0x8ee9d52fa7060LL),
1791  reale(24235,0xac0c2ca98fc80LL),-reale(133761,0xdb81f4d32fb60LL),
1792  reale(130458,0x34533ae1a43c0LL),reale(30833,0xcd61b102f94e0LL),
1793  -reale(74830,0xb3a54c3df6d00LL),reale(26842,0xad19affdd3920LL),
1794  -reale(14996,0x635b9e8c37dc0LL),reale(9500,0x408e4569f0960LL),
1795  -reale(6294,0x8e3c24f515680LL),reale(4143,0x97d5a30101da0LL),
1796  -reale(2534,0x56aa081845f40LL),real(0x4b644b6e4da18de0LL),
1797  real(0x11925bb6ba64765aLL),reale(1139708,0xdfbd02f131dafLL),
1798  // C4[0], coeff of eps^9, polynomial in n of order 17
1799  real(0x3fcae6c51cf8fd0LL),real(0x6afa1c71c2ac100LL),
1800  real(0xc2892977602fa30LL),real(0x18cb840e0ff332e0LL),
1801  real(0x3c56602ddecd9290LL),reale(3228,0x26f051b5c20c0LL),
1802  reale(25324,0xf8a24438674f0LL),-reale(140558,0x5b2d711d11960LL),
1803  reale(138496,0xa2474d581bd50LL),reale(31265,0x7dd7c9350e080LL),
1804  -reale(78781,0x407f0fc917850LL),reale(27920,0xd85d0c9896a60LL),
1805  -reale(15347,0xbd51776ab0ff0LL),reale(9468,0xaa167d507e040LL),
1806  -reale(5981,0xcd152be8bed90LL),reale(3570,0xf062f37e99e20LL),
1807  -real(0x68dc53d94dbff530LL),real(0x4ae92c9a7a683bf5LL),
1808  reale(1139708,0xdfbd02f131dafLL),
1809  // C4[0], coeff of eps^8, polynomial in n of order 18
1810  real(0x1b54ebcbbde1f00LL),real(0x2947b9527677980LL),
1811  real(0x415d003e7b1b800LL),real(0x6df9566e0623680LL),
1812  real(0xc8ad7ddfed65100LL),real(0x19abdc3c4555e380LL),
1813  real(0x3eb74cbd79d9ca00LL),reale(3370,0x20d152b7a6080LL),
1814  reale(26575,0x8086d641a0300LL),-reale(148506,0xeae36b607280LL),
1815  reale(148190,0x3f5dc7314dc00LL),reale(31472,0x41aaeb33d4a80LL),
1816  -reale(83406,0xf30366e47cb00LL),reale(29065,0x630b32b837780LL),
1817  -reale(15585,0x2764a1e4e1200LL),reale(9192,0xabf11a369f480LL),
1818  -reale(5286,0x3613c4b401900LL),reale(2436,0x784ea73c0a180LL),
1819  real(0x2209232c3cc4cca8LL),reale(1139708,0xdfbd02f131dafLL),
1820  // C4[0], coeff of eps^7, polynomial in n of order 19
1821  real(0xd73a52d8bd1790LL),real(0x13078939da8f2e0LL),
1822  real(0x1bc62bcb4923530LL),real(0x2a1bb9d3adccf00LL),
1823  real(0x42f03cdd160e0d0LL),real(0x711670ab4ed8b20LL),
1824  real(0xcf3f2963eb3be70LL),real(0x1aa1c278c7668b40LL),
1825  real(0x416120b2cbe67210LL),reale(3532,0x3a6649f1d3360LL),
1826  reale(28031,0x35f5ca2c79fb0LL),-reale(157970,0xd11b280f51880LL),
1827  reale(160182,0x9c904f3daeb50LL),reale(31228,0xe702b02a70ba0LL),
1828  -reale(88907,0xf3445bc050710LL),reale(30210,0xe03f62b8103c0LL),
1829  -reale(15533,0x7a0f6ace49370LL),reale(8379,0xc089c57da33e0LL),
1830  -reale(3746,0x32a85741515d0LL),reale(2585,0x396e1f38f6dbbLL),
1831  reale(1139708,0xdfbd02f131dafLL),
1832  // C4[0], coeff of eps^6, polynomial in n of order 20
1833  real(0x73457ae9fefc80LL),real(0x9bfefa36a68d60LL),
1834  real(0xd7e57b2fb0d740LL),real(0x132c60dd72bf720LL),
1835  real(0x1c1d29144004a00LL),real(0x2ad464b0fcdcce0LL),
1836  real(0x446dc104a967cc0LL),real(0x7436e717eb8b6a0LL),
1837  real(0xd626d1c40bc9780LL),real(0x1badddc640275c60LL),
1838  real(0x445f879c8f67c240LL),reale(3719,0x5820c25fe6620LL),
1839  reale(29754,0xa45b204c52500LL),-reale(169504,0xe227b2d578420LL),
1840  reale(175522,0xa8a2f18c5e7c0LL),reale(30060,0x7f96216b245a0LL),
1841  -reale(95556,0xca707dfd4cd80LL),reale(31150,0x37da9e0a66b60LL),
1842  -reale(14734,0x203a74e6dd2c0LL),reale(6239,0x114e25ea99520LL),
1843  real(0x4f113ff5b79764b6LL),reale(1139708,0xdfbd02f131dafLL),
1844  // C4[0], coeff of eps^5, polynomial in n of order 21
1845  real(0x40c53da188eed0LL),real(0x54ed187b34c440LL),
1846  real(0x7146df082c9bb0LL),real(0x9a154e844696a0LL),
1847  real(0xd666e59b550690LL),real(0x13262a46ef0dd00LL),
1848  real(0x1c3f2cd359b1b70LL),real(0x2b4dcc62e91c360LL),
1849  real(0x45a57497f9cc650LL),real(0x771c08f5a9775c0LL),
1850  real(0xdd1a4961392f330LL),real(0x1ccccddd60de2020LL),
1851  real(0x47bbc762b5878e10LL),reale(3937,0xc2066e54dee80LL),
1852  reale(31838,0x13ce9b56b82f0LL),-reale(183990,0x8ea49a06f320LL),
1853  reale(196055,0x20a74184cbdd0LL),reale(26856,0x50de39af9a740LL),
1854  -reale(103681,0x9284ca213d550LL),reale(31195,0x5686bd94fe9a0LL),
1855  -reale(11739,0xecc6d600c4a70LL),reale(7362,0xc12f75a94f319LL),
1856  reale(1139708,0xdfbd02f131dafLL),
1857  // C4[0], coeff of eps^4, polynomial in n of order 22
1858  real(0x25018b34093680LL),real(0x2f66db340747c0LL),
1859  real(0x3d8eaf55c4d300LL),real(0x512efdf6054640LL),
1860  real(0x6cf4c335af0f80LL),real(0x952f237cecdcc0LL),
1861  real(0xd10b7e4cd0dc00LL),real(0x12cf85d69a3fb40LL),
1862  real(0x1bf83185acb2880LL),real(0x2b3ea99410c91c0LL),
1863  real(0x462f30f09fee500LL),real(0x7931c8e1f8c9040LL),
1864  real(0xe34caff0bb50180LL),real(0x1def0c2db115e6c0LL),
1865  real(0x4b7080401d466e00LL),reale(4194,0xbf682a6ae8540LL),
1866  reale(34423,0x2600aa7441a80LL),-reale(202943,0xe8d9bbd87a440LL),
1867  reale(225378,0x7bd3e279ef700LL),reale(18574,0x52c9633395a40LL),
1868  -reale(113350,0xffc66a8300c80LL),reale(27528,0x198b9d86370c0LL),
1869  reale(3947,0xb3131e15c994LL),reale(1139708,0xdfbd02f131dafLL),
1870  // C4[0], coeff of eps^3, polynomial in n of order 23
1871  real(0x14ba9dec234d90LL),real(0x1a15f878f54920LL),
1872  real(0x2134b5fb572db0LL),real(0x2acf89c87d75c0LL),
1873  real(0x37fb978513cbd0LL),real(0x4a626dbdd79a60LL),
1874  real(0x64a2becb8c9bf0LL),real(0x8afd5ca732eb00LL),
1875  real(0xc4970cf56e1210LL),real(0x11deb4357fc9ba0LL),
1876  real(0x1add3c5ff77a230LL),real(0x2a08c939311e040LL),
1877  real(0x451c5af5bb5c050LL),real(0x7909ad73ef1ece0LL),
1878  real(0xe685850971be070LL),real(0x1edeb97922aff580LL),
1879  real(0x4f3a8e20463e7690LL),reale(4494,0x6f4eb7a652e20LL),
1880  reale(37733,0xf376431ecf6b0LL),-reale(229273,0xd3dfdae1d3540LL),
1881  reale(271637,0x92a93446bd4d0LL),-reale(5667,0x8cc9ebb9c00a0LL),
1882  -reale(121042,0xac8f4eff17b10LL),reale(39799,0x5b8561a065b3fLL),
1883  reale(1139708,0xdfbd02f131dafLL),
1884  // C4[0], coeff of eps^2, polynomial in n of order 24
1885  real(0xab22c89592500LL),real(0xd46ccddd414a0LL),real(0x10a4eb8f1ddb40LL),
1886  real(0x15184ab619d7e0LL),real(0x1b0f2efb81a980LL),
1887  real(0x232d3128e64f20LL),real(0x2e6a3ee43c47c0LL),
1888  real(0x3e471bedb3b260LL),real(0x552919f15d6e00LL),
1889  real(0x7700089e6e39a0LL),real(0xaa7eb4de50d440LL),
1890  real(0xfb834e2f281ce0LL),real(0x1801af760623280LL),
1891  real(0x263a4a7c48d9420LL),real(0x401905d594140c0LL),
1892  real(0x72c2e250398d760LL),real(0xe012c263c05b700LL),
1893  real(0x1edcfb1205061ea0LL),real(0x51c797f92b334d40LL),
1894  reale(4810,0x460394707a1e0LL),reale(42101,0xccb76963dbb80LL),
1895  -reale(269613,0x72aa3b84666e0LL),reale(357865,0x4c16ffd0cb9c0LL),
1896  -reale(115779,0xf2f861d29c3a0LL),-reale(21708,0xbd8e92577d4aeLL),
1897  reale(1139708,0xdfbd02f131dafLL),
1898  // C4[0], coeff of eps^1, polynomial in n of order 25
1899  real(0x16b98c18c43f0LL),real(0x1be76827efc80LL),real(0x2291674649910LL),
1900  real(0x2b3d2747a6820LL),real(0x36a8d2fdcc830LL),real(0x45e795ad137c0LL),
1901  real(0x5a8eeaa036550LL),real(0x77007a4bcbf60LL),real(0x9ee5aa2960470LL),
1902  real(0xd8045ac825300LL),real(0x12bb93df5b3990LL),
1903  real(0x1a9b1c398546a0LL),real(0x26d2a92f5c98b0LL),
1904  real(0x3a7858f998ee40LL),real(0x5b6e62f9c0b5d0LL),
1905  real(0x959d5c24529de0LL),real(0x102f2d0b50524f0LL),
1906  real(0x1e1472bfb1ba980LL),real(0x3d69bf9cb587a10LL),
1907  real(0x8ee1210e8c36520LL),real(0x194d332fe8d44930LL),
1908  real(0x6534ccbfa35124c0LL),reale(15788,0x2cc4c78572650LL),
1909  -reale(115779,0xf2f861d29c3a0LL),reale(173669,0xec7492bbea570LL),
1910  -reale(75980,0x9773003236861LL),reale(379902,0xf53f00fb109e5LL),
1911  // C4[0], coeff of eps^0, polynomial in n of order 26
1912  real(0x104574695550b58LL),real(0x124efd1ef41bc1cLL),
1913  real(0x14b36c04f5f7ca0LL),real(0x1787788b9792f24LL),
1914  real(0x1ae5caaf52545e8LL),real(0x1ef111702bafd2cLL),
1915  real(0x23d6fb7cfc3d530LL),real(0x29d483e08118c34LL),
1916  real(0x313c47ee86cd878LL),real(0x3a800de5bbb223cLL),
1917  real(0x463f6a859617dc0LL),real(0x555ed8909112544LL),
1918  real(0x692d2b9362db308LL),real(0x83a245a495f5b4cLL),
1919  real(0xa7cc0a01a036650LL),real(0xda93e49d10b2a54LL),
1920  real(0x1243757f6f15c598LL),real(0x193422259e6ad85cLL),
1921  real(0x24309a0ea1d47ee0LL),real(0x36b22ea791accb64LL),
1922  real(0x588e3327aee70028LL),reale(2530,0x27feb6f2ec96cLL),
1923  reale(5262,0xb996ed2c7b770LL),reale(14472,0x7e5f0c3a53874LL),
1924  reale(86834,0xf63a495df52b8LL),-reale(303922,0x5dcc00c8da184LL),
1925  reale(759805,0xea7e01f6213caLL),reale(1139708,0xdfbd02f131dafLL),
1926  // C4[1], coeff of eps^26, polynomial in n of order 0
1927  4654,real(327806325),
1928  // C4[1], coeff of eps^25, polynomial in n of order 1
1929  real(22113584),5520955,real(0xf784431927LL),
1930  // C4[1], coeff of eps^24, polynomial in n of order 2
1931  real(29556996608LL),-real(15922652416LL),real(11273228472LL),
1932  real(0x2383148b21287LL),
1933  // C4[1], coeff of eps^23, polynomial in n of order 3
1934  real(0x165661ad6b70LL),-real(0x1009b31cabe0LL),real(0x7444963bdd0LL),
1935  real(0x1d0511c64f5LL),real(0x42b94999694cfa7LL),
1936  // C4[1], coeff of eps^22, polynomial in n of order 4
1937  real(696434041088LL),-real(561462728640LL),real(334369174656LL),
1938  -real(182661157184LL),real(127941872058LL),real(0x13691a10b39411LL),
1939  // C4[1], coeff of eps^21, polynomial in n of order 5
1940  real(0x2b50c847e5bec70LL),-real(0x25172ad2adc8640LL),
1941  real(0x187490c86e06510LL),-real(0x11cf5b364679120LL),
1942  real(0x7e9f37da26e7b0LL),real(0x1f979b01bfd5e3LL),
1943  reale(227941,0xc6590096a3923LL),
1944  // C4[1], coeff of eps^20, polynomial in n of order 6
1945  real(0x84a641c077c100LL),-real(0x75601a6b667780LL),
1946  real(0x51157a29d94600LL),-real(0x4247925ad10480LL),
1947  real(0x269068d8c2ab00LL),-real(0x15748d5a64a980LL),
1948  real(0xed190d6b360a4LL),reale(29731,0x892d0013a607fLL),
1949  // C4[1], coeff of eps^19, polynomial in n of order 7
1950  real(0x57e3d5e3e8a64d50LL),-real(0x4ee151925712ac60LL),
1951  real(0x379f60f9d8160ef0LL),-real(0x3036f6417460ec40LL),
1952  real(0x1eece80c1c746690LL),-real(0x16f21d696f523420LL),
1953  real(0x9ef6bfafd871830LL),real(0x27a3f6720674fabLL),
1954  reale(3419126,0x9f3708d39590dLL),
1955  // C4[1], coeff of eps^18, polynomial in n of order 8
1956  reale(2128,0x469250df87e00LL),-real(0x76ff6f2ca68ee740LL),
1957  real(0x544ea56af984a280LL),-real(0x4b3b3c5b1f3b3dc0LL),
1958  real(0x324e822f05811f00LL),-real(0x29dd8ae6f4502040LL),
1959  real(0x179c3b6434632b80LL),-real(0xd7628385c5d56c0LL),
1960  real(0x91fdd6e000a7926LL),reale(3419126,0x9f3708d39590dLL),
1961  // C4[1], coeff of eps^17, polynomial in n of order 9
1962  reale(3396,0xc29d3f547be10LL),-reale(2963,0x6657b77d7b180LL),
1963  reale(2082,0xa3af2d55cd2f0LL),-real(0x74e3fc23ed074b20LL),
1964  real(0x4f51e11c0cc64dd0LL),-real(0x45cc62cad46028c0LL),
1965  real(0x2b210825284d5ab0LL),-real(0x20cfde05bc67de60LL),
1966  real(0xdb6584e22cc2590LL),real(0x36aae0ede944991LL),
1967  reale(3419126,0x9f3708d39590dLL),
1968  // C4[1], coeff of eps^16, polynomial in n of order 10
1969  reale(5994,0xfab7bd428a400LL),-reale(4919,0xd8955c3980a00LL),
1970  reale(3376,0x641d9d71fd000LL),-reale(2975,0x320d339261600LL),
1971  real(0x7dd1b5a4fb9ffc00LL),-real(0x712cdc1424704200LL),
1972  real(0x486493a43f86e800LL),-real(0x3daeb06e6a40ce00LL),
1973  real(0x21506b8426325400LL),-real(0x13a656589a61fa00LL),
1974  real(0xcfa4dcbf923eff0LL),reale(3419126,0x9f3708d39590dLL),
1975  // C4[1], coeff of eps^15, polynomial in n of order 11
1976  reale(13117,0x6cbddabc52ed0LL),-reale(9318,0xa8f3ea9b44c20LL),
1977  reale(6040,0x7b2fdab4ba7f0LL),-reale(5022,0x22b8983435e80LL),
1978  reale(3330,0x281af37e2710LL),-reale(2968,0x456e895a2c0e0LL),
1979  real(0x7764510336be0030LL),-real(0x6af4843f7d4f5f40LL),
1980  real(0x3eba1ed514e18750LL),-real(0x31669b90045c25a0LL),
1981  real(0x13a17c0101ce1070LL),real(0x4e2a88c78d66acfLL),
1982  reale(3419126,0x9f3708d39590dLL),
1983  // C4[1], coeff of eps^14, polynomial in n of order 12
1984  reale(68147,0x8cb1a33fbb300LL),-reale(25030,0x19a83b314d5c0LL),
1985  reale(13399,0xd5b954b9ffe80LL),-reale(9632,0x5ff7adc5b8740LL),
1986  reale(6058,0x6185fb910e200LL),-reale(5122,0x24f31e326fcc0LL),
1987  reale(3246,0x498e64bf8a580LL),-reale(2929,0xc60f539a7ee40LL),
1988  real(0x6e041fee5d419100LL),-real(0x60b53ba76d5f13c0LL),
1989  real(0x3113d4fc9085ec80LL),-real(0x1e6533c87b7d2540LL),
1990  real(0x1357622acbb7b13aLL),reale(3419126,0x9f3708d39590dLL),
1991  // C4[1], coeff of eps^13, polynomial in n of order 13
1992  -reale(121532,0xe4514e2bd7670LL),-reale(15940,0x17553143d1340LL),
1993  reale(71019,0xc50f40d0125f0LL),-reale(26120,0x5d81b142df60LL),
1994  reale(13667,0x35bfe1bb73850LL),-reale(9984,0xe4f4c1c8f9780LL),
1995  reale(6033,0x4bb2ec6997cb0LL),-reale(5212,0x5459006443fa0LL),
1996  reale(3108,0x7a1250dedaf10LL),-reale(2836,0xbc55f0b59dbc0LL),
1997  real(0x605fcd3581f88b70LL),-real(0x4fb9f3b2da8b6fe0LL),
1998  real(0x1d6444fcd70bcdd0LL),real(0x74c81d1452803b5LL),
1999  reale(3419126,0x9f3708d39590dLL),
2000  // C4[1], coeff of eps^12, polynomial in n of order 14
2001  -reale(18279,0x4105927635f00LL),reale(111436,0xf9c78acad1e80LL),
2002  -reale(127455,0xb83d096a36600LL),-reale(14599,0xb6308ef406280LL),
2003  reale(74253,0x38e0bbebab300LL),-reale(27394,0x6661a055a9b80LL),
2004  reale(13898,0x35bd350d73c00LL),-reale(10384,0x95909b51f3c80LL),
2005  reale(5941,0x73f13b5b28500LL),-reale(5277,0x6484894bf580LL),
2006  reale(2891,0x688dd5accde00LL),-reale(2646,0x1bce07b5e7680LL),
2007  real(0x4c6028727ac69700LL),-real(0x32eae1a8c2946f80LL),
2008  real(0x1ea30b56650e6834LL),reale(3419126,0x9f3708d39590dLL),
2009  // C4[1], coeff of eps^11, polynomial in n of order 15
2010  -real(0x26534490cad1dfb0LL),-reale(2194,0x14a85ebaf95e0LL),
2011  -reale(18676,0x98f19d91af310LL),reale(115088,0x35b741cc34140LL),
2012  -reale(134245,0x8207aed455070LL),-reale(12735,0xf52bb5c1fbfa0LL),
2013  reale(77916,0x32c371fd8ec30LL),-reale(28918,0xb36d158cbf480LL),
2014  reale(14055,0x84fcc4e4ea6d0LL),-reale(10840,0xa60c8c5d6b960LL),
2015  reale(5745,0xafd650291c370LL),-reale(5282,0xabba6463d6a40LL),
2016  reale(2556,0x876a7d9212610LL),-reale(2272,0x615ae9eab6320LL),
2017  real(0x2e7aab3dc406b2b0LL),real(0xb7e588c69951913LL),
2018  reale(3419126,0x9f3708d39590dLL),
2019  // C4[1], coeff of eps^10, polynomial in n of order 16
2020  -real(0x6ec9ec72fa83400LL),-real(0xee6121f9ed5ac40LL),
2021  -real(0x2698258da225a980LL),-reale(2223,0x82921a72280c0LL),
2022  -reale(19088,0x4fb95e6188700LL),reale(119080,0xff5c72a1c6ec0LL),
2023  -reale(142117,0x7c3deb03b7480LL),-reale(10117,0x6e8319b8485c0LL),
2024  reale(82086,0xede392256e600LL),-reale(30795,0xed5c849e10640LL),
2025  reale(14073,0x47ff3f3e080LL),-reale(11359,0x76d81b264bac0LL),
2026  reale(5387,0x791e9eab0d300LL),-reale(5153,0xcdddc38eb4b40LL),
2027  real(0x7fb4f5b53eb31580LL),-real(0x5fcfbdbbdde05fc0LL),
2028  real(0x34b713242f2d630eLL),reale(3419126,0x9f3708d39590dLL),
2029  // C4[1], coeff of eps^9, polynomial in n of order 17
2030  -real(0x20f38bbaca812f0LL),-real(0x39b499036d51b00LL),
2031  -real(0x6e4d3364d687b10LL),-real(0xee56650d93fe5a0LL),
2032  -real(0x26cbb66f58b91d30LL),-reale(2250,0xe985ef9ea8440LL),
2033  -reale(19510,0x3134f0f32ad50LL),reale(123456,0xc66bc06159520LL),
2034  -reale(151362,0xfafa005fcdf70LL),-reale(6379,0xaa0075c90d80LL),
2035  reale(86843,0xd7e050f079870LL),-reale(33196,0x7f1161b25e020LL),
2036  reale(13831,0x3ac1850370650LL),-reale(11930,0x8d19c5e9856c0LL),
2037  reale(4775,0x36871b380b630LL),-reale(4708,0xdfb0fde91e560LL),
2038  real(0x4e466dbc0d5cf410LL),real(0x132845ea2b7be139LL),
2039  reale(3419126,0x9f3708d39590dLL),
2040  // C4[1], coeff of eps^8, polynomial in n of order 18
2041  -real(0xcaab4ddd8d4600LL),-real(0x13c31d1cbb16d00LL),
2042  -real(0x207a98d99de3000LL),-real(0x390c3dedd68b300LL),
2043  -real(0x6d71551ca261a00LL),-real(0xed90e825b918900LL),
2044  -real(0x26e62c786e462400LL),-reale(2274,0xbbaf6c5e10f00LL),
2045  -reale(19934,0x1db266a5f6e00LL),reale(128254,0x3ade3c4739b00LL),
2046  -reale(162383,0xab3413f131800LL),-real(0x3992c873ce48ab00LL),
2047  reale(92230,0x4a4593a3dbe00LL),-reale(36418,0x345102e4b0100LL),
2048  reale(13110,0x864dfe531f400LL),-reale(12475,0xa3edd9488700LL),
2049  reale(3771,0xc13fa20286a00LL),-reale(3469,0x365d076765d00LL),
2050  real(0x661b6984b64e65f8LL),reale(3419126,0x9f3708d39590dLL),
2051  // C4[1], coeff of eps^7, polynomial in n of order 19
2052  -real(0x5b1678b2b96e30LL),-real(0x83e7d604d6e1a0LL),
2053  -real(0xc5c1bd21f06210LL),-real(0x135402446a1f500LL),
2054  -real(0x1fd9e061288aff0LL),-real(0x381fb1c2d0ea860LL),
2055  -real(0x6c176a9d32ee3d0LL),-real(0xebcbb379725c7c0LL),
2056  -real(0x26dc285f96da89b0LL),-reale(2292,0x8c4f779be1f20LL),
2057  -reale(20344,0xed4bfa0642d90LL),reale(133496,0x33ba4ee858580LL),
2058  -reale(175742,0x64c709ffb5b70LL),reale(7288,0xff81f26b85a20LL),
2059  reale(98139,0x5735ff04360b0LL),-reale(41010,0x6c5dc3c9a6d40LL),
2060  reale(11505,0xfe66ab587ad0LL),-reale(12646,0x14c7a4cad9ca0LL),
2061  reale(2204,0x9aaf76ecb66f0LL),real(0x2076d1ad78dbacf7LL),
2062  reale(3419126,0x9f3708d39590dLL),
2063  // C4[1], coeff of eps^6, polynomial in n of order 20
2064  -real(0x2d4d049c656700LL),-real(0x3e4af5e8d022c0LL),
2065  -real(0x57ced7fe851580LL),-real(0x7f7034131ef240LL),
2066  -real(0xbf83d85dea6c00LL),-real(0x12c465612feb5c0LL),
2067  -real(0x1f04ac518a30280LL),-real(0x36d88216b840540LL),
2068  -real(0x6a13494183c7100LL),-real(0xe8a2e478ed378c0LL),
2069  -real(0x269ca36792944f80LL),-reale(2300,0x7badf4501a840LL),
2070  -reale(20714,0x7015050283600LL),reale(139156,0x8278406ccd440LL),
2071  -reale(192233,0x29cb54965bc80LL),reale(20133,0xdb20ab18364c0LL),
2072  reale(103930,0xc444b13858500LL),-reale(48022,0x859c77e028ec0LL),
2073  reale(8312,0x1287962dbf680LL),-reale(10954,0x169105fd99e40LL),
2074  reale(3795,0x3bfe126c62e22LL),reale(3419126,0x9f3708d39590dLL),
2075  // C4[1], coeff of eps^5, polynomial in n of order 21
2076  -real(0x1802918882e770LL),-real(0x1fcd949a6860c0LL),
2077  -real(0x2aeab9b7d2f010LL),-real(0x3b2acc792185e0LL),
2078  -real(0x539feddcdda2b0LL),-real(0x79b43080aca700LL),
2079  -real(0xb76e50170e2350LL),-real(0x1207f374f78a820LL),
2080  -real(0x1de74f0a09e95f0LL),-real(0x351484156246d40LL),
2081  -real(0x6722781c7da1e90LL),-real(0xe37fba15ed8da60LL),
2082  -real(0x260d3a8a453ee130LL),-reale(2292,0x258c84a62d380LL),
2083  -reale(20989,0x3411bcc4001d0LL),reale(145073,0x9b58d1932c360LL),
2084  -reale(212947,0x443e0cc67a470LL),reale(41274,0x9a63d1cc50640LL),
2085  reale(107042,0xff9bf7f6712f0LL),-reale(59294,0xf496954c0eee0LL),
2086  reale(2833,0xc664f5dce0050LL),real(0x17b85ffcea47049dLL),
2087  reale(3419126,0x9f3708d39590dLL),
2088  // C4[1], coeff of eps^4, polynomial in n of order 22
2089  -real(0xd20723e198100LL),-real(0x10e999b2026480LL),
2090  -real(0x161c2993f30e00LL),-real(0x1d62585afd4f80LL),
2091  -real(0x27ca0dc8a2fb00LL),-real(0x370cc97a8ce280LL),
2092  -real(0x4e170b46a3d800LL),-real(0x7213d21df5ad80LL),
2093  -real(0xac9b82d7503500LL),-real(0x1109444f53c4080LL),
2094  -real(0x1c6019c5f02a200LL),-real(0x329a7eb49a52b80LL),
2095  -real(0x62d84097135af00LL),-real(0xdb6f2c88eb4fe80LL),
2096  -real(0x2502e63c01a3ec00LL),-reale(2256,0x8389e52b04980LL),
2097  -reale(21063,0xc2942f767e900LL),reale(150710,0x347c6ec646380LL),
2098  -reale(239155,0x111ed671c3600LL),reale(78297,0xeac3242447880LL),
2099  reale(97157,0xffcea47049d00LL),-reale(74487,0xcca6f58949a80LL),
2100  reale(11841,0x219395a415cbcLL),reale(3419126,0x9f3708d39590dLL),
2101  // C4[1], coeff of eps^3, polynomial in n of order 23
2102  -real(0x7207334f38cb0LL),-real(0x8fe6a0f540760LL),
2103  -real(0xb7c4f4df6c510LL),-real(0xedcd97a176940LL),
2104  -real(0x1384e0d9162770LL),-real(0x1a108f169c7320LL),
2105  -real(0x2378674e3fafd0LL),-real(0x3154606a2c6100LL),
2106  -real(0x465a9ded7c5a30LL),-real(0x675a79a8aa6ee0LL),
2107  -real(0x9d4a8ab99e2290LL),-real(0xf9e328cb49d8c0LL),
2108  -real(0x1a2ce594ece04f0LL),-real(0x2efbcc23543daa0LL),
2109  -real(0x5c688ee5939fd50LL),-real(0xceb90d2fccdb080LL),
2110  -real(0x2331240c282307b0LL),-reale(2173,0x456299e8e9660LL),
2111  -reale(20716,0x42df2018b2010LL),reale(154405,0x43613e2a37c0LL),
2112  -reale(270827,0xec43372c34270LL),reale(146546,0xa61bf3c2f7de0LL),
2113  reale(26313,0x9ff2a1de69530LL),-reale(32563,0x1c55db833bf05LL),
2114  reale(3419126,0x9f3708d39590dLL),
2115  // C4[1], coeff of eps^2, polynomial in n of order 24
2116  -real(0x39a9fc22d9600LL),-real(0x47a4ffa857140LL),
2117  -real(0x59ea353148580LL),-real(0x721982b3023c0LL),
2118  -real(0x9291e22ef9d00LL),-real(0xbeda9ea6fc240LL),
2119  -real(0xfc517cd616480LL),-real(0x1535335443d4c0LL),
2120  -real(0x1d14474c2c6400LL),-real(0x28c4706fdbe340LL),
2121  -real(0x3aa43e35a32380LL),-real(0x56eefde83775c0LL),
2122  -real(0x859522b6982b00LL),-real(0xd663f0e8861440LL),
2123  -real(0x16b2ad2884e0280LL),-real(0x2932441ccc746c0LL),
2124  -real(0x51f4ee722e73200LL),-real(0xb97e18f372a9540LL),
2125  -real(0x1ff5b9ebacd64180LL),-real(0x7d04fcecbaaf87c0LL),
2126  -reale(19431,0x998fba7cdb900LL),reale(150594,0xe619e547a59c0LL),
2127  -reale(294712,0x9903e1bb02080LL),reale(231559,0xe5f0c3a538740LL),
2128  -reale(65126,0x38abb70677e0aLL),reale(3419126,0x9f3708d39590dLL),
2129  // C4[1], coeff of eps^1, polynomial in n of order 25
2130  -real(0x16b98c18c43f0LL),-real(0x1be76827efc80LL),
2131  -real(0x2291674649910LL),-real(0x2b3d2747a6820LL),
2132  -real(0x36a8d2fdcc830LL),-real(0x45e795ad137c0LL),
2133  -real(0x5a8eeaa036550LL),-real(0x77007a4bcbf60LL),
2134  -real(0x9ee5aa2960470LL),-real(0xd8045ac825300LL),
2135  -real(0x12bb93df5b3990LL),-real(0x1a9b1c398546a0LL),
2136  -real(0x26d2a92f5c98b0LL),-real(0x3a7858f998ee40LL),
2137  -real(0x5b6e62f9c0b5d0LL),-real(0x959d5c24529de0LL),
2138  -real(0x102f2d0b50524f0LL),-real(0x1e1472bfb1ba980LL),
2139  -real(0x3d69bf9cb587a10LL),-real(0x8ee1210e8c36520LL),
2140  -real(0x194d332fe8d44930LL),-real(0x6534ccbfa35124c0LL),
2141  -reale(15788,0x2cc4c78572650LL),reale(115779,0xf2f861d29c3a0LL),
2142  -reale(173669,0xec7492bbea570LL),reale(75980,0x9773003236861LL),
2143  reale(3419126,0x9f3708d39590dLL),
2144  // C4[2], coeff of eps^26, polynomial in n of order 0
2145  2894476,real(0xfe89d46f33LL),
2146  // C4[2], coeff of eps^25, polynomial in n of order 1
2147  -8609536,5603312,real(590597728875LL),
2148  // C4[2], coeff of eps^24, polynomial in n of order 2
2149  -real(104352359168LL),real(40707880576LL),real(10376961584LL),
2150  real(0xb18f66b7a5ca3LL),
2151  // C4[2], coeff of eps^23, polynomial in n of order 3
2152  -real(0x265f8c17d00LL),real(0x13bddd35200LL),-real(871294451456LL),
2153  real(553528081392LL),real(0xa1c12e8b2dd1e3LL),
2154  // C4[2], coeff of eps^22, polynomial in n of order 4
2155  -real(0x46e25cf59280LL),real(0x290af5269020LL),-real(0x22f7c7b01940LL),
2156  real(0xd08f4d0d560LL),real(0x355c24081bcLL),real(0xc015674546693d9LL),
2157  // C4[2], coeff of eps^21, polynomial in n of order 5
2158  -real(0x326f6045f923c80LL),real(0x1fb1615f9d3a600LL),
2159  -real(0x1db1797638c1780LL),real(0xe9780531c07300LL),
2160  -real(0x9d24cc38e5d280LL),real(0x60cf9034bf3868LL),
2161  reale(379902,0xf53f00fb109e5LL),
2162  // C4[2], coeff of eps^20, polynomial in n of order 6
2163  -real(0x4837c78c0550480LL),real(0x313ba08613af040LL),
2164  -real(0x2ee33229a4bc300LL),real(0x1a152ee5f2ae9c0LL),
2165  -real(0x172de5252da0180LL),real(0x824fa762c0c340LL),
2166  real(0x2180172e018ad8LL),reale(379902,0xf53f00fb109e5LL),
2167  // C4[2], coeff of eps^19, polynomial in n of order 7
2168  -real(0x5fc4bec46509e480LL),real(0x48096a7e75900b00LL),
2169  -real(0x41caf1fb886dd580LL),real(0x28558a32a56ef200LL),
2170  -real(0x26dce3ddd1a42680LL),real(0x120433e2d2025900LL),
2171  -real(0xce36e1803df1780LL),real(0x7a135866f905bb8LL),
2172  reale(5698544,0x5eb10eb5f946bLL),
2173  // C4[2], coeff of eps^18, polynomial in n of order 8
2174  -reale(2176,0xe1585afea1500LL),real(0x73bced2a00a143a0LL),
2175  -real(0x5fca97395e84bfc0LL),real(0x418b4cd8fc5e04e0LL),
2176  -real(0x3e6c34ea7ddb8a80LL),real(0x212422dcacab1620LL),
2177  -real(0x1f0466b0c7211540LL),real(0xa12130d17045760LL),
2178  real(0x29b0aa486315dbcLL),reale(5698544,0x5eb10eb5f946bLL),
2179  // C4[2], coeff of eps^17, polynomial in n of order 9
2180  -reale(3194,0x3409f96190200LL),reale(3129,0x198ba10e3f000LL),
2181  -reale(2211,0xeca78927c1e00LL),real(0x6cf94ec7bfac7400LL),
2182  -real(0x5f04d2df84f0ba00LL),real(0x39318494ff85f800LL),
2183  -real(0x38939121c731d600LL),real(0x1854a6f7e2957c00LL),
2184  -real(0x12decef0b13a7200LL),real(0xa9861a018e14120LL),
2185  reale(5698544,0x5eb10eb5f946bLL),
2186  // C4[2], coeff of eps^16, polynomial in n of order 10
2187  -reale(5172,0xb8c4b33583a00LL),reale(5700,0x1d26bd0962f00LL),
2188  -reale(3248,0x8acf908fbc800LL),reale(3050,0xed985975b4100LL),
2189  -reale(2251,0xef96e32335600LL),real(0x6370a1a9e900d300LL),
2190  -real(0x5c955afee309e400LL),real(0x2eb3ea14003fe500LL),
2191  -real(0x2e844e36822a7200LL),real(0xd8a8b891f217700LL),
2192  real(0x388df4ca3a6fb20LL),reale(5698544,0x5eb10eb5f946bLL),
2193  // C4[2], coeff of eps^15, polynomial in n of order 11
2194  -reale(11115,0xb2ff91ec6c600LL),reale(11728,0x761e1ef822c00LL),
2195  -reale(5178,0x9a27d63f52200LL),reale(5773,0x24fd2adb2f000LL),
2196  -reale(3328,0x5f0c31c71fe00LL),reale(2908,0x836ab328fb400LL),
2197  -reale(2291,0x629d070485a00LL),real(0x5681ee23b9ad7800LL),
2198  -real(0x56cafdb120433600LL),real(0x21dbd9f992213c00LL),
2199  -real(0x1d4bdf01a76d9200LL),real(0xf4e0cbd04176b20LL),
2200  reale(5698544,0x5eb10eb5f946bLL),
2201  // C4[2], coeff of eps^14, polynomial in n of order 12
2202  -reale(73826,0x9e48c9be75880LL),reale(32637,0x887aa6de960e0LL),
2203  -reale(10940,0x9647b1447b9c0LL),reale(12348,0xdd9347a34b3a0LL),
2204  -reale(5206,0x461aa415f3b00LL),reale(5776,0x82c559a327660LL),
2205  -reale(3445,0x2b71b5ef13c40LL),reale(2676,0xdbe2bf3d4c920LL),
2206  -reale(2313,0x6c289eed11d80LL),real(0x45af1f46068fcbe0LL),
2207  -real(0x4a646c774fde3ec0LL),real(0x127e48f8affd9ea0LL),
2208  real(0x4e336f38ab11704LL),reale(5698544,0x5eb10eb5f946bLL),
2209  // C4[2], coeff of eps^13, polynomial in n of order 13
2210  reale(130976,0x1a84c1eb6d80LL),-reale(14597,0x4f1d8a91fc600LL),
2211  -reale(76483,0x6c58cf65980LL),reale(35388,0xd1bf338007b00LL),
2212  -reale(10663,0x1c210a8b78080LL),reale(13004,0x14f125ca37c00LL),
2213  -reale(5285,0x554d73733c780LL),reale(5660,0xa57467d557d00LL),
2214  -reale(3609,0xe9c5b2656ee80LL),reale(2326,0xf26507322be00LL),
2215  -reale(2274,0xe6ae0b8fcb580LL),real(0x30f364de4c777f00LL),
2216  -real(0x3139417308d0dc80LL),real(0x173bf41713ca3b88LL),
2217  reale(5698544,0x5eb10eb5f946bLL),
2218  // C4[2], coeff of eps^12, polynomial in n of order 14
2219  reale(12302,0xe52cc8d8c2180LL),-reale(90162,0x247de245423c0LL),
2220  reale(136898,0x7ace803b76f00LL),-reale(20188,0x482d40173de40LL),
2221  -reale(79167,0xe510d7fd7c380LL),reale(38835,0xfee0572864740LL),
2222  -reale(10270,0x4559a0d3b600LL),reale(13648,0x338b156f30cc0LL),
2223  -reale(5468,0x80042be36a880LL),reale(5349,0x619325bd73240LL),
2224  -reale(3821,0xffa84c59adb00LL),real(0x729df2a6c14b77c0LL),
2225  -reale(2073,0x93dcfbe928d80LL),real(0x193a4a0699e49d40LL),
2226  real(0x6c8a3fc264f2d98LL),reale(5698544,0x5eb10eb5f946bLL),
2227  // C4[2], coeff of eps^11, polynomial in n of order 15
2228  real(0x12b65c49560e1680LL),real(0x4c91348dd4c57d00LL),
2229  reale(12186,0xb870c2ef8b380LL),-reale(91199,0x47a39f34d9e00LL),
2230  reale(143440,0xa133e98363080LL),-reale(27237,0xaf8901f443900LL),
2231  -reale(81724,0x1b06c40663280LL),reale(43231,0xcee7486ccec00LL),
2232  -reale(9771,0xb47d34b793580LL),reale(14177,0x876b1df11100LL),
2233  -reale(5844,0x5970f546f9880LL),reale(4733,0x71ff0d3b37600LL),
2234  -reale(4034,0xaeeb7c4e61b80LL),real(0x4b0e043dd17f5b00LL),
2235  -real(0x5c6dac5851097e80LL),real(0x259ade3cf4689f28LL),
2236  reale(5698544,0x5eb10eb5f946bLL),
2237  // C4[2], coeff of eps^10, polynomial in n of order 16
2238  real(0x285b74a086cfe00LL),real(0x61629f583f6fc20LL),
2239  real(0x11e1f0840e822e40LL),real(0x4a2acb7177936860LL),
2240  reale(12009,0x162afd0a23e80LL),-reale(92025,0x51c6b64b59b60LL),
2241  reale(150657,0xe159fc0830ec0LL),-reale(36240,0x8903bcca1af20LL),
2242  -reale(83842,0x8f32e14ed8100LL),reale(48929,0x80db803df8d20LL),
2243  -reale(9247,0x4a711a73d90c0LL),reale(14370,0x3118e0d87960LL),
2244  -reale(6545,0xcfaa0092b4080LL),reale(3681,0xa71da4ef975a0LL),
2245  -reale(4055,0x6bd2ceb58b040LL),real(0x201a58611bc4e1e0LL),
2246  real(0x8ca8a9bec5eeb0cLL),reale(5698544,0x5eb10eb5f946bLL),
2247  // C4[2], coeff of eps^9, polynomial in n of order 17
2248  real(0x8f791b0d72f300LL),real(0x116eee5fb7db000LL),
2249  real(0x2544a69b0af6d00LL),real(0x5ae50a5c0f6ba00LL),
2250  real(0x10e6ab279c402700LL),real(0x472bda650b6c4400LL),
2251  reale(11750,0x4a89b28f5a100LL),-reale(92512,0x1ccd7f1613200LL),
2252  reale(158574,0x53a9410005b00LL),-reale(47896,0xbfb8d60312800LL),
2253  -reale(84919,0xb4a50d4cf2b00LL),reale(56401,0x32e93db7ce200LL),
2254  -reale(8956,0x3835fd4c87100LL),reale(13782,0xdee88bf296c00LL),
2255  -reale(7712,0x7aed9801af700LL),reale(2126,0x5791e5314f600LL),
2256  -reale(3273,0xe9400d1963d00LL),real(0x4230ff2c7e6defd0LL),
2257  reale(5698544,0x5eb10eb5f946bLL),
2258  // C4[2], coeff of eps^8, polynomial in n of order 18
2259  real(0x289b91a48ebf00LL),real(0x45ee5b14465380LL),
2260  real(0x7f92734c023800LL),real(0xfa5ad187871c80LL),
2261  real(0x21cddd2df61b100LL),real(0x5372a978dde2580LL),
2262  real(0xfbd02001ed7aa00LL),real(0x436e93187af7ee80LL),
2263  reale(11383,0x2dcd21f7ea300LL),-reale(92459,0xff89d11970880LL),
2264  reale(167131,0xf0a2167d11c00LL),-reale(63199,0x7fe973623f80LL),
2265  -reale(83766,0xa02debe66b00LL),reale(66187,0xcedf7a1cac980LL),
2266  -reale(9608,0xefbab691d7200LL),reale(11585,0x75dbe72dc9280LL),
2267  -reale(9220,0x22c92d6997900LL),real(0x18709d3bc0679b80LL),
2268  real(0x5b7e325c6742390LL),reale(5698544,0x5eb10eb5f946bLL),
2269  // C4[2], coeff of eps^7, polynomial in n of order 19
2270  real(0xd108e5f6f6100LL),real(0x14cfb44a7f1600LL),
2271  real(0x227bc5972bab00LL),real(0x3bea4dd1053000LL),
2272  real(0x6e5f06564db500LL),real(0xdaf2ed1ea74a00LL),
2273  real(0x1dec9104c41ff00LL),real(0x4ae6e1cc221e400LL),
2274  real(0xe5bde12a5950900LL),real(0x3ec229ad8ff17e00LL),
2275  reale(10869,0xc2e1de8335300LL),-reale(91550,0xfd5202ded6800LL),
2276  reale(176075,0x65a5499a95d00LL),-reale(83531,0x98920703e4e00LL),
2277  -reale(77994,0x11133349c5900LL),reale(78539,0xb0828e93b4c00LL),
2278  -reale(12981,0x6d9e1d7114f00LL),reale(6537,0x5c156837be600LL),
2279  -reale(9404,0xf97b75bc90500LL),reale(2071,0xc05f52f113a50LL),
2280  reale(5698544,0x5eb10eb5f946bLL),
2281  // C4[2], coeff of eps^6, polynomial in n of order 20
2282  real(0x4748ad3ff9e80LL),real(0x6b926f7e60d60LL),real(0xa71fa4085b840LL),
2283  real(0x10c991e0a3ab20LL),real(0x1c15b3b145b200LL),
2284  real(0x314f7c7c43f8e0LL),real(0x5be1ff458cabc0LL),
2285  real(0xb89930a80796a0LL),real(0x199734a3c07c580LL),
2286  real(0x411aa25f2292460LL),real(0xcb87e4542581f40LL),
2287  real(0x38e7a442bb914220LL),reale(10156,0x20944a9a6d900LL),
2288  -reale(89265,0x51d50a4f57020LL),reale(184683,0x63f792d3912c0LL),
2289  -reale(110680,0x89cae6d0a5260LL),-reale(62727,0xfdf47fc1380LL),
2290  reale(91791,0x3f8035a7d3b60LL),-reale(22895,0xcc844c9bf79c0LL),
2291  -real(0x5652aea374b626e0LL),-real(0x38edb32bcbdda4acLL),
2292  reale(5698544,0x5eb10eb5f946bLL),
2293  // C4[2], coeff of eps^5, polynomial in n of order 21
2294  real(0x185346b40be80LL),real(0x234a30239ea00LL),real(0x345f5bcfbb580LL),
2295  real(0x4fc2f91719900LL),real(0x7d257d9ac0c80LL),real(0xcb49d34f58800LL),
2296  real(0x1580c944df8380LL),real(0x263bb5e9cb7700LL),
2297  real(0x483bd94933da80LL),real(0x935c1fd3f92600LL),
2298  real(0x14c807d3436d180LL),real(0x35e9298d8a45500LL),
2299  real(0xac6bf9cef462880LL),real(0x318eb0c51232c400LL),
2300  reale(9164,0xf22328f6f9f80LL),-reale(84728,0x78acb3795cd00LL),
2301  reale(191114,0x47ac3650f680LL),-reale(146268,0x68f68696f9e00LL),
2302  -reale(28124,0xaf1a222081280LL),reale(95633,0xf3c35e98b1100LL),
2303  -reale(42101,0xccb76963dbb80LL),reale(4250,0xa99770cb50078LL),
2304  reale(5698544,0x5eb10eb5f946bLL),
2305  // C4[2], coeff of eps^4, polynomial in n of order 22
2306  real(0x7c86a4240e80LL),real(0xaf5db2064cc0LL),real(0xfb958bed1300LL),
2307  real(0x17080cf847940LL),real(0x2288f92359780LL),real(0x352f6beaa45c0LL),
2308  real(0x54760062cdc00LL),real(0x8b024608ff240LL),real(0xeea60450a2080LL),
2309  real(0x1af0609151bec0LL),real(0x33c8072244a500LL),
2310  real(0x6bad7af287eb40LL),real(0xf83a707fcba980LL),
2311  real(0x293d0a92ebeb7c0LL),real(0x87aa233703e6e00LL),
2312  real(0x2855283ce7ee6440LL),reale(7785,0x74e297d243280LL),
2313  -reale(76427,0xf39041d0ccf40LL),reale(190726,0x777542b243700LL),
2314  -reale(188315,0x1030e5dfaa2c0LL),reale(42101,0xccb76963dbb80LL),
2315  reale(46959,0xb31b5803129c0LL),-reale(23682,0x43272b482b978LL),
2316  reale(5698544,0x5eb10eb5f946bLL),
2317  // C4[2], coeff of eps^3, polynomial in n of order 23
2318  real(0x21a7e921c980LL),real(0x2e51be6e8f00LL),real(0x40c19fbec480LL),
2319  real(0x5c1e6062c200LL),real(0x8599d6a9df80LL),real(0xc60160b77500LL),
2320  real(0x12cb7c4c7da80LL),real(0x1d5985b996800LL),real(0x2f524aaed7580LL),
2321  real(0x4f30941955b00LL),real(0x8a76dd63f7080LL),real(0xff32326380e00LL),
2322  real(0x1f5b1b59928b80LL),real(0x42dd3cfeae4100LL),
2323  real(0x9e90e4efcb8680LL),real(0x1b33e235264b400LL),
2324  real(0x5cdaf2eb93f2180LL),real(0x1cd398a25fa82700LL),
2325  reale(5865,0x9368046121c80LL),-reale(61723,0xe7c88c9baa600LL),
2326  reale(171645,0xcc7599f993780LL),-reale(213747,0x992d035d6f300LL),
2327  reale(126305,0x66263c2b93280LL),-reale(28944,0xfcbe1874a70e8LL),
2328  reale(5698544,0x5eb10eb5f946bLL),
2329  // C4[2], coeff of eps^2, polynomial in n of order 24
2330  real(0x5f08c3cb900LL),real(0x807038c0ca0LL),real(0xaffaed32440LL),
2331  real(0xf4c5be483e0LL),real(0x15a2490f6f80LL),real(0x1f28eae1cb20LL),
2332  real(0x2dce80c7fac0LL),real(0x44e60304c260LL),real(0x6a58ca3b2600LL),
2333  real(0xa90e89d449a0LL),real(0x1160126eb5140LL),real(0x1db88b51940e0LL),
2334  real(0x354168d7adc80LL),real(0x64e3bca9a8820LL),real(0xcc99ed98827c0LL),
2335  real(0x1c3fb9ad58ff60LL),real(0x45c01ca2899300LL),
2336  real(0xc88852534b86a0LL),real(0x2d1eac1f8a97e40LL),
2337  real(0xee21e1c2e9afde0LL),reale(3238,0x9997f46a24980LL),
2338  -reale(36434,0x3fed7daa1bae0LL),reale(105254,0x7fca8779a54c0LL),
2339  -reale(115779,0xf2f861d29c3a0LL),reale(43417,0x7b1d24aefa95cLL),
2340  reale(5698544,0x5eb10eb5f946bLL),
2341  // C4[3], coeff of eps^26, polynomial in n of order 0
2342  433472,real(72882272925LL),
2343  // C4[3], coeff of eps^25, polynomial in n of order 1
2344  real(76231168),real(19985680),real(0x958a9334879LL),
2345  // C4[3], coeff of eps^24, polynomial in n of order 2
2346  real(969805824),-real(756467712),real(427576864),real(0x33a763b318f5LL),
2347  // C4[3], coeff of eps^23, polynomial in n of order 3
2348  real(0xe7cfd39aa00LL),-real(0xe6239d55400LL),real(0x44ffe5cce00LL),
2349  real(0x123fa804df0LL),real(0x73400ac32a3f24fLL),
2350  // C4[3], coeff of eps^22, polynomial in n of order 4
2351  real(633551529LL<<15),-real(0x130f2c71c000LL),real(0x7e08a8b4000LL),
2352  -real(0x69e0a004000LL),real(0x39175efa340LL),real(0x59a39697cb86721LL),
2353  // C4[3], coeff of eps^21, polynomial in n of order 5
2354  real(0xe1a59555817c700LL),-real(0xce92ef160470400LL),
2355  real(0x6a50b28bc94d100LL),-real(0x6ec5ce0328fa200LL),
2356  real(0x1e2919432b73b00LL),real(0x81169f96b647f8LL),
2357  reale(2659320,0xb4b906dd74543LL),
2358  // C4[3], coeff of eps^20, polynomial in n of order 6
2359  real(0x4a951ec0f743800LL),-real(0x39128060ba74400LL),
2360  real(0x258d1de3ebd5000LL),-real(0x25e6a8ece22dc00LL),
2361  real(0xe953314d336800LL),-real(0xd6fbba5b80b400LL),
2362  real(0x6d3d6d3e79ea90LL),reale(531864,0x2425015f7daa7LL),
2363  // C4[3], coeff of eps^19, polynomial in n of order 7
2364  real(0x7366685d2da15300LL),-real(0x46390dd9eadeba00LL),
2365  real(0x3de3739917104900LL),-real(0x34e3ad131262bc00LL),
2366  real(0x1ae64995e9a59f00LL),-real(0x1d6cea9b561f3e00LL),
2367  real(0x70d3407961b9500LL),real(0x1ea45bc7b594048LL),
2368  reale(7977962,0x1e2b14985cfc9LL),
2369  // C4[3], coeff of eps^18, polynomial in n of order 8
2370  reale(2991,8707772229LL<<17),-real(0x5c0b6a6cd5328000LL),
2371  real(0x6cf3b04ea6358000LL),-real(0x47da0c907a958000LL),
2372  real(0x334344c895550000LL),-real(0x3257cd9b75628000LL),
2373  real(0x11d874d9e96c8000LL),-real(0x1273b92365d58000LL),
2374  real(0x8b048eddb8dae80LL),reale(7977962,0x1e2b14985cfc9LL),
2375  // C4[3], coeff of eps^17, polynomial in n of order 9
2376  reale(4599,0x20675bc677c00LL),-reale(2190,0x6a6db0c48a000LL),
2377  reale(3019,0xad2c946b04400LL),-real(0x5cc951aa5f7ff800LL),
2378  real(0x61f2b89850d68c00LL),-real(0x49aa7ace4eb85000LL),
2379  real(0x26482ceb1d4d5400LL),-real(0x2b88fb70a186a800LL),
2380  real(0x8bf6f0c9a679c00LL),real(0x26ce624431e62e0LL),
2381  reale(7977962,0x1e2b14985cfc9LL),
2382  // C4[3], coeff of eps^16, polynomial in n of order 10
2383  real(0x383bee2531d2a000LL),-real(0x2821094d061d1000LL),
2384  real(0x2c347b321d4c8000LL),-real(0x125d6736b20ff000LL),
2385  real(0x1a6c4162f9ae6000LL),-real(0xdca07dd1a07d000LL),
2386  real(0xba2cc7913be4000LL),-real(0xa8a49fd40deb000LL),
2387  real(0x36dcb24ee422000LL),-real(0x4159df2ed6e9000LL),
2388  real(0x1bdad6784709c40LL),reale(1139708,0xdfbd02f131dafLL),
2389  // C4[3], coeff of eps^15, polynomial in n of order 11
2390  reale(7381,0x14c34c0c1f400LL),-reale(13257,0xf5b9dadc0c800LL),
2391  reale(7086,0x404eb1053bc00LL),-reale(4054,0xe4ed62e9ea000LL),
2392  reale(5287,0x17e93cc880400LL),-real(0x7bc6aed7afe87800LL),
2393  reale(2758,0x364797381cc00LL),-real(0x676ee80244a35000LL),
2394  real(0x3b6d32d9ca041400LL),-real(0x43e3e0c280942800LL),
2395  real(0xa86d2e316b1dc00LL),real(0x300bec0027818e0LL),
2396  reale(7977962,0x1e2b14985cfc9LL),
2397  // C4[3], coeff of eps^14, polynomial in n of order 12
2398  reale(66948,0x4f30b3f870000LL),-reale(52646,0x686a3833a8000LL),
2399  reale(7561,0xd0b8bda7a8000LL),-reale(13026,0x7d89ec00d8000LL),
2400  reale(8130,0xd3b0b583a0000LL),-reale(3523,0xd290763e28000LL),
2401  reale(5530,0x8b9708b698000LL),-real(0x7e52c154efd58000LL),
2402  reale(2356,0x7673a06ad0000LL),-real(0x6f6a34d21b028000LL),
2403  real(0x220d8444fca88000LL),-real(0x2fac85fa2e858000LL),
2404  real(0x11c823101280e280LL),reale(7977962,0x1e2b14985cfc9LL),
2405  // C4[3], coeff of eps^13, polynomial in n of order 13
2406  -reale(129173,0x58489bc283900LL),reale(59789,0xf9dc41e63d400LL),
2407  reale(65695,0x9083acc5cc100LL),-reale(58445,0x2f2cc6e161a00LL),
2408  reale(8184,0x5e79915d1b00LL),-reale(12353,0x83a959670c800LL),
2409  reale(9463,0x4211f61d49500LL),-reale(2966,0xe12b8e3527600LL),
2410  reale(5543,0x52a28a556ef00LL),-reale(2249,0xe1f749ba16400LL),
2411  real(0x6b0d1cda5c5fe900LL),-real(0x70ab303245f3d200LL),
2412  real(0xb596d16f1a34300LL),real(0x35b4de912478078LL),
2413  reale(7977962,0x1e2b14985cfc9LL),
2414  // C4[3], coeff of eps^12, polynomial in n of order 14
2415  -reale(6933,0xfc2bb7bd6800LL),reale(63382,0x668969a617c00LL),
2416  -reale(132589,0xf0bdf2e789000LL),reale(69768,0x70d2052fd2400LL),
2417  reale(63007,0x6d053a2cb4800LL),-reale(65233,0xb829e1b817400LL),
2418  reale(9601,0xec9983923a000LL),-reale(11042,0x4317b942ccc00LL),
2419  reale(11048,0xa50acd625f800LL),-reale(2545,0x7c97f16176400LL),
2420  reale(5107,0xc83f2d67d000LL),-reale(2697,0x85e48cc53bc00LL),
2421  real(0x36af107261fea800LL),-real(0x57b6b3b8f7f45400LL),
2422  real(0x1b355635bf037310LL),reale(7977962,0x1e2b14985cfc9LL),
2423  // C4[3], coeff of eps^11, polynomial in n of order 15
2424  -real(0x718d19ce618f700LL),-real(0x22292bb4d2a0a600LL),
2425  -reale(6561,0x7bb8e05b06500LL),reale(61876,0xa080215cbc400LL),
2426  -reale(135759,0x6c0a25f10b300LL),reale(81504,0x4116e653fae00LL),
2427  reale(58147,0xb03676e9edf00LL),-reale(73011,0xd75b35d7e2800LL),
2428  reale(12405,0x6d2fd911f1100LL),-reale(8886,0xdfa5214b6fe00LL),
2429  reale(12677,0x826d436a8a300LL),-reale(2577,0x6d77ecdf41400LL),
2430  reale(3947,0x879d1c7c5500LL),-reale(3192,0x95f286c2eaa00LL),
2431  real(0x7343398f272e700LL),real(0x20b3728b7b6b2d8LL),
2432  reale(7977962,0x1e2b14985cfc9LL),
2433  // C4[3], coeff of eps^10, polynomial in n of order 16
2434  -real(0xaaaed768da0000LL),-real(0x1d8d58546174000LL),
2435  -real(0x650ff776c6dc000LL),-real(0x1f0fa133b6eac000LL),
2436  -reale(6125,0x868b157bb8000LL),reale(59813,0x741ec012c000LL),
2437  -reale(138411,0xa7483b2cd4000LL),reale(95264,0x22057cd374000LL),
2438  reale(50003,0x3a5ca8a530000LL),-reale(81502,0xff7b30e274000LL),
2439  reale(17542,0xf2776c79b4000LL),-reale(5812,0xc63b637b2c000LL),
2440  reale(13748,0x38a6c4d018000LL),-reale(3547,0xbf6bf7e154000LL),
2441  real(0x78ab12d1827bc000LL),-reale(2957,0x6b24852f8c000LL),
2442  real(0x2bef42096127d7c0LL),reale(7977962,0x1e2b14985cfc9LL),
2443  // C4[3], coeff of eps^9, polynomial in n of order 17
2444  -real(0x3cadc0edd6600LL),-real(0x8587ee4c4e000LL),
2445  -real(0x14633459f95a00LL),-real(0x397bc2059d8400LL),
2446  -real(0xc89f8adb490e00LL),-real(0x3f2a86a64b5a800LL),
2447  -real(0x32218961953c0200LL),reale(8146,0xa930f21b73400LL),
2448  -reale(20015,0x8b16989f1b600LL),reale(15890,0x8aa3fb72d9000LL),
2449  reale(5271,0xbcd5aeda65600LL),-reale(12822,0x9424c22ae1400LL),
2450  reale(3774,0x46bb658aca200LL),-real(0x148a80159bb73800LL),
2451  real(0x736580900f31ae00LL),-real(0x336f49c74ee95c00LL),
2452  -real(0x249e756eeea0600LL),-real(0x13841fc89043bb0LL),
2453  reale(1139708,0xdfbd02f131dafLL),
2454  // C4[3], coeff of eps^8, polynomial in n of order 18
2455  -real(0x5318540751000LL),-real(0xa0702ad537800LL),
2456  -real(0x14a9549a688000LL),-real(0x2e31b9dc878800LL),
2457  -real(0x72dceb1c83f000LL),-real(0x14a6c8c8df91800LL),
2458  -real(0x49c3e43ec426000LL),-real(0x17df3e19aed32800LL),
2459  -reale(5017,0x9bceef61ed000LL),reale(53301,0x74feac5bf4800LL),
2460  -reale(140139,0x5706164944000LL),reale(129320,0x1fd8eca933800LL),
2461  reale(16403,0x87db178e25000LL),-reale(95278,0x1e65e67825800LL),
2462  reale(40665,0x6f4b03ec9e000LL),-real(0x1c82af8b65ac6800LL),
2463  reale(8049,0x334ede6a77000LL),-reale(7540,0x5b108b15f800LL),
2464  real(0x49ca297e3ffdbce0LL),reale(7977962,0x1e2b14985cfc9LL),
2465  // C4[3], coeff of eps^7, polynomial in n of order 19
2466  -real(0x11fa490472e00LL),-real(0x1fe0e98340400LL),
2467  -real(0x3b2a552443a00LL),-real(0x73f5544ad2000LL),
2468  -real(0xf2e5765f90600LL),-real(0x2290ce0f423c00LL),
2469  -real(0x57b83400ee1200LL),-real(0x1023f65b9bfd800LL),
2470  -real(0x3b36c6db61bde00LL),-real(0x13c7b72049527400LL),
2471  -reale(4323,0x73be8c4caea00LL),reale(48359,0x7d21dc7197000LL),
2472  -reale(137343,0xc18958973b600LL),reale(148676,0xd51cb5c775400LL),
2473  -reale(14754,0xa89f0bc9ec200LL),-reale(92175,0x33d1092c54800LL),
2474  reale(60290,0x88af4d43b7200LL),-reale(5855,0x8c9719d08e400LL),
2475  -real(0x48b16aa4982d9a00LL),-real(0x51dba59b00547450LL),
2476  reale(7977962,0x1e2b14985cfc9LL),
2477  // C4[3], coeff of eps^6, polynomial in n of order 20
2478  -real(0x3f0527da8000LL),-real(0x69410a894000LL),-real(0xb5f68cf74000LL),
2479  -real(0x14766cd18c000LL),-real(5178956321LL<<17),
2480  -real(0x4cf42ca274000LL),-real(0xa45199d7cc000LL),
2481  -real(0x17e337e696c000LL),-real(0x3e169088698000LL),
2482  -real(0xbbd1c494494000LL),-real(0x2c70014b4ca4000LL),
2483  -real(0xf67e7406420c000LL),-reale(3524,0xcb63f52610000LL),
2484  reale(41859,0x1cfdfa000c000LL),-reale(129839,0xf92d750efc000LL),
2485  reale(166586,0x5d10da3394000LL),-reale(59706,0x5fbf7c0388000LL),
2486  -reale(68020,0xa047f74594000LL),reale(75721,0x1307a9002c000LL),
2487  -reale(24384,0xc0b45d798c000LL),real(0x6534ccbfa35124c0LL),
2488  reale(7977962,0x1e2b14985cfc9LL),
2489  // C4[3], coeff of eps^5, polynomial in n of order 21
2490  -real(0xcd30266b700LL),-real(0x147d4e1fec00LL),-real(0x21a6b4a64100LL),
2491  -real(0x390579acce00LL),-real(0x6423741d2b00LL),-real(0xb749b833f000LL),
2492  -real(0x1602ad6953500LL),-real(0x2ccfc753d1200LL),
2493  -real(0x61e5d62301f00LL),-real(0xe995b2fcff400LL),
2494  -real(0x270c826fb7a900LL),-real(0x7a09e7f3045600LL),
2495  -real(0x1dfb4c385ed9300LL),-real(0xaddceca1091f800LL),
2496  -reale(2624,0xc45e83fdb9d00LL),reale(33433,0x20d0a109f6600LL),
2497  -reale(114656,0xa3de6d0238700LL),reale(175907,0x1d4b03fe80400LL),
2498  -reale(116168,0x7b17e334f1100LL),-reale(3810,0x1e1c2e9afde00LL),
2499  reale(45340,0x664f5dce00500LL),-reale(17205,0xff74273e2678LL),
2500  reale(7977962,0x1e2b14985cfc9LL),
2501  // C4[3], coeff of eps^4, polynomial in n of order 22
2502  -real(784468838400LL),-real(0x11a0a388400LL),-real(0x1bda05d7000LL),
2503  -real(0x2d25cb21c00LL),-real(0x4b5283d5800LL),-real(0x81d5381f400LL),
2504  -real(0xe84e582c000LL),-real(0x1b2017768c00LL),-real(0x354f35942800LL),
2505  -real(0x6f49195e6400LL),-real(0xf9ffb1d81000LL),-real(0x267769207fc00LL),
2506  -real(0x6a9801634f800LL),-real(0x15adc2fc41d400LL),
2507  -real(0x5947d2bb916000LL),-real(0x222d7eabcda6c00LL),
2508  -real(0x22707489da53c800LL),reale(7620,0x3c385d35fbc00LL),
2509  -reale(29197,0x886c2c8e2b000LL),reale(53341,0xa58a8c79e2400LL),
2510  -reale(51817,0x997f46a249800LL),reale(25908,0xccbfa35124c00LL),
2511  -reale(5262,0xb996ed2c7b770LL),reale(2659320,0xb4b906dd74543LL),
2512  // C4[3], coeff of eps^3, polynomial in n of order 23
2513  -real(242883621120LL),-real(365079728640LL),-real(559688344320LL),
2514  -real(876931046400LL),-real(0x147bd04f500LL),-real(0x21c7b15a600LL),
2515  -real(0x396d13e6700LL),-real(0x650be18b000LL),-real(0xb8f375f7900LL),
2516  -real(0x16253c45ba00LL),-real(0x2cc1928ceb00LL),-real(0x6065d92f8400LL),
2517  -real(0xe04f74737d00LL),-real(0x23eadf138ce00LL),
2518  -real(0x682920857ef00LL),-real(0x1651f4aee45800LL),
2519  -real(0x61a68e7d270100LL),-real(0x281b43aa424e200LL),
2520  -real(0x2bddd20238857300LL),reale(10668,0x544ee8e52d400LL),
2521  -reale(45340,0x664f5dce00500LL),reale(90680,0xcc9ebb9c00a00LL),
2522  -reale(84203,0x996ed2c7b7700LL),reale(28944,0xfcbe1874a70e8LL),
2523  reale(7977962,0x1e2b14985cfc9LL),
2524  // C4[4], coeff of eps^26, polynomial in n of order 0
2525  real(74207744),real(0x377b3e1aa351LL),
2526  // C4[4], coeff of eps^25, polynomial in n of order 1
2527  -real(85649408),real(42776448),real(0x7a5a1b59863LL),
2528  // C4[4], coeff of eps^24, polynomial in n of order 2
2529  -real(0x5d090f66800LL),real(0x15cb8432c00LL),real(412184096896LL),
2530  real(0x3e897844a5071ebLL),
2531  // C4[4], coeff of eps^23, polynomial in n of order 3
2532  -real(0xbff3f70d800LL),real(0x44c7b31b000LL),-real(0x48108b34800LL),
2533  real(0x21db9c9a980LL),real(0x4fc9e010f5dcf23LL),
2534  // C4[4], coeff of eps^22, polynomial in n of order 4
2535  -real(0xd6b769b7e000LL),real(0x72b1142e1800LL),-real(0x82aa7be7f000LL),
2536  real(0x1aa8532e0800LL),real(0x779e97cc600LL),real(0x40d4060dc7c384c7LL),
2537  // C4[4], coeff of eps^21, polynomial in n of order 5
2538  -real(0x474af3a87693800LL),real(0x3c389a0df442000LL),
2539  -real(0x37e1a3d92db8800LL),real(0x12d1db00bd71000LL),
2540  -real(0x15fc16a85bcd800LL),real(0x99491c279c9880LL),
2541  reale(1139708,0xdfbd02f131dafLL),
2542  // C4[4], coeff of eps^20, polynomial in n of order 6
2543  -real(0x303d69b47fe22400LL),real(0x3f4d2c93a259b200LL),
2544  -real(0x29be542895db1800LL),real(0x17eb54d9d2a59e00LL),
2545  -real(0x1b89924120220c00LL),real(0x4aa7a22c8d50a00LL),
2546  real(0x157745851f3d4c0LL),reale(10257379,0xdda51a7ac0b27LL),
2547  // C4[4], coeff of eps^19, polynomial in n of order 7
2548  -real(0x44c3305a70de1000LL),real(0x6d1c9adfcac5e000LL),
2549  -real(0x312f88327b293000LL),real(0x3351684a1a554000LL),
2550  -real(0x2ab43a21fd0e5000LL),real(0xdaac481cc1ca000LL),
2551  -real(0x120b854707e97000LL),real(0x7289c72302f3500LL),
2552  reale(10257379,0xdda51a7ac0b27LL),
2553  // C4[4], coeff of eps^18, polynomial in n of order 8
2554  -reale(2256,0x7b501df238000LL),reale(2620,0x5abb698ccf000LL),
2555  -real(0x3cfd86157c22a000LL),real(0x656f30f9d7a5d000LL),
2556  -real(0x3529aafa1251c000LL),real(0x23979dd758c6b000LL),
2557  -real(0x27cfd52f91a0e000LL),real(0x52c1297ffdf9000LL),
2558  real(0x1899e61f0915c00LL),reale(10257379,0xdda51a7ac0b27LL),
2559  // C4[4], coeff of eps^17, polynomial in n of order 9
2560  -reale(5647,0x92962c0679000LL),reale(3064,0xd620df9a18000LL),
2561  -real(0x73b5708edb717000LL),reale(2782,0xf8e2a6bab2000LL),
2562  -real(0x3aa55028ed4d5000LL),real(0x54f5b0489ac0c000LL),
2563  -real(0x3a8372ad6ebf3000LL),real(0x128f31db99de6000LL),
2564  -real(0x1bbb3cddeb8b1000LL),real(0x9c3f5d344ffbb00LL),
2565  reale(10257379,0xdda51a7ac0b27LL),
2566  // C4[4], coeff of eps^16, polynomial in n of order 10
2567  -reale(12546,0xd0659481f7000LL),reale(2321,0x6f75c5bce2800LL),
2568  -reale(5209,0xc9bfbad2ac000LL),reale(3693,0x4f3d4dd785800LL),
2569  -real(0x59b26230b2e61000LL),reale(2785,0x7ef843b608800LL),
2570  -real(0x4086b5731d656000LL),real(0x3b22d2695822b800LL),
2571  -real(0x3bbf747f663cb000LL),real(0x50e2c41c71ae800LL),
2572  real(0x19182d9cca60700LL),reale(10257379,0xdda51a7ac0b27LL),
2573  // C4[4], coeff of eps^15, polynomial in n of order 11
2574  -reale(14655,0xa7ccf7b3e3000LL),reale(5703,0xb41e60048e000LL),
2575  -reale(13723,0x6fa2143b1000LL),reale(2794,0x80dd2a6158000LL),
2576  -reale(4434,0xbdbd659d5f000LL),reale(4398,0x1bf890b722000LL),
2577  -real(0x462f1f0759b2d000LL),reale(2504,0xfcfacf17ac000LL),
2578  -real(0x4eb2a95e9a75b000LL),real(0x1bef3eef6f4b6000LL),
2579  -real(0x2d8008caddc29000LL),real(0xdbb189dc4eba300LL),
2580  reale(10257379,0xdda51a7ac0b27LL),
2581  // C4[4], coeff of eps^14, polynomial in n of order 12
2582  -reale(31110,0xd0a51132f4000LL),reale(76716,0x887753c58b000LL),
2583  -reale(19285,0xcfd85f57f6000LL),reale(3558,0x4fcfd1ab09000LL),
2584  -reale(14554,0xbf2d0ac9f8000LL),reale(3850,0x9631322307000LL),
2585  -reale(3313,0x90f8abbffa000LL),reale(4999,0xf3c6aed085000LL),
2586  -real(0x44308029330fc000LL),real(0x72cd2f325ae83000LL),
2587  -real(0x5cc3eeffca3fe000LL),real(0x2f990ef34001000LL),
2588  real(0xedd65cb262fc00LL),reale(10257379,0xdda51a7ac0b27LL),
2589  // C4[4], coeff of eps^13, polynomial in n of order 13
2590  reale(109832,0xfe67f2664d000LL),-reale(101414,0x365d952fe4000LL),
2591  -reale(21578,0x2c7dffdd75000LL),reale(81484,0xfb5b01862000LL),
2592  -reale(25828,0x7adf44b697000LL),real(0x527645ab2c368000LL),
2593  -reale(14626,0xa0f5b7bcd9000LL),reale(5668,0x89f8307d6e000LL),
2594  -real(0x7c6deea8217fb000LL),reale(5148,0xb3c77272b4000LL),
2595  -real(0x5ea4f23e05fbd000LL),real(0x33d79ea3e6f7a000LL),
2596  -real(0x512f5a2dc7bdf000LL),real(0x13f171801c8d4d00LL),
2597  reale(10257379,0xdda51a7ac0b27LL),
2598  // C4[4], coeff of eps^12, polynomial in n of order 14
2599  reale(3290,0xf070eb97f3400LL),-reale(37925,0x14cc0872bb200LL),
2600  reale(108756,0x262a302ba0800LL),-reale(111139,0xba49ef60cbe00LL),
2601  -reale(8978,0x96e5af6312400LL),reale(85061,0xe9667b666b600LL),
2602  -reale(34830,0xb50884d615000LL),-real(0x1ae66991075c5600LL),
2603  -reale(13337,0xd2d72b2557c00LL),reale(8254,0x43d2c57af1e00LL),
2604  -real(0x39646320240ca800LL),reale(4333,0x5a8eb4efe1200LL),
2605  -reale(2317,0x387052d25d400LL),-real(0x4971411b9aa7a00LL),
2606  -real(0x239dc6f1135e6c0LL),reale(10257379,0xdda51a7ac0b27LL),
2607  // C4[4], coeff of eps^11, polynomial in n of order 15
2608  real(0x22fb18f3d6fc800LL),real(0xc812a63656dd000LL),
2609  reale(2929,0x54e6120875800LL),-reale(35121,0x48d05c62be000LL),
2610  reale(106528,0xc02be4bd3e800LL),-reale(121104,0xca8db31999000LL),
2611  reale(7480,0x3b39caec37800LL),reale(86076,0xd8784a9f2c000LL),
2612  -reale(46728,0xdb6f945bbf800LL),-real(0x1e17ea5787b8f000LL),
2613  -reale(10012,0x630283c6800LL),reale(11072,0xcb500e9316000LL),
2614  -real(0x3d2315ebbfcfd800LL),reale(2196,0x522d08f7fb000LL),
2615  -reale(2582,0x2942c8d084800LL),real(0x1dbc900c41177d80LL),
2616  reale(10257379,0xdda51a7ac0b27LL),
2617  // C4[4], coeff of eps^10, polynomial in n of order 16
2618  real(0x2367980c018000LL),real(0x717a5d0aad6800LL),
2619  real(0x1c7a6b9a7155000LL),real(0xa7a0b73a0f93800LL),
2620  reale(2540,0xdc02459a12000LL),-reale(31836,0xf2625ff3ef800LL),
2621  reale(102741,0xc61b0075cf000LL),-reale(130713,0xb431635532800LL),
2622  reale(28618,0x913148900c000LL),reale(82224,0x225affaa4a800LL),
2623  -reale(61371,0x71836a73b7000LL),reale(3358,0xd2d9334507800LL),
2624  -reale(4436,0x51714c11fa000LL),reale(12409,0x2e12e0f984800LL),
2625  -reale(3099,0xb59c601f3d000LL),-real(0x185351aa9adbe800LL),
2626  -real(0xfcd867cd32b4e00LL),reale(10257379,0xdda51a7ac0b27LL),
2627  // C4[4], coeff of eps^9, polynomial in n of order 17
2628  real(0x3b98569230800LL),real(0x954e9f9ae8000LL),real(0x1a387f0ed5f800LL),
2629  real(0x561911aabbb000LL),real(0x163673b1889e800LL),
2630  real(0x870aa0c397ae000LL),reale(2128,0x4412890e0d800LL),
2631  -reale(28018,0x9edd02151f000LL),reale(96862,0x40aaeaffcc800LL),
2632  -reale(138876,0x18d8a92e8c000LL),reale(55003,0xc4365147fb800LL),
2633  reale(69831,0x65a81c2787000LL),-reale(76836,0x9198c23745800LL),
2634  reale(14324,0xf9d757893a000LL),real(0x610a50cc5ec29800LL),
2635  reale(9036,0xddda1962ad000LL),-reale(5866,0x301cbcb97800LL),
2636  real(0x2b3d64f38f7c3a80LL),reale(10257379,0xdda51a7ac0b27LL),
2637  // C4[4], coeff of eps^8, polynomial in n of order 18
2638  real(0x7c44a1c56800LL),real(0x10e1a40b9f400LL),real(0x2778995e94000LL),
2639  real(0x6511d82348c00LL),real(0x122fbee15d1800LL),
2640  real(0x3d60d47d162400LL),real(0x10572b5ec96f000LL),
2641  real(0x670e5c5512cbc00LL),real(0x6a1969ca184cc800LL),
2642  -reale(23632,0x6fc488059ac00LL),reale(88223,0x601afc7b4a000LL),
2643  -reale(143685,0x3819032af1400LL),reale(86217,0x78ea8eac47800LL),
2644  reale(43622,0x50ec504da8400LL),-reale(86857,0xe4e3b378db000LL),
2645  reale(34767,0x1af4459111c00LL),real(0x470ee9f8c8f42800LL),
2646  -real(0xf0a395fd8dd4c00LL),-real(0x55da5cd875ef3c80LL),
2647  reale(10257379,0xdda51a7ac0b27LL),
2648  // C4[4], coeff of eps^7, polynomial in n of order 19
2649  real(0x114b06357800LL),real(0x2239f3629000LL),real(0x475e8ebd2800LL),
2650  real(0x9e5523c88000LL),real(0x17aa424dfd800LL),real(0x3e2133dde7000LL),
2651  real(0xb7f09cec78800LL),real(0x280af153ee6000LL),
2652  real(0xb0d866e91e3800LL),real(0x48b6aeda5425000LL),
2653  real(0x4ec10b7f840de800LL),-reale(18693,0xda891ccdbc000LL),
2654  reale(76065,0x2aaa760409800LL),-reale(141961,0xc3f732a21d000LL),
2655  reale(119123,0xd1c84be04800LL),-real(0x7f4b67756e45e000LL),
2656  -reale(76606,0xe7a6860690800LL),reale(56790,0xce45bec021000LL),
2657  -reale(14598,0xc436164715800LL),real(0x23b84843a30d9480LL),
2658  reale(10257379,0xdda51a7ac0b27LL),
2659  // C4[4], coeff of eps^6, polynomial in n of order 20
2660  real(0x2492f246000LL),real(0x43b68382800LL),real(0x827fc7ff000LL),
2661  real(0x10769dabb800LL),real(0x231371038000LL),real(0x4fad3dfb4800LL),
2662  real(0xc39532c71000LL),real(0x2109cc8eed800LL),real(0x650cdd3e2a000LL),
2663  real(0x16d3054b8e6800LL),real(0x69275cf4ee3000LL),
2664  real(0x2d6bb9aa2a1f800LL),real(0x342dc9db6781c000LL),
2665  -reale(13325,0xb15a42ce7800LL),reale(59725,0xe775950b55000LL),
2666  -reale(128819,0x4abda20fae800LL),reale(144216,0xdf24ba0e000LL),
2667  -reale(65935,0x168961cdb5800LL),-reale(23422,0x325c674239000LL),
2668  reale(39625,0x392517e583800LL),-reale(12954,0x665fd1a892600LL),
2669  reale(10257379,0xdda51a7ac0b27LL),
2670  // C4[4], coeff of eps^5, polynomial in n of order 21
2671  real(273177999360LL),real(481049600000LL),real(875104847872LL),
2672  real(0x180866df000LL),real(0x2f4b74a1800LL),real(0x61abf5b8000LL),
2673  real(0xd562fc0e800LL),real(0x1f2598191000LL),real(0x4ed8f85ab800LL),
2674  real(0xdc91252ca000LL),real(0x2bd44913d8800LL),real(0xa584ade1c3000LL),
2675  real(0x322090df0f5800LL),real(0x16f6266186dc000LL),
2676  real(0x1c472a543df62800LL),-reale(7859,0x7aaf0fd58b000LL),
2677  reale(39234,0x9eeb23497f800LL),-reale(98180,0xb70c1a0b12000LL),
2678  reale(140051,0xe6fe7071ac800LL),-reale(115827,0x9358bc0159000LL),
2679  reale(51817,0x997f46a249800LL),-reale(9715,0xccc7dd3e6dc80LL),
2680  reale(10257379,0xdda51a7ac0b27LL),
2681  // C4[4], coeff of eps^4, polynomial in n of order 22
2682  real(18103127040LL),real(30658521600LL),real(53362944000LL),
2683  real(95756838400LL),real(177805329408LL),real(343155696128LL),
2684  real(692078714880LL),real(0x155e2e7de00LL),real(0x30194583c00LL),
2685  real(0x741fc16da00LL),real(0x131155285800LL),real(0x379d38605600LL),
2686  real(0xb96166967400LL),real(0x2e2dfa3db5200LL),real(0xee14dc9ed9000LL),
2687  real(0x752e44962ece00LL),real(0x9cf0406db58ac00LL),
2688  -reale(3007,0xfcd2e16ce3600LL),reale(16844,0xbb0354c82c800LL),
2689  -reale(48007,0x7b6318074ba00LL),reale(77726,0x663ee9f36e400LL),
2690  -reale(64771,0xffdf184adbe00LL),reale(21050,0xe65bb4b1eddc0LL),
2691  reale(10257379,0xdda51a7ac0b27LL),
2692  // C4[5], coeff of eps^26, polynomial in n of order 0
2693  356096,real(98232628725LL),
2694  // C4[5], coeff of eps^25, polynomial in n of order 1
2695  real(19006687232LL),real(5473719680LL),real(0x1580fd4afdbe65LL),
2696  // C4[5], coeff of eps^24, polynomial in n of order 2
2697  real(91538057LL<<15),-real(0x378568c4000LL),real(0x16cc31e2a00LL),
2698  real(0x4c6f2137745e091LL),
2699  // C4[5], coeff of eps^23, polynomial in n of order 3
2700  real(0xef2f223e3800LL),-real(0x110fb2e7bf000LL),real(0x282bb4606800LL),
2701  real(0xbe30d7a6780LL),reale(2828,0xfcd03d1974f5LL),
2702  // C4[5], coeff of eps^22, polynomial in n of order 4
2703  real(0x5e4a1598000LL),-real(0x48b6e92a000LL),real(97904939LL<<14),
2704  -real(0x20e8326e000LL),real(850763001088LL),real(0x2081a7235aaf593LL),
2705  // C4[5], coeff of eps^21, polynomial in n of order 5
2706  real(0x40db2f49b455f800LL),-real(0x1e99bb32c4c22000LL),
2707  real(0x173ba0294630c800LL),-real(0x194707e3169c1000LL),
2708  real(0x2d83efe695c9800LL),real(0xdf3e0617af3080LL),
2709  reale(12536797,0x9d1f205d24685LL),
2710  // C4[5], coeff of eps^20, polynomial in n of order 6
2711  real(0x216feaa994ce0000LL),-real(0xab5f967e8690000LL),
2712  real(0x47922226ed5LL<<18),-real(0xb74a91dab5f0000LL),
2713  real(0x3c54ceff81a0000LL),-real(0x5d7cb98f1a50000LL),
2714  real(0x1f9a69370b20800LL),reale(4178932,0x89b50ac9b6cd7LL),
2715  // C4[5], coeff of eps^19, polynomial in n of order 7
2716  real(0x737c719d74a11000LL),-real(0x33cb00709b02e000LL),
2717  real(0x64aa4f647e063000LL),-real(0x22d04f5347fb4000LL),
2718  real(0x244213a9e6215000LL),-real(0x2372b83384fba000LL),
2719  real(0x29c5a12d1767000LL),real(0xd64e2b028e9d00LL),
2720  reale(12536797,0x9d1f205d24685LL),
2721  // C4[5], coeff of eps^18, polynomial in n of order 8
2722  real(0x4d6c482dac2a0000LL),-reale(2329,0xb1fe2723dc000LL),
2723  reale(2244,0xda129de1b8000LL),-real(0x25b9c94d1ec14000LL),
2724  real(0x5915813997350000LL),-real(0x2b18411354f8c000LL),
2725  real(0x1038d20e1fbe8000LL),-real(0x1a9977b2ea9c4000LL),
2726  real(0x7df995f732ef600LL),reale(12536797,0x9d1f205d24685LL),
2727  // C4[5], coeff of eps^17, polynomial in n of order 9
2728  real(0x514388ef27d31000LL),-reale(6020,0x2be450c918000LL),
2729  real(0x6fa66bdc836df000LL),-real(0x67912be26fab2000LL),
2730  reale(2539,0xf65fb2006d000LL),-real(0x237e1033f4d8c000LL),
2731  real(0x3efb5ba75c79b000LL),-real(0x32b52fd83cbe6000LL),
2732  real(0x17d40e2c1a29000LL),real(0x7dfd16a9c2e300LL),
2733  reale(12536797,0x9d1f205d24685LL),
2734  // C4[5], coeff of eps^16, polynomial in n of order 10
2735  reale(12470,0xf777d5cb70000LL),-reale(8994,0x34ff96fbd8000LL),
2736  real(0x8b5e07446e3LL<<18),-reale(5684,0xa351b76ba8000LL),
2737  reale(2676,0xe4b7624210000LL),-real(0x3b4e8fe27b2f8000LL),
2738  reale(2525,0xe113384060000LL),-real(0x317b33e66b8c8000LL),
2739  real(0x1afebbc488cb0000LL),-real(0x2abc78cdb6418000LL),
2740  real(0xab0b32cc6da3c00LL),reale(12536797,0x9d1f205d24685LL),
2741  // C4[5], coeff of eps^15, polynomial in n of order 11
2742  reale(45753,0x27312c684b000LL),real(0x6b25908081df2000LL),
2743  reale(10080,0x3e3c4e94e9000LL),-reale(11483,0x3052990658000LL),
2744  real(0x186dcc47df2a7000LL),-reale(4654,0xe97b33c9a2000LL),
2745  reale(3765,0x192eb8a145000LL),-real(0x1ea7f016e242c000LL),
2746  real(0x7c08a9e80a083000LL),-real(0x48a61c5124e36000LL),
2747  -real(0x1ab8464a6fdf000LL),-real(0xc3b3128c53f500LL),
2748  reale(12536797,0x9d1f205d24685LL),
2749  // C4[5], coeff of eps^14, polynomial in n of order 12
2750  -reale(29853,0xf97fbea090000LL),-reale(72661,0xb2e53c820c000LL),
2751  reale(55735,0xd505afdac8000LL),-real(0x19eb9cd373704000LL),
2752  reale(6447,8655275741LL<<17),-reale(13735,0x934f51ea3c000LL),
2753  real(0x503c7c1e17a78000LL),-reale(2910,0x8f0f066334000LL),
2754  reale(4611,0xa07ae6cfd0000LL),-real(0x28ec95124696c000LL),
2755  real(0x386dc5f3bf428000LL),-real(0x49a3cdb95c464000LL),
2756  real(0xec86977ad08e600LL),reale(12536797,0x9d1f205d24685LL),
2757  // C4[5], coeff of eps^13, polynomial in n of order 13
2758  -reale(77964,0x27205a1bd000LL),reale(116550,0x911cc360c4000LL),
2759  -reale(45605,0xab8dec641b000LL),-reale(66195,0xc9de18da12000LL),
2760  reale(66624,0xae21593727000LL),-reale(5576,0x36f63ac28000LL),
2761  real(0x6f2264aae1649000LL),-reale(14832,0x2c940b773e000LL),
2762  reale(3661,0xe0e147ff8b000LL),-real(0x37687d20b9d14000LL),
2763  reale(4430,0xd2ef37d92d000LL),-real(0x61330ed553f6a000LL),
2764  -real(0x8fc7d2821691000LL),-real(0x4de8f81581e0b00LL),
2765  reale(12536797,0x9d1f205d24685LL),
2766  // C4[5], coeff of eps^12, polynomial in n of order 14
2767  -real(0x520b481798460000LL),reale(18997,713316873LL<<16),
2768  -reale(73060,0xebcc7589c0000LL),reale(119587,0x641c11f8f0000LL),
2769  -reale(63450,0xfff4f2db20000LL),-reale(54596,0x54a14049b0000LL),
2770  reale(77203,5136366291LL<<19),-reale(15161,0x669695c550000LL),
2771  -reale(2898,7333080783LL<<17),-reale(13401,0xbb1dc317f0000LL),
2772  reale(7364,7522322675LL<<18),real(0xcbde6dd32070000LL),
2773  reale(2498,0xb270ac8f60000LL),-reale(2207,0xe5e147ba30000LL),
2774  real(0x146e5a4ec1af3800LL),reale(12536797,0x9d1f205d24685LL),
2775  // C4[5], coeff of eps^11, polynomial in n of order 15
2776  -real(0x8e2d12e55cc800LL),-real(0x3c744345ee05000LL),
2777  -real(0x436e3347c2885800LL),reale(16354,0x603aee4aee000LL),
2778  -reale(66895,0x3561b9526e800LL),reale(120525,0x7fafccca1000LL),
2779  -reale(82888,0x6ce782c3a7800LL),-reale(36026,0xb730ca850c000LL),
2780  reale(84916,0xe33bbac3af800LL),-reale(30329,0x9a1820a639000LL),
2781  -reale(5003,0x6724146c89800LL),-reale(8175,0xa51f341306000LL),
2782  reale(10601,0xdf58b3eb8d800LL),-real(0x51534d8656793000LL),
2783  -real(0x13f74fe07242b800LL),-real(0x1338322158bf8680LL),
2784  reale(12536797,0x9d1f205d24685LL),
2785  // C4[5], coeff of eps^10, polynomial in n of order 16
2786  -real(0x5e9d97de20000LL),-real(0x15f51b48a5a000LL),
2787  -real(0x679f3a6a83c000LL),-real(0x2da38dbb53ee000LL),
2788  -real(0x351287a208998000LL),reale(13549,0xfdc5cc829e000LL),
2789  -reale(59298,0x35ebc8a374000LL),reale(118312,0x8f7a13080a000LL),
2790  -reale(102644,0xbe9581710000LL),-reale(8663,0x3283e8b4ea000LL),
2791  reale(85056,0xa0c3d6fa54000LL),-reale(50541,0x58fecea57e000LL),
2792  real(0x9e0314066f78000LL),-real(0x56026edfbaf2000LL),
2793  reale(9162,0x6ada71271c000LL),-reale(4514,0x3f8f2be686000LL),
2794  real(0x19aa7dbc9bd2b100LL),reale(12536797,0x9d1f205d24685LL),
2795  // C4[5], coeff of eps^9, polynomial in n of order 17
2796  -real(0x689b7f794800LL),-real(0x12aa316a68000LL),
2797  -real(0x3c5fe03b7b800LL),-real(0xe70662316b000LL),
2798  -real(0x468257445d2800LL),-real(0x204dea1c904e000LL),
2799  -real(0x275c24b79c179800LL),reale(10640,0x725f868a0f000LL),
2800  -reale(50163,0x8367062950800LL),reale(111598,0xa3db986ecc000LL),
2801  -reale(120105,0x1af4e4a837800LL),reale(28289,0xbddfd64f09000LL),
2802  reale(70122,0x41f96206f1800LL),-reale(70104,0xcd1cf1241a000LL),
2803  reale(17631,0x83f469b94a800LL),reale(3507,0xd4dd7e683000LL),
2804  real(0x234fa818af3f3800LL),-real(0x5217ce807fb7e980LL),
2805  reale(12536797,0x9d1f205d24685LL),
2806  // C4[5], coeff of eps^8, polynomial in n of order 18
2807  -real(0x8baa3048000LL),-real(0x155e3991c000LL),-real(237891401LL<<18),
2808  -real(0xa66484064000LL),-real(0x22acb24838000LL),
2809  -real(0x89475b1e6c000LL),-real(0x2b8ce25f7b0000LL),
2810  -real(0x14dd31b8f8b4000LL),-real(0x1acbb07dd4628000LL),
2811  reale(7723,0xe6c1cd6b44000LL),-reale(39540,0xb1d09a9920000LL),
2812  reale(98832,0x70f12b47fc000LL),-reale(130553,0x474c4a5618000LL),
2813  reale(72091,0x9d4697d7f4000LL),reale(31173,0xcb977f1d70000LL),
2814  -reale(72484,0xa77099aa54000LL),reale(42073,0x76abc75bf8000LL),
2815  -reale(8983,0xdb34fa045c000LL),real(0x7851cafec6ea600LL),
2816  reale(12536797,0x9d1f205d24685LL),
2817  // C4[5], coeff of eps^7, polynomial in n of order 19
2818  -real(808445556736LL),-real(0x19fd8659000LL),-real(0x3ce45316800LL),
2819  -real(0x98e89f08000LL),-real(0x1a16c5239800LL),-real(0x4ef4224b7000LL),
2820  -real(0x11089a8d8c800LL),-real(0x461e8219c6000LL),
2821  -real(0x1740d89936f800LL),-real(0xbb97ef56095000LL),
2822  -real(0xffd8608f0242800LL),reale(4956,0x2ae7ba647c000LL),
2823  -reale(27803,0x8886c0e865800LL),reale(78703,0x691d56f30d000LL),
2824  -reale(126581,0xb2ac252438800LL),reale(111405,0x65dae188be000LL),
2825  -reale(33040,0xc82f8ec41b800LL),-reale(31122,0xa51c18fcd1000LL),
2826  reale(33849,0xe315529991800LL),-reale(10096,0xcfcaaeb453f80LL),
2827  reale(12536797,0x9d1f205d24685LL),
2828  // C4[5], coeff of eps^6, polynomial in n of order 20
2829  -real(57693732864LL),-real(118378242048LL),-real(254261280768LL),
2830  -real(575562375168LL),-real(10565709LL<<17),-real(0x341c17b2000LL),
2831  -real(0x92ee7ecc000LL),-real(0x1ccf17876000LL),-real(0x6786d9e38000LL),
2832  -real(0x1bdf19e19a000LL),-real(0x9bb8377424000LL),
2833  -real(0x5352681ef5e000LL),-real(0x79ce0dfd0cd0000LL),
2834  reale(2563,0x29027cc1fe000LL),-reale(15917,0xface8c747c000LL),
2835  reale(51375,0x61bf7d963a000LL),-reale(99436,0x390f87b768000LL),
2836  reale(119998,0xa6d5e6f116000LL),-reale(88555,0x279c7be1d4000LL),
2837  reale(36577,0x210e8c3652000LL),-reale(6477,0x332fe8d449300LL),
2838  reale(12536797,0x9d1f205d24685LL),
2839  // C4[5], coeff of eps^5, polynomial in n of order 21
2840  -real(2537256960LL),-real(4922368000LL),-real(9913649152LL),
2841  -real(20825468928LL),-real(45893163008LL),-real(3260719LL<<15),
2842  -real(265153996800LL),-real(709434249216LL),-real(0x1e3bc54b800LL),
2843  -real(0x62f2289a000LL),-real(0x174e12bf8800LL),-real(0x69ee83c3b000LL),
2844  -real(0x2753bfa335800LL),-real(0x1693a2298bc000LL),
2845  -real(0x23ce232de3a2800LL),real(0x33ca29bdcdd43000LL),
2846  -reale(5754,0x693a6155df800LL),reale(21176,0x3b8f28c122000LL),
2847  -reale(47646,0x86021bb28c800LL),reale(67058,0x11f0010e41000LL),
2848  -reale(51817,0x997f46a249800LL),reale(16192,0xfff7c612b6f80LL),
2849  reale(12536797,0x9d1f205d24685LL),
2850  // C4[6], coeff of eps^26, polynomial in n of order 0
2851  real(71266816),real(0x75209f8d91abLL),
2852  // C4[6], coeff of eps^25, polynomial in n of order 1
2853  -real(61697<<14),real(365122560),real(0x64173937d043LL),
2854  // C4[6], coeff of eps^24, polynomial in n of order 2
2855  -real(0x10389da9c000LL),real(0x19e75ef2000LL),real(558875851776LL),
2856  real(0xd767bab38dc330dLL),
2857  // C4[6], coeff of eps^23, polynomial in n of order 3
2858  -real(0x142d81502c000LL),real(0x6dee9f4b8000LL),-real(0xae181cf64000LL),
2859  real(0x39153b46b400LL),reale(3342,0x41381bc9272f3LL),
2860  // C4[6], coeff of eps^22, polynomial in n of order 4
2861  -real(0x13480fca8c000LL),real(0x16106a2c37000LL),
2862  -real(0x1502d2e846000LL),real(0x16180c1bd000LL),real(0x74238242a00LL),
2863  reale(3342,0x41381bc9272f3LL),
2864  // C4[6], coeff of eps^21, polynomial in n of order 5
2865  -real(0x1c0b06f2aed0000LL),real(0x44926ab731c0000LL),
2866  -real(0x2031c71e85b0000LL),real(0xca25cdaf0e0000LL),
2867  -real(0x14c7d62b6490000LL),real(0x61052e04125000LL),
2868  reale(1139708,0xdfbd02f131dafLL),
2869  // C4[6], coeff of eps^20, polynomial in n of order 6
2870  -real(0x3c147e5183b90000LL),real(0x5c8a793ab7a08000LL),
2871  -real(0xa71b84c4013LL<<17),real(0x26583d412b938000LL),
2872  -real(0x1ec1409e52930000LL),real(0xd82d55b5068000LL),
2873  real(0x4a1c5add9a3000LL),reale(14816215,0x5c99263f881e3LL),
2874  // C4[6], coeff of eps^19, polynomial in n of order 7
2875  -reale(2884,0x97776797f0000LL),real(0x5dcb94a5bbaa0000LL),
2876  -real(0x2147754a866d0000LL),real(0x59b9e153ee1c0000LL),
2877  -real(0x1d3317b06cdb0000LL),real(0xfd67f86b28e0000LL),
2878  -real(0x193b89a255c90000LL),real(0x662541f54195000LL),
2879  reale(14816215,0x5c99263f881e3LL),
2880  // C4[6], coeff of eps^18, polynomial in n of order 8
2881  -reale(5404,0x5e66e1f930000LL),real(0x194c5bcfa9f36000LL),
2882  -reale(2201,0x4f230944e4000LL),reale(2053,0x73a8845e02000LL),
2883  -real(0x127ebba7aac98000LL),real(0x433c97a5782ce000LL),
2884  -real(0x29997437ffc4c000LL),-real(0xb36408ece66000LL),
2885  -real(0x4eb946c9b6ac00LL),reale(14816215,0x5c99263f881e3LL),
2886  // C4[6], coeff of eps^17, polynomial in n of order 9
2887  -reale(2829,0x5744c85a98000LL),real(0x53fda6bff9540000LL),
2888  -reale(5946,0xc179df32e8000LL),real(0x424987c8bd3f0000LL),
2889  -real(0x4d6fba1e72f38000LL),reale(2362,0x7a9b39aaa0000LL),
2890  -real(0x1a7dd6520d788000LL),real(0x1ca5a49549150000LL),
2891  -real(0x279b8ad82b3d8000LL),real(0x8624b660e613800LL),
2892  reale(14816215,0x5c99263f881e3LL),
2893  // C4[6], coeff of eps^16, polynomial in n of order 10
2894  reale(3052,0x1cc54fce28000LL),reale(15175,0x33b0e2aba4000LL),
2895  -reale(5744,0xc5440d7e0000LL),-real(0xd3fdde9c4364000LL),
2896  -reale(5627,0x42b2a45de8000LL),reale(2296,0xc920e17994000LL),
2897  -real(0x15ef23de88bf0000LL),reale(2060,0x9b7c8a7a8c000LL),
2898  -real(0x3634e9b2229f8000LL),-real(0x3eaac877287c000LL),
2899  -real(0x1ee323a1ca0c800LL),reale(14816215,0x5c99263f881e3LL),
2900  // C4[6], coeff of eps^15, polynomial in n of order 11
2901  -reale(77304,0xeb4d9089c8000LL),reale(21636,0x8867f71d90000LL),
2902  reale(6061,8670344157LL<<15),reale(12960,6074462725LL<<18),
2903  -reale(9403,0x25b985468000LL),-real(0x35c5d916ffb10000LL),
2904  -reale(4114,0x3d13bbebb8000LL),reale(3690,0x5a8c0420a0000LL),
2905  -real(0x7db1fc00af08000LL),real(0x3ee56918f4c50000LL),
2906  -real(0x41d90b24a2658000LL),real(0xb0f65a4ddefb800LL),
2907  reale(14816215,0x5c99263f881e3LL),
2908  // C4[6], coeff of eps^14, polynomial in n of order 12
2909  reale(84445,0xef949ea0f8000LL),reale(19627,0xf0e541fbce000LL),
2910  -reale(80833,0x5f741237dc000LL),reale(34575,0x1644d05d7a000LL),
2911  reale(6828,0x4cfbe5cb50000LL),reale(8288,0x561945cd26000LL),
2912  -reale(12838,0x6d3e328184000LL),real(0x15c5608ef0ed2000LL),
2913  -real(0x653ba29de4a58000LL),reale(4217,0x4b5d86267e000LL),
2914  -real(0x3b46409683b2c000LL),-real(0x974d654f27d6000LL),
2915  -real(0x674dea252558c00LL),reale(14816215,0x5c99263f881e3LL),
2916  // C4[6], coeff of eps^13, polynomial in n of order 13
2917  reale(45373,0x376f121df0000LL),-reale(98871,0xe30dbcdfc0000LL),
2918  reale(96522,0x4174515a90000LL),-real(0x2d5b0f36d6d20000LL),
2919  -reale(79483,0x53270530d0000LL),reale(50297,8337588523LL<<19),
2920  reale(3071,0x5d816f2bd0000LL),real(0x5cfb30543d820000LL),
2921  -reale(14132,0x4c1b1cdf90000LL),reale(3907,0xfc9bf30ac0000LL),
2922  real(0x1e5e0fff75d10000LL),reale(2700,0x7f35ecdd60000LL),
2923  -real(0x74992b46f6e50000LL),real(0xe2f417f6bbc1000LL),
2924  reale(14816215,0x5c99263f881e3LL),
2925  // C4[6], coeff of eps^12, polynomial in n of order 14
2926  real(0x1b3ddeae39bf0000LL),-reale(7839,0x62697a1358000LL),
2927  reale(39400,0x7dae3b2360000LL),-reale(93477,0x2dd7a51de8000LL),
2928  reale(106917,0x5f76290ad0000LL),-reale(25706,0x4975ab7078000LL),
2929  -reale(70221,0xf8d5dabdc0000LL),reale(66679,0x434a03a4f8000LL),
2930  -reale(7926,0xc17b4a4650000LL),-reale(5104,0x4c6b9c2d98000LL),
2931  -reale(10825,0x972fc79ee0000LL),reale(8339,0xae0935c7d8000LL),
2932  -real(0xb5e35652d770000LL),-real(0xb97cf166cab8000LL),
2933  -real(0x1484ac4370939000LL),reale(14816215,0x5c99263f881e3LL),
2934  // C4[6], coeff of eps^11, polynomial in n of order 15
2935  real(0x1da928c9710000LL),real(0xef3463c3520000LL),
2936  real(0x1433e03669f30000LL),-reale(6121,0xc895edf4c0000LL),
2937  reale(32842,0x2af7b46f50000LL),-reale(85281,0xda67593ea0000LL),
2938  reale(113905,0x4294ec3770000LL),-reale(54341,1789231857LL<<19),
2939  -reale(49473,0x80d6dfd870000LL),reale(78594,0x71ba158da0000LL),
2940  -reale(27684,0xd5e2e99050000LL),-reale(5831,3589595121LL<<18),
2941  -reale(2437,0x3d76dec030000LL),reale(8713,0x93ccba19e0000LL),
2942  -reale(3467,0xfccc93810000LL),real(0xf2bb44edf33d000LL),
2943  reale(14816215,0x5c99263f881e3LL),
2944  // C4[6], coeff of eps^10, polynomial in n of order 16
2945  real(0xcab3dac70000LL),real(0x3665759289000LL),real(0x12ce11eabe2000LL),
2946  real(0x9df70180dbb000LL),real(0xdfd754eb8954000LL),
2947  -reale(4487,0x5dd2369613000LL),reale(25849,0xff24cd52c6000LL),
2948  -reale(73908,0x17b3db62e1000LL),reale(115119,0x8d3c9a9638000LL),
2949  -reale(83691,0x41fe3e02af000LL),-reale(14375,0xada6f2de56000LL),
2950  reale(76590,0xeb60670083000LL),-reale(52128,0x9a91d83ce4000LL),
2951  reale(7010,0x5a128dfcb5000LL),reale(3866,0xf6d75c088e000LL),
2952  real(0x469f50315e7e7000LL),-real(0x4bbe9f188165a200LL),
2953  reale(14816215,0x5c99263f881e3LL),
2954  // C4[6], coeff of eps^9, polynomial in n of order 17
2955  real(0x8ddfb274000LL),real(120826333LL<<18),real(0x6b145a40c000LL),
2956  real(0x1dc5136a58000LL),real(0xab5ca60ba4000LL),real(0x5e28748a970000LL),
2957  real(0x8cad0403953c000LL),-reale(3003,0xaeb1521f78000LL),
2958  reale(18707,0x350991ecd4000LL),-reale(59284,0x6845654460000LL),
2959  reale(107702,0xd776bbe6c000LL),-reale(107579,0xe340531948000LL),
2960  reale(33813,0xa464b8b604000LL),reale(48035,0x81a4fa0dd0000LL),
2961  -reale(64047,0xa4265c8064000LL),reale(31225,0xe027c1dce8000LL),
2962  -reale(5635,0xd5d68038cc000LL),-real(0x50368754849c400LL),
2963  reale(14816215,0x5c99263f881e3LL),
2964  // C4[6], coeff of eps^8, polynomial in n of order 18
2965  real(490704814080LL),real(0x13aa0f5a000LL),real(31022013LL<<17),
2966  real(0xc68497e6000LL),real(0x2fcbb8aac000LL),real(0xdd4302e72000LL),
2967  real(0x534405e9b8000LL),real(0x30298b6eefe000LL),
2968  real(0x4c5dcf34c0c4000LL),-real(0x6d574da684a76000LL),
2969  reale(11873,5016286141LL<<16),-reale(42009,0x509c0961ea000LL),
2970  reale(89073,0x6259ee06dc000LL),-reale(115683,0xae64a27b5e000LL),
2971  reale(82889,0x8f2a67cde8000LL),-reale(11935,0xb1dc537ad2000LL),
2972  -reale(33312,0xcf05a2430c000LL),reale(28876,0xae4eda7bba000LL),
2973  -reale(8101,0x83645851a5400LL),reale(14816215,0x5c99263f881e3LL),
2974  // C4[6], coeff of eps^7, polynomial in n of order 19
2975  real(7458340864LL),real(560703LL<<15),real(48303816704LL),
2976  real(522951LL<<18),real(426386014208LL),real(45283889LL<<15),
2977  real(0x56a252ac000LL),real(440127317LL<<16),real(0xa648bd1f4000LL),
2978  real(0x65fb114118000LL),real(0xacffeca0b3c000LL),
2979  -real(0x860da206139LL<<17),real(0x7d0a1c0732284000LL),
2980  -reale(7961,0x1b3e7a1f58000LL),reale(19682,0xa4af1c3bcc000LL),
2981  -reale(31917,0xccc8ef8390000LL),reale(34094,0x3798b7b14000LL),
2982  -reale(23101,0x583f152fc8000LL),reale(8983,0xdb34fa045c000LL),
2983  -real(0x5f40c0b45d798c00LL),reale(4938738,0x74330cbfd80a1LL),
2984  // C4[6], coeff of eps^6, polynomial in n of order 20
2985  real(651542528),real(1480134656),real(3538968576LL),real(8971595776LL),
2986  real(371371LL<<16),real(71493373952LL),real(230978592768LL),
2987  real(838422294528LL),real(0x334e2804000LL),real(0x106060339000LL),
2988  real(0x6e2b415ae000LL),real(0x484c62e3a3000LL),real(0x848c0aa1558000LL),
2989  -real(0xe0b56a0582f3000LL),real(0x745df25523d02000LL),
2990  -reale(8378,0x6c27f21289000LL),reale(23938,0x5996b3a2ac000LL),
2991  -reale(45881,0xd660d84d1f000LL),reale(58395,0x10d8591c56000LL),
2992  -reale(42673,0x513ba394b5000LL),reale(12954,0x665fd1a892600LL),
2993  reale(14816215,0x5c99263f881e3LL),
2994  // C4[7], coeff of eps^26, polynomial in n of order 0
2995  real(9763<<15),real(0x75209f8d91abLL),
2996  // C4[7], coeff of eps^25, polynomial in n of order 1
2997  real(239317LL<<16),real(5250319360LL),real(0x4082f7e0f93b2fLL),
2998  // C4[7], coeff of eps^24, polynomial in n of order 2
2999  real(179518703LL<<19),-real(591371495LL<<18),real(0x28b139bd9800LL),
3000  reale(3231,0x13f0854e6fdc3LL),
3001  // C4[7], coeff of eps^23, polynomial in n of order 3
3002  real(0x2cef3d4baf0000LL),-real(77130417375LL<<17),real(0xef66e7c50000LL),
3003  real(0x5431e6572400LL),reale(119549,0xe1c344562ad2fLL),
3004  // C4[7], coeff of eps^22, polynomial in n of order 4
3005  real(217227301LL<<22),-real(289844049LL<<20),real(78161061LL<<21),
3006  -real(250072603LL<<20),real(0x3ccfc393c000LL),
3007  reale(3856,0x72a333c0b70f1LL),
3008  // C4[7], coeff of eps^21, polynomial in n of order 5
3009  real(0x4e0ae513ee240000LL),-real(827903427791LL<<20),
3010  real(0xa247f543e5fLL<<18),-real(0x3412b66b53fLL<<19),
3011  -real(88149449003LL<<18),-real(0x22c21c78f4d000LL),
3012  reale(17095633,0x1c132c21ebd41LL),
3013  // C4[7], coeff of eps^20, polynomial in n of order 6
3014  real(0x17d653fb3b3LL<<21),-real(0x28623ac8329LL<<20),
3015  real(0x157258d15a9LL<<22),-real(0x11bb996f2dfLL<<20),
3016  real(568501848145LL<<21),-real(0x17b5bd88f85LL<<20),
3017  real(0x53401a2130be000LL),reale(17095633,0x1c132c21ebd41LL),
3018  // C4[7], coeff of eps^19, polynomial in n of order 7
3019  -real(0x83a0cdc49940000LL),-reale(2692,4590415189LL<<19),
3020  real(0x5a9e6c539a840000LL),-real(834402440151LL<<20),
3021  real(0x4606e5f7741c0000LL),-real(0x420b2360847LL<<19),
3022  -real(530800397043LL<<18),-real(0xe57fab5d571000LL),
3023  reale(17095633,0x1c132c21ebd41LL),
3024  // C4[7], coeff of eps^18, polynomial in n of order 8
3025  reale(3472,126556531LL<<23),-reale(5076,3517313787LL<<20),
3026  -real(76794078375LL<<21),-real(0x6a9c1a13021LL<<20),
3027  reale(2051,1043338611LL<<22),-real(704701202247LL<<20),
3028  real(0xfa27346673LL<<21),-real(0x245598aac6dLL<<20),
3029  real(0x69deaea556c4000LL),reale(17095633,0x1c132c21ebd41LL),
3030  // C4[7], coeff of eps^17, polynomial in n of order 9
3031  reale(15000,0xe6601a91a0000LL),-real(0x261369ca72fLL<<20),
3032  real(0x42e9870754860000LL),-reale(5748,0xcbf4457740000LL),
3033  real(0x3d07c1e90b320000LL),-real(0x3f02d96efefLL<<19),
3034  real(0x7fb986a3c79e0000LL),-real(0x995e2453d1fLL<<18),
3035  -real(0x4ae4d5f0bb60000LL),-real(0x2b86668e596d800LL),
3036  reale(17095633,0x1c132c21ebd41LL),
3037  // C4[7], coeff of eps^16, polynomial in n of order 10
3038  -real(0x73f9d78b0d9LL<<20),real(0x9cf538ea065LL<<19),
3039  reale(15740,149203411LL<<22),-reale(4248,1728572757LL<<19),
3040  -real(0x407b444d4cfLL<<20),-reale(4968,2121468799LL<<19),
3041  reale(2638,499248115LL<<21),real(0x88c04a730380000LL),
3042  real(0x44a3b895a7bLL<<20),-real(0x74a26c7b8a3LL<<19),
3043  real(0x855f1c455087000LL),reale(17095633,0x1c132c21ebd41LL),
3044  // C4[7], coeff of eps^15, polynomial in n of order 11
3045  reale(61154,0xdd701642e0000LL),-reale(66911,9396541691LL<<18),
3046  reale(7800,0xcd3506c5a0000LL),reale(6879,1489841009LL<<20),
3047  reale(13340,0xebc72e5460000LL),-reale(8995,2037240317LL<<18),
3048  -real(0x58226c8c268e0000LL),-reale(2527,381291855LL<<19),
3049  reale(3789,0xabee5235e0000LL),-real(0x7b29f7fc67fLL<<18),
3050  -real(0x7ff214bf2760000LL),-real(0x75bce0e31735800LL),
3051  reale(17095633,0x1c132c21ebd41LL),
3052  // C4[7], coeff of eps^14, polynomial in n of order 12
3053  -reale(101656,596927171LL<<22),reale(53043,574431381LL<<20),
3054  reale(45405,240861115LL<<21),-reale(76255,2673908009LL<<20),
3055  reale(23050,192030143LL<<23),reale(9407,3846737689LL<<20),
3056  reale(7022,1974859325LL<<21),-reale(12738,252856997LL<<20),
3057  real(0x137e788e9bfLL<<22),real(0x118e235259dLL<<20),
3058  reale(2782,635761855LL<<21),-real(0x61e77094421LL<<20),
3059  real(0x9e768b34c754000LL),reale(17095633,0x1c132c21ebd41LL),
3060  // C4[7], coeff of eps^13, polynomial in n of order 13
3061  -reale(21345,0xc6c0a8cac0000LL),reale(63537,3528773151LL<<20),
3062  -reale(101990,1331648317LL<<18),reale(73206,6215106713LL<<19),
3063  reale(21832,587136209LL<<18),-reale(78785,930736779LL<<21),
3064  reale(42984,0xe415720fc0000LL),reale(4706,912279695LL<<19),
3065  -real(0x6fb64418f6cc0000LL),-reale(11952,1697246539LL<<20),
3066  reale(6137,3764705851LL<<18),real(0x39d9405b105LL<<19),
3067  -real(779141568695LL<<18),-real(0x14a7906c9982d000LL),
3068  reale(17095633,0x1c132c21ebd41LL),
3069  // C4[7], coeff of eps^12, polynomial in n of order 14
3070  -real(254469508501LL<<21),reale(2615,141135587LL<<20),
3071  -reale(16754,480949921LL<<22),reale(54113,1487459045LL<<20),
3072  -reale(98062,1801972559LL<<21),reale(91200,2801526327LL<<20),
3073  -reale(9603,108846763LL<<23),-reale(69011,498726663LL<<20),
3074  reale(62980,2002280887LL<<21),-reale(11145,4221789365LL<<20),
3075  -reale(7195,1009585291LL<<22),-reale(4457,3739558579LL<<20),
3076  reale(7974,18407933LL<<21),-reale(2668,664195297LL<<20),
3077  real(0x8b8039451326000LL),reale(17095633,0x1c132c21ebd41LL),
3078  // C4[7], coeff of eps^11, polynomial in n of order 15
3079  -real(5353180065LL<<18),-real(25442595013LL<<19),
3080  -real(0x4cec268118c0000LL),real(0x702c4e5b497LL<<20),
3081  -reale(12304,5733646405LL<<18),reale(43346,2744696673LL<<19),
3082  -reale(88871,6285139975LL<<18),reale(103468,468195229LL<<21),
3083  -reale(46365,0xbad7731a40000LL),-reale(41349,1257587961LL<<19),
3084  reale(72365,0x9597fe7540000LL),-reale(36580,2571848483LL<<20),
3085  real(0xc0cfef1c9f3LL<<18),reale(3419,2944620333LL<<19),
3086  real(0x5d00262e0cc40000LL),-real(0x44e0e913b4a79000LL),
3087  reale(17095633,0x1c132c21ebd41LL),
3088  // C4[7], coeff of eps^10, polynomial in n of order 16
3089  -real(1386231LL<<24),-real(109742265LL<<20),-real(354075457LL<<21),
3090  -real(7044729419LL<<20),-real(48190848741LL<<22),
3091  real(0x4592e53c723LL<<20),-reale(8214,1225367123LL<<21),
3092  reale(31749,3931639185LL<<20),-reale(73861,194985719LL<<23),
3093  reale(105371,3738827519LL<<20),-reale(81325,759307621LL<<21),
3094  reale(5533,2607378797LL<<20),reale(54935,128097033LL<<22),
3095  -reale(54849,213867813LL<<20),reale(23331,2117756809LL<<21),
3096  -reale(3571,955076279LL<<20),-real(0xa766ab1fb094000LL),
3097  reale(17095633,0x1c132c21ebd41LL),
3098  // C4[7], coeff of eps^9, polynomial in n of order 17
3099  -real(9271959LL<<16),-real(2137131LL<<20),-real(0x8adb5490000LL),
3100  -real(374926717LL<<17),-real(5060508635LL<<16),-real(0xc549443040000LL),
3101  -real(0x1658a10fa0d0000LL),real(0x250f39cc17720000LL),
3102  -reale(4742,48259999LL<<16),reale(20239,6692003029LL<<19),
3103  -reale(53602,0x26a4a24510000LL),reale(92339,8168900207LL<<17),
3104  -reale(101236,0x6fb3cfe30000LL),reale(59785,2334542613LL<<18),
3105  real(0x5c1211516deb0000LL),-reale(32944,0x86c05c8b60000LL),
3106  reale(24775,0x5aee521590000LL),-reale(6657,0xade066fea8c00LL),
3107  reale(17095633,0x1c132c21ebd41LL),
3108  // C4[7], coeff of eps^8, polynomial in n of order 18
3109  -real(31473LL<<19),-real(194623LL<<18),-real(41393LL<<22),
3110  -real(2533665LL<<18),-real(5617311LL<<19),-real(60523827LL<<18),
3111  -real(107394483LL<<20),-real(4758923477LL<<18),-real(73625727245LL<<19),
3112  real(0xf5289483e640000LL),-reale(2141,878914353LL<<21),
3113  reale(10163,0xf2a381edc0000LL),-reale(30731,8395289531LL<<19),
3114  reale(63101,0xdb7b98c940000LL),-reale(89756,3102076305LL<<20),
3115  reale(87316,6648120707LL<<18),-reale(55353,8132528169LL<<19),
3116  reale(20534,9081852529LL<<18),-reale(3368,0xf233ddc1a2800LL),
3117  reale(17095633,0x1c132c21ebd41LL),
3118  // C4[7], coeff of eps^7, polynomial in n of order 19
3119  -real(4693<<16),-real(6435<<17),-real(37895LL<<16),-real(7579LL<<20),
3120  -real(428505LL<<16),-real(854413LL<<17),-real(7933835LL<<16),
3121  -real(11246865LL<<18),-real(338155741LL<<16),-real(0xee3402ee0000LL),
3122  -real(0x1efc2a618f0000LL),real(517531990885LL<<19),
3123  -real(0x243e4ae81d610000LL),reale(3081,0xb7f72703e0000LL),
3124  -reale(10639,0x4442fa8130000LL),reale(25534,4122358181LL<<18),
3125  -reale(43524,0x45cc2f5650000LL),reale(51336,0x52534b86a0000LL),
3126  -reale(35935,0x6cd3e81170000LL),reale(10668,0x544ee8e52d400LL),
3127  reale(17095633,0x1c132c21ebd41LL),
3128  // C4[8], coeff of eps^26, polynomial in n of order 0
3129  real(1703<<17),real(0x7c72a9866ac5bLL),
3130  // C4[8], coeff of eps^25, polynomial in n of order 1
3131  -real(177229LL<<20),real(727155LL<<16),real(0x491cf6cbc520f1LL),
3132  // C4[8], coeff of eps^24, polynomial in n of order 2
3133  -real(9929683361LL<<18),-real(175790329LL<<17),-real(0x88fc23ec000LL),
3134  reale(40280,0xc561288d94a7fLL),
3135  // C4[8], coeff of eps^23, polynomial in n of order 3
3136  -real(11862711753LL<<19),real(5010641713LL<<20),-real(14709027619LL<<19),
3137  real(0x62bf29e3e8000LL),reale(135489,0xddbb2b5096ef1LL),
3138  // C4[8], coeff of eps^22, polynomial in n of order 4
3139  -real(6145646087LL<<23),real(131879372361LL<<21),
3140  -real(33613471903LL<<22),-real(3256336589LL<<21),
3141  -real(0xacc29a2990000LL),reale(1761368,0x42813317aa23dLL),
3142  // C4[8], coeff of eps^21, polynomial in n of order 5
3143  -real(0x6a942373c4bLL<<19),real(0x26ec3bfe245LL<<21),
3144  -real(0x8f791d3a3680000LL),real(0x11c215e6335LL<<20),
3145  -real(0x2c38227cc2fLL<<19),real(0x4429220c0f48000LL),
3146  reale(19375050,0xdb8d32044f89fLL),
3147  // C4[8], coeff of eps^20, polynomial in n of order 6
3148  -reale(2934,444315969LL<<20),real(0x6a3b64139b1LL<<19),
3149  -real(467101336651LL<<21),real(0x8d6914ca9b7LL<<19),
3150  -real(0x1951684536bLL<<20),-real(344981960323LL<<19),
3151  -real(0x1536c8746170000LL),reale(19375050,0xdb8d32044f89fLL),
3152  // C4[8], coeff of eps^19, polynomial in n of order 7
3153  -reale(3511,3705843547LL<<19),-real(0x204aea957e3LL<<20),
3154  -reale(2145,1225061153LL<<19),real(0x33d58e2ac0fLL<<21),
3155  -real(10655273223LL<<19),real(0x21f191654dfLL<<20),
3156  -real(0x4229ae891cdLL<<19),real(0x53ff9bb26958000LL),
3157  reale(19375050,0xdb8d32044f89fLL),
3158  // C4[8], coeff of eps^18, polynomial in n of order 8
3159  reale(2327,223378273LL<<24),reale(3002,681494021LL<<21),
3160  -reale(5098,180818405LL<<22),-real(5074441169LL<<21),
3161  -real(428729715071LL<<23),real(0x3cce86cb309LL<<21),
3162  -real(434398966071LL<<22),-real(156882519885LL<<21),
3163  -real(0x33e11620e250000LL),reale(19375050,0xdb8d32044f89fLL),
3164  // C4[8], coeff of eps^17, polynomial in n of order 9
3165  -reale(6703,1474120015LL<<19),reale(14458,426935549LL<<22),
3166  -real(511886207649LL<<19),-real(39076914681LL<<20),
3167  -reale(5282,7254660115LL<<19),real(0x33346658ebdLL<<21),
3168  real(0xd2bcdb640d80000LL),real(0x48aecde6f2dLL<<20),
3169  -real(0x66a76bcf857LL<<19),real(0x650db91f67c8000LL),
3170  reale(19375050,0xdb8d32044f89fLL),
3171  // C4[8], coeff of eps^16, polynomial in n of order 10
3172  -reale(41674,2212282947LL<<19),-reale(7593,6666692295LL<<18),
3173  real(0x22d5b967639LL<<21),reale(15266,7870015191LL<<18),
3174  -reale(4856,4082442485LL<<19),-real(0x76ec691ccd2c0000LL),
3175  -reale(3302,2416313159LL<<20),reale(3252,0xd63fbdd4c0000LL),
3176  -real(0xa56dc66b5380000LL),-real(0x5b75ff5133c0000LL),
3177  -real(0x7d0ead839928000LL),reale(19375050,0xdb8d32044f89fLL),
3178  // C4[8], coeff of eps^15, polynomial in n of order 11
3179  reale(6774,8529353663LL<<19),reale(68916,757502869LL<<20),
3180  -reale(58358,4821135835LL<<19),reale(3030,627685345LL<<22),
3181  reale(8321,1974413611LL<<19),reale(11199,994841075LL<<20),
3182  -reale(10210,402696815LL<<19),-real(0x10cbfe9c35fLL<<21),
3183  -real(0x88d945e9f480000LL),reale(2764,2004030417LL<<20),
3184  -real(0xa3f22386a83LL<<19),real(0x6eb0baaefa68000LL),
3185  reale(19375050,0xdb8d32044f89fLL),
3186  // C4[8], coeff of eps^14, polynomial in n of order 12
3187  reale(80789,157273055LL<<23),-reale(92413,883895019LL<<21),
3188  reale(33037,752031121LL<<22),reale(52633,1725093895LL<<21),
3189  -reale(71257,198988971LL<<24),reale(21774,462183721LL<<21),
3190  reale(9867,923099607LL<<22),reale(2235,815700763LL<<21),
3191  -reale(11863,140786955LL<<23),reale(4226,1910142077LL<<21),
3192  real(854212143197LL<<22),real(169477509103LL<<21),
3193  -real(0x1429c96cdeb90000LL),reale(19375050,0xdb8d32044f89fLL),
3194  // C4[8], coeff of eps^13, polynomial in n of order 13
3195  reale(7986,2577537059LL<<19),-reale(31049,1388317679LL<<21),
3196  reale(71398,6484881669LL<<19),-reale(96607,3840488041LL<<20),
3197  reale(60036,7375804551LL<<19),reale(24533,301249307LL<<22),
3198  -reale(73258,7729848599LL<<19),reale(45499,3314021057LL<<20),
3199  -real(0x3ea6bf07b95LL<<19),-reale(6268,968456357LL<<21),
3200  -reale(5889,8030103219LL<<19),reale(7129,2010513003LL<<20),
3201  -reale(2060,6603694641LL<<19),real(0x4aa8326c4b38000LL),
3202  reale(19375050,0xdb8d32044f89fLL),
3203  // C4[8], coeff of eps^12, polynomial in n of order 14
3204  real(110457315575LL<<20),-real(0x55e7441aebbLL<<19),
3205  reale(5489,1587292819LL<<21),-reale(23107,1250112621LL<<19),
3206  reale(59020,876513493LL<<20),-reale(93669,6579434335LL<<19),
3207  reale(83160,151752881LL<<22),-reale(14191,6428793873LL<<19),
3208  -reale(55802,147123789LL<<20),reale(63340,7698024701LL<<19),
3209  -reale(24299,306146767LL<<21),-reale(2685,2028352693LL<<19),
3210  reale(2706,1245782417LL<<20),real(0xd3e9bdc0259LL<<19),
3211  -real(0x3e4f75bd92cb0000LL),reale(19375050,0xdb8d32044f89fLL),
3212  // C4[8], coeff of eps^11, polynomial in n of order 15
3213  real(349722603LL<<19),real(1945948591LL<<20),real(0xe000999c080000LL),
3214  -real(852080688837LL<<21),reale(3397,2932652343LL<<19),
3215  -reale(15561,3567671555LL<<20),reale(44311,3271472077LL<<19),
3216  -reale(82040,520836183LL<<22),reale(95750,3608174083LL<<19),
3217  -reale(56326,3054118709LL<<20),-reale(14075,6930316647LL<<19),
3218  reale(56094,1163367017LL<<21),-reale(46280,7703552945LL<<19),
3219  reale(17576,4216930841LL<<20),-reale(2261,6650055195LL<<19),
3220  -real(0xc8e19a260718000LL),reale(19375050,0xdb8d32044f89fLL),
3221  // C4[8], coeff of eps^10, polynomial in n of order 16
3222  real(53199LL<<25),real(4832235LL<<21),real(18086833LL<<22),
3223  real(422991569LL<<21),real(3456128781LL<<23),-real(417864400569LL<<21),
3224  real(0x1c1175e6463LL<<22),-reale(9006,876789843LL<<21),
3225  reale(28706,92601679LL<<24),-reale(61776,681174429LL<<21),
3226  reale(90600,218403669LL<<22),-reale(86125,255162935LL<<21),
3227  reale(41671,220860591LL<<23),reale(9900,1945963071LL<<21),
3228  -reale(31426,812677625LL<<22),reale(21427,717745189LL<<21),
3229  -reale(5580,0x8f2cafdf0000LL),reale(19375050,0xdb8d32044f89fLL),
3230  // C4[8], coeff of eps^9, polynomial in n of order 17
3231  real(47583LL<<19),real(12411LL<<23),real(964865LL<<19),
3232  real(2862477LL<<20),real(45013059LL<<19),real(139025201LL<<21),
3233  real(19339324389LL<<19),-real(313753792905LL<<20),
3234  real(0x5b827ae7827LL<<19),-reale(4043,135949957LL<<22),
3235  reale(14485,4274671945LL<<19),-reale(36111,1380328223LL<<20),
3236  reale(64526,2642754443LL<<19),-reale(82901,1325528645LL<<21),
3237  reale(74876,5403462445LL<<19),-reale(44997,1726039605LL<<20),
3238  reale(16070,4300719215LL<<19),-reale(2566,0xd0ea909388000LL),
3239  reale(19375050,0xdb8d32044f89fLL),
3240  // C4[8], coeff of eps^8, polynomial in n of order 18
3241  real(1053<<18),real(7293<<17),real(1749LL<<21),real(121635LL<<17),
3242  real(309043LL<<18),real(3853577LL<<17),real(8003583LL<<19),
3243  real(420632751LL<<17),real(7839064905LL<<18),-real(550302356331LL<<17),
3244  real(754118043861LL<<20),-real(0x433703efa18a0000LL),
3245  reale(4345,0xa637f297c0000LL),-reale(12473,0x9f7aaa1be0000LL),
3246  reale(26308,41230677LL<<19),-reale(40979,0xc6d64da720000LL),
3247  reale(45533,1464249973LL<<18),-reale(30801,0xcafec6ea60000LL),
3248  reale(8983,0xdb34fa045c000LL),reale(19375050,0xdb8d32044f89fLL),
3249  // C4[9], coeff of eps^26, polynomial in n of order 0
3250  real(3679<<17),real(0xf744df0e6c69LL),
3251  // C4[9], coeff of eps^25, polynomial in n of order 1
3252  -real(48841LL<<20),-real(336765LL<<16),real(0x19892cc90d5217fLL),
3253  // C4[9], coeff of eps^24, polynomial in n of order 2
3254  real(24659297LL<<26),-real(64440233LL<<25),real(414215087LL<<20),
3255  reale(45019,0xaf6c96bc5ad9dLL),
3256  // C4[9], coeff of eps^23, polynomial in n of order 3
3257  real(0x55f7a92f661LL<<19),-real(0x115bb8ed6d9LL<<20),
3258  -real(198450589909LL<<19),-real(0xb7278b5afc8000LL),
3259  reale(21654468,0x9b0737e6b33fdLL),
3260  // C4[9], coeff of eps^22, polynomial in n of order 4
3261  real(52440485279LL<<23),-real(8663417169LL<<21),real(29836121623LL<<22),
3262  -real(64017745099LL<<21),real(0x517eabcb370000LL),
3263  reale(1968588,0xe17edcf27917LL),
3264  // C4[9], coeff of eps^21, polynomial in n of order 5
3265  real(0x29ddd14eea5LL<<19),-real(683397694747LL<<21),
3266  real(0x8a9d0ded323LL<<19),-real(0x12a27ad79ebLL<<20),
3267  -real(365440747903LL<<19),-real(0x1a278f54ba58000LL),
3268  reale(21654468,0x9b0737e6b33fdLL),
3269  // C4[9], coeff of eps^20, polynomial in n of order 6
3270  -real(258517517319LL<<23),-reale(2449,779805879LL<<22),
3271  real(333316352075LL<<24),real(89662817151LL<<22),
3272  real(311028248083LL<<23),-real(514657501435LL<<22),
3273  real(0x42edd4687ca0000LL),reale(21654468,0x9b0737e6b33fdLL),
3274  // C4[9], coeff of eps^19, polynomial in n of order 7
3275  reale(4708,5969586757LL<<19),-reale(3967,769306643LL<<20),
3276  -real(0x4aa5ebcacc1LL<<19),-real(0x2338c762cc1LL<<21),
3277  real(0xdfce640f299LL<<19),-real(0xee4b32a131LL<<20),
3278  -real(544152989037LL<<19),-real(0x392f1a561e88000LL),
3279  reale(21654468,0x9b0737e6b33fdLL),
3280  // C4[9], coeff of eps^18, polynomial in n of order 8
3281  reale(10651,141986579LL<<24),reale(2483,579021431LL<<21),
3282  real(0x171656e9461LL<<22),-reale(5106,1475723195LL<<21),
3283  real(424307179891LL<<23),real(353847768099LL<<21),
3284  real(0x12b721ceb0bLL<<22),-real(0x16800175f8fLL<<21),
3285  real(0x4cd03e8801b0000LL),reale(21654468,0x9b0737e6b33fdLL),
3286  // C4[9], coeff of eps^17, polynomial in n of order 9
3287  -reale(12598,568269079LL<<19),-reale(5705,584195995LL<<22),
3288  reale(14434,7986153127LL<<19),-real(0x53c43a7b401LL<<20),
3289  -real(0xc35a517653bLL<<19),-reale(3831,956767451LL<<21),
3290  reale(2686,1674924547LL<<19),real(257168565717LL<<20),
3291  -real(441477690591LL<<19),-real(0x7fc3df35f858000LL),
3292  reale(21654468,0x9b0737e6b33fdLL),
3293  // C4[9], coeff of eps^16, polynomial in n of order 10
3294  reale(73082,82142393LL<<24),-reale(36372,269994261LL<<23),
3295  -reale(8446,14363443LL<<26),reale(3801,517661957LL<<23),
3296  reale(13381,17268719LL<<24),-reale(7345,464489969LL<<23),
3297  -real(211182139987LL<<25),-real(326075858199LL<<23),
3298  reale(2675,147207653LL<<24),-real(589098042253LL<<23),
3299  real(0x4cdddf4aa2c0000LL),reale(21654468,0x9b0737e6b33fdLL),
3300  // C4[9], coeff of eps^15, polynomial in n of order 11
3301  -reale(70228,3204573753LL<<19),-reale(3665,997072835LL<<20),
3302  reale(67162,8124243837LL<<19),-reale(56077,490889175LL<<22),
3303  reale(5918,7641432915LL<<19),reale(10294,3043462539LL<<20),
3304  reale(5723,2367840009LL<<19),-reale(10993,938348055LL<<21),
3305  reale(2675,6462906463LL<<19),real(0x3a39e82b059LL<<20),
3306  real(0xb502c3128a80000LL),-real(0x1358f80d9c038000LL),
3307  reale(21654468,0x9b0737e6b33fdLL),
3308  // C4[9], coeff of eps^14, polynomial in n of order 12
3309  -reale(45939,459571779LL<<23),reale(81202,1438384695LL<<21),
3310  -reale(84011,799287213LL<<22),reale(28155,23125821LL<<21),
3311  reale(46736,266493023LL<<24),-reale(68202,2086496557LL<<21),
3312  reale(29667,382040805LL<<22),reale(5608,647828697LL<<21),
3313  -reale(4401,355658689LL<<23),-reale(6763,1986460369LL<<21),
3314  reale(6284,996052535LL<<22),-real(0x31efd65ac4bLL<<21),
3315  real(0x21519ecdd470000LL),reale(21654468,0x9b0737e6b33fdLL),
3316  // C4[9], coeff of eps^13, polynomial in n of order 13
3317  -reale(2321,7142809405LL<<19),reale(11407,565078561LL<<21),
3318  -reale(34996,6437021595LL<<19),reale(70236,3027507143LL<<20),
3319  -reale(89750,2730116057LL<<19),reale(59647,532152523LL<<22),
3320  reale(10736,8218389321LL<<19),-reale(61423,3588044783LL<<20),
3321  reale(52845,5572842763LL<<19),-reale(15060,1433211893LL<<21),
3322  -reale(4428,664807251LL<<19),real(0x7ac3d0f14dbLL<<20),
3323  real(0xe0ec3bda56fLL<<19),-real(0x3854598234228000LL),
3324  reale(21654468,0x9b0737e6b33fdLL),
3325  // C4[9], coeff of eps^12, polynomial in n of order 14
3326  -real(2301546703LL<<23),real(147057720589LL<<22),
3327  -real(359161692259LL<<24),reale(7105,778398699LL<<22),
3328  -reale(23999,359671965LL<<23),reale(54661,162239065LL<<22),
3329  -reale(84322,1670081LL<<25),reale(82245,254480119LL<<22),
3330  -reale(34604,180181675LL<<23),-reale(26937,29999003LL<<22),
3331  reale(54122,167282399LL<<24),-reale(38795,392755901LL<<22),
3332  reale(13349,275194759LL<<23),-real(0x161047343cfLL<<22),
3333  -real(0xd052410afde0000LL),reale(21654468,0x9b0737e6b33fdLL),
3334  // C4[9], coeff of eps^11, polynomial in n of order 15
3335  -real(33392709LL<<19),-real(215980657LL<<20),-real(15729792143LL<<19),
3336  real(133575397083LL<<21),-real(0x5183d845f39LL<<19),
3337  reale(3762,3694580381LL<<20),-reale(14049,8382023811LL<<19),
3338  reale(36325,545288329LL<<22),-reale(66629,6532309165LL<<19),
3339  reale(85703,4252949035LL<<20),-reale(71810,6020466679LL<<19),
3340  reale(27704,1818174537LL<<21),reale(15098,409579871LL<<19),
3341  -reale(29448,934474951LL<<20),reale(18689,3410848533LL<<19),
3342  -reale(4754,0x309583fd38000LL),reale(21654468,0x9b0737e6b33fdLL),
3343  // C4[9], coeff of eps^10, polynomial in n of order 16
3344  -real(893LL<<25),-real(92625LL<<21),-real(399779LL<<22),
3345  -real(10904803LL<<21),-real(105333207LL<<23),real(15302554267LL<<21),
3346  -real(86594321625LL<<22),real(0xfe4052cb09LL<<21),
3347  -reale(2108,118544893LL<<24),reale(6191,505418439LL<<21),
3348  -reale(13344,231933903LL<<22),reale(21384,2064906293LL<<21),
3349  -reale(25319,426528669LL<<23),reale(21525,1826875827LL<<21),
3350  -reale(12380,255070469LL<<22),reale(4285,1002542497LL<<21),
3351  -real(0x29d9aac7ec250000LL),reale(7218156,0x33ad12a23bbffLL),
3352  // C4[9], coeff of eps^9, polynomial in n of order 17
3353  -real(969<<19),-real(285LL<<23),-real(25175LL<<19),-real(85595LL<<20),
3354  -real(1557829LL<<19),-real(5632151LL<<21),-real(929304915LL<<19),
3355  real(18163686975LL<<20),-real(446826699585LL<<19),
3356  real(387249806307LL<<22),-real(0xd080dd307cfLL<<19),
3357  reale(5560,386556505LL<<20),-reale(13900,1932782525LL<<19),
3358  reale(26517,756597539LL<<21),-reale(38450,1381788619LL<<19),
3359  reale(40711,4015921907LL<<20),-reale(26784,1441242297LL<<19),
3360  reale(7700,0x72bfb1ba98000LL),reale(21654468,0x9b0737e6b33fdLL),
3361  // C4[10], coeff of eps^26, polynomial in n of order 0
3362  -real(5057<<18),real(0x10edb70f760db7LL),
3363  // C4[10], coeff of eps^25, polynomial in n of order 1
3364  -real(4901LL<<25),real(14157LL<<21),real(0x4082f7e0f93b2fLL),
3365  // C4[10], coeff of eps^24, polynomial in n of order 2
3366  -real(8688787LL<<25),-real(2064227LL<<24),-real(9250461LL<<21),
3367  reale(7108,0x5f112546294adLL),
3368  // C4[10], coeff of eps^23, polynomial in n of order 3
3369  real(363248763LL<<25),real(3123548769LL<<26),-real(5801671447LL<<25),
3370  real(14176223919LL<<21),reale(3419126,0x9f3708d39590dLL),
3371  // C4[10], coeff of eps^22, polynomial in n of order 4
3372  -real(490568702783LL<<22),real(0x422ec2346b3LL<<20),
3373  -real(446296001151LL<<21),-real(174052882927LL<<20),
3374  -real(0xed1818f25bLL<<17),reale(23933886,0x5a813dc916f5bLL),
3375  // C4[10], coeff of eps^21, polynomial in n of order 5
3376  -reale(2585,173491781LL<<22),real(226504425479LL<<24),
3377  real(118144668093LL<<22),real(325346294119LL<<23),
3378  -real(464280225409LL<<22),real(919092918513LL<<18),
3379  reale(23933886,0x5a813dc916f5bLL),
3380  // C4[10], coeff of eps^20, polynomial in n of order 6
3381  -reale(2656,138725573LL<<22),-real(0x1a9c614c5c3LL<<21),
3382  -real(765139808215LL<<23),real(0x32058af918bLL<<21),
3383  -real(117685929879LL<<22),-real(106680176295LL<<21),
3384  -real(0xf144800341LL<<18),reale(23933886,0x5a813dc916f5bLL),
3385  // C4[10], coeff of eps^19, polynomial in n of order 7
3386  reale(3432,329072245LL<<22),reale(2930,283183745LL<<23),
3387  -reale(4577,1044295185LL<<22),real(34786730571LL<<24),
3388  real(54685893801LL<<22),real(647412775723LL<<23),
3389  -real(676279973341LL<<22),real(0xe9c610e7bdLL<<18),
3390  reale(23933886,0x5a813dc916f5bLL),
3391  // C4[10], coeff of eps^18, polynomial in n of order 8
3392  -reale(11084,235058537LL<<23),reale(11858,1143524977LL<<20),
3393  real(0x2545fd77485LL<<21),-real(0x307c82cee9dLL<<20),
3394  -reale(4103,193833065LL<<22),reale(2140,2163909077LL<<20),
3395  real(446041302231LL<<21),-real(54302113593LL<<20),
3396  -real(0x7f8004b3e7a0000LL),reale(23933886,0x5a813dc916f5bLL),
3397  // C4[10], coeff of eps^17, polynomial in n of order 9
3398  -reale(16525,309616105LL<<23),-reale(12873,31213113LL<<26),
3399  -real(811482588455LL<<23),reale(13789,37992821LL<<24),
3400  -reale(4637,221662373LL<<23),-real(274288421561LL<<25),
3401  -real(562238052579LL<<23),reale(2541,30117927LL<<24),
3402  -real(493061811809LL<<23),real(451991259993LL<<19),
3403  reale(23933886,0x5a813dc916f5bLL),
3404  // C4[10], coeff of eps^16, polynomial in n of order 10
3405  -reale(4541,277413243LL<<23),reale(9880,364937465LL<<22),
3406  -reale(5569,118974143LL<<25),-real(671603509225LL<<22),
3407  real(626562721155LL<<23),real(0x126f9949db5LL<<22),
3408  -real(372257463743LL<<24),real(225505748691LL<<22),
3409  real(72729834113LL<<23),real(40056084593LL<<22),
3410  -real(360891225041LL<<19),reale(3419126,0x9f3708d39590dLL),
3411  // C4[10], coeff of eps^15, polynomial in n of order 11
3412  reale(82722,490551845LL<<23),-reale(64701,63547469LL<<24),
3413  real(116234844999LL<<23),reale(58506,49315063LL<<26),
3414  -reale(58413,433206103LL<<23),reale(16792,103491845LL<<24),
3415  reale(8555,183955915LL<<23),-reale(2317,84066185LL<<25),
3416  -reale(7194,11825619LL<<23),reale(5493,119743831LL<<24),
3417  -real(667673139889LL<<23),real(58009080297LL<<19),
3418  reale(23933886,0x5a813dc916f5bLL),
3419  // C4[10], coeff of eps^14, polynomial in n of order 12
3420  reale(18981,396462873LL<<22),-reale(46078,2701457279LL<<20),
3421  reale(76015,1126083519LL<<21),-reale(79652,3524648005LL<<20),
3422  reale(36586,273717939LL<<23),reale(28474,1008822389LL<<20),
3423  -reale(61326,649857063LL<<21),reale(42595,3757087663LL<<20),
3424  -reale(8326,955589709LL<<22),-reale(5139,3984305559LL<<20),
3425  real(0x284545d9df3LL<<21),real(0x72b007891a3LL<<20),
3426  -real(0x33009c87a9620000LL),reale(23933886,0x5a813dc916f5bLL),
3427  // C4[10], coeff of eps^13, polynomial in n of order 13
3428  real(543312976219LL<<22),-reale(3062,112501267LL<<24),
3429  reale(11988,59347917LL<<22),-reale(32439,32307605LL<<23),
3430  reale(61980,821355519LL<<22),-reale(81948,80095793LL<<25),
3431  reale(67313,1055324017LL<<22),-reale(16748,109351667LL<<23),
3432  -reale(34832,1017554013LL<<22),reale(50577,16270159LL<<24),
3433  -reale(32450,61276651LL<<22),reale(10213,501613231LL<<23),
3434  -real(913358656441LL<<22),-real(0xcb30b375e9c0000LL),
3435  reale(23933886,0x5a813dc916f5bLL),
3436  // C4[10], coeff of eps^12, polynomial in n of order 14
3437  real(553451171LL<<22),-real(41782403663LL<<21),real(122732484303LL<<23),
3438  -real(0x2eaf28525b9LL<<21),reale(6402,476837273LL<<22),
3439  -reale(19347,183862947LL<<21),reale(42585,247358789LL<<24),
3440  -reale(68666,1206346765LL<<21),reale(79038,878189199LL<<22),
3441  -reale(58930,1207602423LL<<21),reale(17031,374958661LL<<23),
3442  reale(18189,4759455LL<<21),-reale(27348,414989947LL<<22),
3443  reale(16435,1788023477LL<<21),-reale(4106,0xe7ddb41f40000LL),
3444  reale(23933886,0x5a813dc916f5bLL),
3445  // C4[10], coeff of eps^11, polynomial in n of order 15
3446  real(259293LL<<22),real(1935549LL<<23),real(164593143LL<<22),
3447  -real(1654671183LL<<24),real(83533307473LL<<22),
3448  -real(296200453241LL<<23),reale(2600,89083243LL<<22),
3449  -reale(8792,113023813LL<<25),reale(22203,397075141LL<<22),
3450  -reale(42668,107392175LL<<23),reale(62615,179754463LL<<22),
3451  -reale(69317,125076421LL<<24),reale(56036,868613689LL<<22),
3452  -reale(31065,284420581LL<<23),reale(10475,628806483LL<<22),
3453  -real(0x6470cd13038c0000LL),reale(23933886,0x5a813dc916f5bLL),
3454  // C4[10], coeff of eps^10, polynomial in n of order 16
3455  real(133LL<<24),real(15675LL<<20),real(77539LL<<21),real(2448017LL<<20),
3456  real(27681423LL<<22),-real(4770431897LL<<20),real(32525672025LL<<21),
3457  -real(503497402947LL<<20),real(327672913029LL<<23),
3458  -reale(2314,857372269LL<<20),reale(6672,231933903LL<<21),
3459  -reale(14969,2031875351LL<<20),reale(26346,292729733LL<<22),
3460  -reale(36032,1727726401LL<<20),reale(36664,1180419909LL<<21),
3461  -reale(23570,290549227LL<<20),reale(6696,0xabcf39720000LL),
3462  reale(23933886,0x5a813dc916f5bLL),
3463  // C4[11], coeff of eps^26, polynomial in n of order 0
3464  real(611LL<<23),real(0xe6baee73ea363LL),
3465  // C4[11], coeff of eps^25, polynomial in n of order 1
3466  -real(76597LL<<26),-real(1573935LL<<21),real(0x477bca00497fe9bfLL),
3467  // C4[11], coeff of eps^24, polynomial in n of order 2
3468  real(5977365LL<<29),-real(9705069LL<<28),real(85309807LL<<22),
3469  reale(54497,0x83837319e73d9LL),
3470  // C4[11], coeff of eps^23, polynomial in n of order 3
3471  real(66340583679LL<<26),-real(4467880351LL<<27),-real(2404066379LL<<26),
3472  -real(68755156353LL<<21),reale(26213304,0x19fb43ab7aab9LL),
3473  // C4[11], coeff of eps^22, polynomial in n of order 4
3474  real(257415529LL<<33),real(402685503LL<<30),real(652792679LL<<32),
3475  -real(1631824579LL<<30),real(23005724469LL<<23),
3476  reale(26213304,0x19fb43ab7aab9LL),
3477  // C4[11], coeff of eps^21, polynomial in n of order 5
3478  -real(453253333179LL<<23),-real(222902987187LL<<25),
3479  real(749255628291LL<<23),-real(3378231395LL<<24),
3480  -real(18492933151LL<<23),-real(0xf79dae93c9LL<<18),
3481  reale(26213304,0x19fb43ab7aab9LL),
3482  // C4[11], coeff of eps^20, polynomial in n of order 6
3483  reale(4082,27256381LL<<26),-reale(3843,110832251LL<<25),
3484  -real(11608614857LL<<27),-real(12679113309LL<<25),
3485  real(80017732991LL<<26),-real(73865834735LL<<25),
3486  real(381345882225LL<<19),reale(26213304,0x19fb43ab7aab9LL),
3487  // C4[11], coeff of eps^19, polynomial in n of order 7
3488  reale(8515,117356323LL<<23),reale(2727,54002259LL<<24),
3489  real(95356337593LL<<23),-reale(4154,53817247LL<<25),
3490  real(882540340143LL<<23),real(80081392881LL<<24),real(12076046661LL<<23),
3491  -real(0x7d57ec14bd40000LL),reale(26213304,0x19fb43ab7aab9LL),
3492  // C4[11], coeff of eps^18, polynomial in n of order 8
3493  -reale(12505,951035LL<<32),-reale(6194,13758139LL<<28),
3494  reale(12920,711829LL<<30),-reale(2328,16199449LL<<28),
3495  -reale(2121,1768403LL<<31),-real(23812716991LL<<28),
3496  reale(2380,3848439LL<<30),-real(12910651229LL<<28),
3497  real(75285764519LL<<21),reale(26213304,0x19fb43ab7aab9LL),
3498  // C4[11], coeff of eps^17, polynomial in n of order 9
3499  reale(63004,136371221LL<<24),-reale(23253,27876759LL<<27),
3500  -reale(10033,153577157LL<<24),reale(4968,6981291LL<<25),
3501  reale(9826,264428161LL<<24),-reale(8260,44635479LL<<26),
3502  real(151361303079LL<<24),real(120235734969LL<<25),
3503  real(86414162541LL<<24),-real(0x22b971cd551LL<<19),
3504  reale(26213304,0x19fb43ab7aab9LL),
3505  // C4[11], coeff of eps^16, polynomial in n of order 10
3506  -reale(42751,388403LL<<27),-reale(21692,36263017LL<<26),
3507  reale(62310,8348465LL<<29),-reale(46929,14252519LL<<26),
3508  reale(7047,32285691LL<<27),reale(9444,49195723LL<<26),
3509  -real(6177911663LL<<28),-reale(7300,34477811LL<<26),
3510  reale(4777,27041001LL<<27),-real(65141092289LL<<26),
3511  -real(44359884933LL<<20),reale(26213304,0x19fb43ab7aab9LL),
3512  // C4[11], coeff of eps^15, polynomial in n of order 11
3513  -reale(54975,7679265LL<<24),reale(76586,39901517LL<<25),
3514  -reale(65943,41351227LL<<24),reale(16034,25331417LL<<27),
3515  reale(40019,7760011LL<<24),-reale(57816,89862917LL<<25),
3516  reale(33374,245812081LL<<24),-reale(3538,1406183LL<<26),
3517  -reale(5247,183755081LL<<24),real(95390660393LL<<25),
3518  real(490233600157LL<<24),-real(0x5c9b8397461LL<<19),
3519  reale(26213304,0x19fb43ab7aab9LL),
3520  // C4[11], coeff of eps^14, polynomial in n of order 12
3521  -reale(5607,843033LL<<31),reale(17587,15869457LL<<28),
3522  -reale(40024,1555693LL<<30),reale(66142,8872067LL<<28),
3523  -reale(76302,93659LL<<32),reale(52531,9300813LL<<28),
3524  -reale(2628,1860027LL<<30),-reale(39200,13058241LL<<28),
3525  reale(46365,693773LL<<31),-reale(27149,11145943LL<<28),
3526  reale(7864,1548807LL<<30),-real(7962030629LL<<28),
3527  -real(412888159761LL<<21),reale(26213304,0x19fb43ab7aab9LL),
3528  // C4[11], coeff of eps^13, polynomial in n of order 13
3529  -real(41790907379LL<<23),real(76324858599LL<<25),
3530  -reale(2753,104130613LL<<23),reale(9526,224954257LL<<24),
3531  -reale(24463,68256343LL<<23),reale(47309,29696781LL<<26),
3532  -reale(68504,135442201LL<<23),reale(71563,253449815LL<<24),
3533  -reale(47678,505267003LL<<23),reale(8918,86883405LL<<25),
3534  reale(19900,176522371LL<<23),-reale(25292,67707491LL<<24),
3535  reale(14565,326677345LL<<23),-reale(3589,0xb1b7cdcc40000LL),
3536  reale(26213304,0x19fb43ab7aab9LL),
3537  // C4[11], coeff of eps^12, polynomial in n of order 14
3538  -real(2670507LL<<26),real(235653561LL<<25),-real(820617391LL<<27),
3539  real(25869702111LL<<25),-real(68305888497LL<<26),
3540  reale(3896,38584213LL<<25),-reale(11280,10173573LL<<28),
3541  reale(25274,31321979LL<<25),-reale(44240,19038327LL<<26),
3542  reale(60354,128468529LL<<25),-reale(63152,8090597LL<<27),
3543  reale(48923,66496087LL<<25),-reale(26288,683965LL<<26),
3544  reale(8669,60420749LL<<25),-real(0xa3ae57ad353LL<<19),
3545  reale(26213304,0x19fb43ab7aab9LL),
3546  // C4[11], coeff of eps^11, polynomial in n of order 15
3547  -real(3933LL<<23),-real(33649LL<<24),-real(3312023LL<<23),
3548  real(38979963LL<<25),-real(2334466673LL<<23),real(9974539421LL<<24),
3549  -real(115419670443LL<<23),real(61272170729LL<<26),
3550  -reale(2977,381931269LL<<23),reale(7656,260966955LL<<24),
3551  -reale(15739,178079295LL<<23),reale(25923,81221929LL<<25),
3552  -reale(33768,486785817LL<<23),reale(33232,239529529LL<<24),
3553  -reale(20951,91935571LL<<23),reale(5892,8880483819LL<<18),
3554  reale(26213304,0x19fb43ab7aab9LL),
3555  // C4[12], coeff of eps^26, polynomial in n of order 0
3556  -real(1LL<<33),real(0x2f0618f20f09a7LL),
3557  // C4[12], coeff of eps^25, polynomial in n of order 1
3558  -real(62273LL<<28),real(123651LL<<24),real(0x19e65bbd524850fbLL),
3559  // C4[12], coeff of eps^24, polynomial in n of order 2
3560  -real(93684917LL<<28),-real(76423549LL<<27),-real(693037063LL<<24),
3561  reale(2191747,0xd5a68f81111b3LL),
3562  // C4[12], coeff of eps^23, polynomial in n of order 3
3563  real(311968535LL<<28),real(1760740793LL<<29),-real(1954369859LL<<28),
3564  real(3073971433LL<<24),reale(9497573,0xf32718849f75dLL),
3565  // C4[12], coeff of eps^22, polynomial in n of order 4
3566  -real(7646768769LL<<30),real(19951096269LL<<28),real(491010815LL<<29),
3567  -real(320366609LL<<28),-real(523396783LL<<29),
3568  reale(28492721,0xd975498dde617LL),
3569  // C4[12], coeff of eps^21, polynomial in n of order 5
3570  -reale(3026,1811699LL<<28),-real(2760169147LL<<30),
3571  -real(4156137093LL<<28),real(9751170709LL<<29),-real(8065022455LL<<28),
3572  real(9009785085LL<<24),reale(28492721,0xd975498dde617LL),
3573  // C4[12], coeff of eps^20, polynomial in n of order 6
3574  reale(3415,105419659LL<<25),real(300203870565LL<<24),
3575  -reale(4036,50457863LL<<26),real(324492084003LL<<24),
3576  real(46663751897LL<<25),real(14263553185LL<<24),
3577  -real(262021003825LL<<21),reale(28492721,0xd975498dde617LL),
3578  // C4[12], coeff of eps^19, polynomial in n of order 7
3579  -reale(9657,23913255LL<<26),reale(11274,14202393LL<<27),
3580  -real(33749559685LL<<26),-real(32700069373LL<<28),
3581  -real(114920432067LL<<26),reale(2209,3347763LL<<27),
3582  -real(43334519585LL<<26),real(23877094395LL<<22),
3583  reale(28492721,0xd975498dde617LL),
3584  // C4[12], coeff of eps^18, polynomial in n of order 8
3585  -reale(10357,4316059LL<<29),-reale(12252,51976653LL<<26),
3586  real(53111513007LL<<27),reale(10573,38618953LL<<26),
3587  -reale(6814,7336347LL<<28),-real(6527663009LL<<26),
3588  real(27052895205LL<<27),real(24601392501LL<<26),-real(17553357101LL<<26),
3589  reale(28492721,0xd975498dde617LL),
3590  // C4[12], coeff of eps^17, polynomial in n of order 9
3591  -reale(37197,16059447LL<<26),reale(60620,6214685LL<<29),
3592  -reale(35564,62593849LL<<26),real(3388754439LL<<27),
3593  reale(9080,41918565LL<<26),real(21802684253LL<<28),
3594  -reale(7184,50608669LL<<26),reale(4144,5922861LL<<27),
3595  -real(50938551167LL<<26),-real(22779400371LL<<22),
3596  reale(28492721,0xd975498dde617LL),
3597  // C4[12], coeff of eps^16, polynomial in n of order 10
3598  reale(72847,10250567LL<<26),-reale(50730,68954325LL<<25),
3599  -real(18441684165LL<<28),reale(46646,59050757LL<<25),
3600  -reale(52485,42154095LL<<26),reale(25457,83058719LL<<25),
3601  -real(7107757125LL<<27),-reale(5015,25213703LL<<25),
3602  real(15647388379LL<<26),real(240182800403LL<<25),
3603  -real(724544787239LL<<22),reale(28492721,0xd975498dde617LL),
3604  // C4[12], coeff of eps^15, polynomial in n of order 11
3605  reale(23399,60546659LL<<26),-reale(46215,22779895LL<<27),
3606  reale(67437,13577137LL<<26),-reale(68612,7311579LL<<29),
3607  reale(38802,65276767LL<<26),reale(8195,42655LL<<27),
3608  -reale(41126,40169811LL<<26),reale(42002,3198053LL<<28),
3609  -reale(22751,40888613LL<<26),reale(6086,3052981LL<<27),
3610  -real(14786628311LL<<26),-real(192226168043LL<<22),
3611  reale(28492721,0xd975498dde617LL),
3612  // C4[12], coeff of eps^14, polynomial in n of order 12
3613  real(18933494775LL<<28),-reale(4401,33536241LL<<26),
3614  reale(12915,15192945LL<<27),-reale(29094,11527179LL<<26),
3615  reale(50530,7111165LL<<29),-reale(66729,34095909LL<<26),
3616  reale(63904,14901367LL<<27),-reale(38025,42880575LL<<26),
3617  reale(2775,16493565LL<<28),reale(20705,54393511LL<<26),
3618  -reale(23355,27541123LL<<27),reale(12999,62947213LL<<26),
3619  -reale(3169,31971073LL<<26),reale(28492721,0xd975498dde617LL),
3620  // C4[12], coeff of eps^13, polynomial in n of order 13
3621  real(168754105LL<<26),-real(365884805LL<<28),real(8561579455LL<<26),
3622  -real(18298927075LL<<27),real(119493273445LL<<26),
3623  -reale(4555,4035095LL<<29),reale(9255,49236715LL<<26),
3624  -reale(14989,8672597LL<<27),reale(19228,2329233LL<<26),
3625  -reale(19175,5958615LL<<28),reale(14321,64798871LL<<26),
3626  -reale(7491,16431175LL<<27),reale(2423,48133949LL<<26),
3627  -real(387864634927LL<<22),reale(9497573,0xf32718849f75dLL),
3628  // C4[12], coeff of eps^12, polynomial in n of order 14
3629  real(198835LL<<25),-real(20309575LL<<24),real(82800575LL<<26),
3630  -real(3096741505LL<<24),real(9853268425LL<<25),-real(92620723195LL<<24),
3631  real(42100328725LL<<27),-reale(3631,95393589LL<<24),
3632  reale(8507,100242399LL<<25),-reale(16264,217481391LL<<24),
3633  reale(25338,57859733LL<<26),-reale(31673,155080937LL<<24),
3634  reale(30296,62498037LL<<25),-reale(18783,217084003LL<<24),
3635  reale(5237,1702548307LL<<21),reale(28492721,0xd975498dde617LL),
3636  // C4[13], coeff of eps^26, polynomial in n of order 0
3637  real(83LL<<25),real(0xb952c68e4fbe9LL),
3638  // C4[13], coeff of eps^25, polynomial in n of order 1
3639  -real(71903LL<<28),-real(1749945LL<<24),reale(5818,0x23b391cd899edLL),
3640  // C4[13], coeff of eps^24, polynomial in n of order 2
3641  real(16903565LL<<32),-real(16862357LL<<31),real(47373573LL<<26),
3642  reale(789029,0x386f296be7703LL),
3643  // C4[13], coeff of eps^23, polynomial in n of order 3
3644  real(16624462311LL<<28),real(913717761LL<<29),-real(74700691LL<<28),
3645  -real(16672249061LL<<24),reale(30772139,0x98ef4f7042175LL),
3646  // C4[13], coeff of eps^22, polynomial in n of order 4
3647  -real(876500127LL<<32),-real(1654287687LL<<30),real(2350551113LL<<31),
3648  -real(1761427069LL<<30),real(3376471371LL<<25),
3649  reale(30772139,0x98ef4f7042175LL),
3650  // C4[13], coeff of eps^21, polynomial in n of order 5
3651  real(32655563463LL<<28),-reale(3801,39657LL<<30),real(14063722833LL<<28),
3652  real(3085833575LL<<29),real(1328082427LL<<28),-real(31671991379LL<<24),
3653  reale(30772139,0x98ef4f7042175LL),
3654  // C4[13], coeff of eps^20, polynomial in n of order 6
3655  reale(9254,348341LL<<33),real(891770565LL<<32),-real(427379969LL<<34),
3656  -real(2022490653LL<<32),real(1067054247LL<<33),-real(569056495LL<<32),
3657  real(430257975LL<<27),reale(30772139,0x98ef4f7042175LL),
3658  // C4[13], coeff of eps^19, polynomial in n of order 7
3659  -reale(12155,12992869LL<<26),-real(50480950653LL<<27),
3660  reale(10690,33612001LL<<26),-reale(5460,12466223LL<<28),
3661  -real(37884419769LL<<26),real(23471963137LL<<27),real(26726056077LL<<26),
3662  -real(264030652949LL<<22),reale(30772139,0x98ef4f7042175LL),
3663  // C4[13], coeff of eps^18, polynomial in n of order 8
3664  reale(55507,1702051LL<<31),-reale(25284,15301089LL<<28),
3665  -reale(4552,6848911LL<<29),reale(8014,12209149LL<<28),
3666  reale(2646,1117571LL<<30),-reale(6924,9493077LL<<28),
3667  reale(3590,1368763LL<<29),-real(9963972599LL<<28),
3668  -real(15032559759LL<<23),reale(30772139,0x98ef4f7042175LL),
3669  // C4[13], coeff of eps^17, polynomial in n of order 9
3670  -reale(35540,37090525LL<<26),-reale(14632,1678969LL<<29),
3671  reale(49583,4861453LL<<26),-reale(46373,31739579LL<<27),
3672  reale(18858,13991831LL<<26),real(34153973959LL<<28),
3673  -reale(4603,63875327LL<<26),-real(5127820649LL<<27),
3674  real(116479282059LL<<26),-real(662201165171LL<<22),
3675  reale(30772139,0x98ef4f7042175LL),
3676  // C4[13], coeff of eps^16, polynomial in n of order 10
3677  -reale(50761,3025121LL<<30),reale(66355,4425085LL<<29),
3678  -reale(59858,324757LL<<32),reale(26575,1103635LL<<29),
3679  reale(16255,479225LL<<30),-reale(41402,7301831LL<<29),
3680  reale(37768,714123LL<<31),-reale(19110,4265457LL<<29),
3681  reale(4727,1747987LL<<30),-real(399638603LL<<29),
3682  -real(44359884933LL<<24),reale(30772139,0x98ef4f7042175LL),
3683  // C4[13], coeff of eps^15, polynomial in n of order 11
3684  -reale(6366,57157311LL<<26),reale(16360,10192555LL<<27),
3685  -reale(33060,46450725LL<<26),reale(52401,3371487LL<<29),
3686  -reale(63840,37321515LL<<26),reale(56445,29554125LL<<27),
3687  -reale(29837,31975057LL<<26),-real(31142569185LL<<28),
3688  reale(20917,29855465LL<<26),-reale(21569,9966225LL<<27),
3689  reale(11677,61095555LL<<26),-reale(2823,85634603LL<<22),
3690  reale(30772139,0x98ef4f7042175LL),
3691  // C4[13], coeff of eps^14, polynomial in n of order 12
3692  -real(583637535LL<<30),real(11022475035LL<<28),
3693  -reale(2387,6604529LL<<29),reale(6865,10202825LL<<28),
3694  -reale(15869,914837LL<<31),reale(29710,9184775LL<<28),
3695  -reale(45043,8145271LL<<29),reale(54812,7153333LL<<28),
3696  -reale(52441,1442741LL<<30),reale(37945,12833459LL<<28),
3697  -reale(19389,6190909LL<<29),reale(6169,7752673LL<<28),
3698  -real(487958734263LL<<23),reale(30772139,0x98ef4f7042175LL),
3699  // C4[13], coeff of eps^13, polynomial in n of order 13
3700  -real(23263695LL<<26),real(59053995LL<<28),-real(1639451385LL<<26),
3701  real(4222829325LL<<27),-real(33859413315LL<<26),real(13601644665LL<<29),
3702  -reale(4256,19212781LL<<26),reale(9227,30696251LL<<27),
3703  -reale(16594,3848759LL<<26),reale(24654,470841LL<<28),
3704  -reale(29745,41662305LL<<26),reale(27762,19442409LL<<27),
3705  -reale(16966,1393323LL<<26),reale(4695,1022390371LL<<22),
3706  reale(30772139,0x98ef4f7042175LL),
3707  // C4[14], coeff of eps^26, polynomial in n of order 0
3708  -real(6781LL<<26),real(0x5fa345ccc643905LL),
3709  // C4[14], coeff of eps^25, polynomial in n of order 1
3710  -real(5869LL<<31),real(7353LL<<27),real(0x148e6926290dbdd9LL),
3711  // C4[14], coeff of eps^24, polynomial in n of order 2
3712  real(299903009LL<<31),real(37927009LL<<30),-real(2056312073LL<<27),
3713  reale(33051557,0x58695552a5cd3LL),
3714  // C4[14], coeff of eps^23, polynomial in n of order 3
3715  -real(368055047LL<<31),real(374500339LL<<32),-real(256592557LL<<31),
3716  real(207940889LL<<27),reale(11017185,0xc8231c70e1ef1LL),
3717  // C4[14], coeff of eps^22, polynomial in n of order 4
3718  -reale(3490,1015519LL<<31),real(4441335459LL<<29),real(1543166497LL<<30),
3719  real(845740769LL<<29),-real(7622621279LL<<26),
3720  reale(33051557,0x58695552a5cd3LL),
3721  // C4[14], coeff of eps^21, polynomial in n of order 5
3722  real(1872610391LL<<32),-real(324912469LL<<34),-reale(2076,886527LL<<32),
3723  real(978081451LL<<33),-real(478972501LL<<32),real(98710857LL<<28),
3724  reale(33051557,0x58695552a5cd3LL),
3725  // C4[14], coeff of eps^20, polynomial in n of order 6
3726  -reale(4075,185993LL<<32),reale(10359,933297LL<<31),
3727  -reale(4245,239235LL<<33),-real(1849695177LL<<31),real(616423549LL<<32),
3728  real(879958205LL<<31),-real(3876332285LL<<28),
3729  reale(33051557,0x58695552a5cd3LL),
3730  // C4[14], coeff of eps^19, polynomial in n of order 7
3731  -reale(16507,1038671LL<<32),-reale(7426,284587LL<<33),
3732  reale(6609,461219LL<<32),reale(3685,34759LL<<34),
3733  -reale(6576,786795LL<<32),reale(3109,191175LL<<33),
3734  -real(486788729LL<<32),-real(537600147LL<<28),
3735  reale(33051557,0x58695552a5cd3LL),
3736  // C4[14], coeff of eps^18, polynomial in n of order 8
3737  -reale(24788,2034733LL<<30),reale(49876,16016773LL<<27),
3738  -reale(40130,10305415LL<<28),reale(13469,4482399LL<<27),
3739  reale(3498,5005267LL<<29),-reale(4111,23511239LL<<27),
3740  -real(7714983213LL<<28),real(56106110739LL<<27),
3741  -real(151831927709LL<<24),reale(33051557,0x58695552a5cd3LL),
3742  // C4[14], coeff of eps^17, polynomial in n of order 9
3743  reale(63443,3600701LL<<29),-reale(50757,496203LL<<32),
3744  reale(16003,4273171LL<<29),reale(22072,52127LL<<30),
3745  -reale(40595,5066263LL<<29),reale(33806,1004469LL<<31),
3746  -reale(16095,1666881LL<<29),reale(3680,908597LL<<30),
3747  real(584087189LL<<29),-real(20381568753LL<<25),
3748  reale(33051557,0x58695552a5cd3LL),
3749  // C4[14], coeff of eps^16, polynomial in n of order 10
3750  reale(19689,3969453LL<<29),-reale(36282,12968943LL<<28),
3751  reale(53123,80009LL<<31),-reale(60234,3770241LL<<28),
3752  reale(49410,2521755LL<<29),-reale(22943,4183315LL<<28),
3753  -reale(5331,2542455LL<<30),reale(20742,9731931LL<<28),
3754  -reale(19939,3671159LL<<29),reale(10552,6717897LL<<28),
3755  -reale(2533,118946129LL<<25),reale(33051557,0x58695552a5cd3LL),
3756  // C4[14], coeff of eps^15, polynomial in n of order 11
3757  real(8533174455LL<<29),-reale(3246,843591LL<<30),
3758  reale(8406,531117LL<<29),-reale(17842,647003LL<<32),
3759  reale(31156,7375267LL<<29),-reale(44630,771985LL<<30),
3760  reale(51879,2231193LL<<29),-reale(47870,1100123LL<<31),
3761  reale(33689,2160271LL<<29),-reale(16864,3290075LL<<30),
3762  reale(5288,925829LL<<29),-real(103506398177LL<<25),
3763  reale(33051557,0x58695552a5cd3LL),
3764  // C4[14], coeff of eps^14, polynomial in n of order 12
3765  real(66723345LL<<29),-real(1495097175LL<<27),real(3274386375LL<<28),
3766  -real(23122205325LL<<27),real(8392504155LL<<30),
3767  -reale(4840,16188355LL<<27),reale(9826,9115409LL<<28),
3768  -reale(16767,17260281LL<<27),reale(23911,7831387LL<<29),
3769  -reale(27976,32288815LL<<27),reale(25559,3357275LL<<28),
3770  -reale(15423,21986149LL<<27),reale(4241,135611051LL<<24),
3771  reale(33051557,0x58695552a5cd3LL),
3772  // C4[15], coeff of eps^26, polynomial in n of order 0
3773  real(71LL<<30),real(0x2213ecbbb96785dLL),
3774  // C4[15], coeff of eps^25, polynomial in n of order 1
3775  real(6799LL<<34),-real(2467695LL<<27),reale(43244,0xc47e8e0e2a501LL),
3776  // C4[15], coeff of eps^24, polynomial in n of order 2
3777  real(1754601LL<<37),-real(1107369LL<<36),real(11866753LL<<28),
3778  reale(1859525,0x141dc611b72bLL),
3779  // C4[15], coeff of eps^23, polynomial in n of order 3
3780  real(72562737LL<<34),real(46462031LL<<35),real(31074907LL<<34),
3781  -real(3658156407LL<<27),reale(35330975,0x17e35b3509831LL),
3782  // C4[15], coeff of eps^22, polynomial in n of order 4
3783  -real(13531387LL<<38),-reale(2167,14381LL<<36),real(55828981LL<<37),
3784  -real(25230703LL<<36),real(3197649LL<<30),
3785  reale(35330975,0x17e35b3509831LL),
3786  // C4[15], coeff of eps^21, polynomial in n of order 5
3787  reale(9732,8631LL<<37),-reale(3185,3623LL<<39),-real(35580543LL<<37),
3788  real(7839601LL<<38),real(14184443LL<<37),-real(3642815981LL<<28),
3789  reale(35330975,0x17e35b3509831LL),
3790  // C4[15], coeff of eps^20, polynomial in n of order 6
3791  -reale(8973,2493LL<<39),reale(5093,1677LL<<40),reale(4452,53LL<<40),
3792  -reale(6181,1625LL<<40),reale(2693,7137LL<<39),-real(1482145LL<<40),
3793  -real(287239701LL<<29),reale(35330975,0x17e35b3509831LL),
3794  // C4[15], coeff of eps^19, polynomial in n of order 7
3795  reale(48363,42681LL<<36),-reale(34138,1171LL<<37),
3796  reale(9135,63227LL<<36),reale(4396,12847LL<<38),-reale(3596,33667LL<<36),
3797  -real(22964529LL<<37),real(105092799LL<<36),-real(8732815777LL<<28),
3798  reale(35330975,0x17e35b3509831LL),
3799  // C4[15], coeff of eps^18, polynomial in n of order 8
3800  -reale(41806,3793LL<<39),reale(7070,18565LL<<36),
3801  reale(26107,27709LL<<37),-reale(39103,10113LL<<36),
3802  reale(30179,111LL<<38),-reale(13593,42919LL<<36),reale(2866,20031LL<<37),
3803  real(9747283LL<<36),-real(584087189LL<<30),
3804  reale(35330975,0x17e35b3509831LL),
3805  // C4[15], coeff of eps^17, polynomial in n of order 9
3806  -reale(38751,968439LL<<32),reale(52907,129341LL<<35),
3807  -reale(56213,262777LL<<32),reale(42911,476327LL<<33),
3808  -reale(17166,1038043LL<<32),-reale(7920,60547LL<<34),
3809  reale(20320,95267LL<<32),-reale(18461,171251LL<<33),
3810  reale(9586,798401LL<<32),-reale(2289,97706315LL<<25),
3811  reale(35330975,0x17e35b3509831LL),
3812  // C4[15], coeff of eps^16, polynomial in n of order 10
3813  -real(182681295LL<<35),reale(3304,139139LL<<34),-reale(6521,16667LL<<37),
3814  reale(10722,226797LL<<34),-reale(14618,113609LL<<35),
3815  reale(16325,9799LL<<34),-reale(14590,57403LL<<36),
3816  reale(10019,97137LL<<34),-reale(4925,40451LL<<35),real(399638603LL<<34),
3817  -real(14786628311LL<<26),reale(11776991,0xb2a11e67032bbLL),
3818  // C4[15], coeff of eps^15, polynomial in n of order 11
3819  -real(76608285LL<<32),real(147323625LL<<33),-real(936978255LL<<32),
3820  reale(2382,112581LL<<35),-reale(5377,114593LL<<32),
3821  reale(10315,142015LL<<33),-reale(16818,394707LL<<32),
3822  reale(23142,22533LL<<34),-reale(26356,277413LL<<32),
3823  reale(23629,395541LL<<33),-reale(14101,658135LL<<32),
3824  reale(3855,122649445LL<<25),reale(35330975,0x17e35b3509831LL),
3825  // C4[16], coeff of eps^26, polynomial in n of order 0
3826  -real(22951LL<<32),reale(14038,0xf79362a6f2da9LL),
3827  // C4[16], coeff of eps^25, polynomial in n of order 1
3828  -real(9017LL<<35),real(4815LL<<31),reale(9206,0xf354c01a236f3LL),
3829  // C4[16], coeff of eps^24, polynomial in n of order 2
3830  real(1146319LL<<36),real(916151LL<<35),-real(5763591LL<<32),
3831  reale(1979494,0x5c2d55f3c2615LL),
3832  // C4[16], coeff of eps^23, polynomial in n of order 3
3833  -real(15250071LL<<35),real(5353311LL<<36),-real(2240893LL<<35),
3834  -real(332469LL<<31),reale(1979494,0x5c2d55f3c2615LL),
3835  // C4[16], coeff of eps^22, polynomial in n of order 4
3836  -reale(2280,6539LL<<38),-real(78951693LL<<36),real(12301989LL<<37),
3837  real(28829297LL<<36),-real(214091115LL<<32),
3838  reale(37610392,0xd75d61176d38fLL),
3839  // C4[16], coeff of eps^21, polynomial in n of order 5
3840  reale(3604,40151LL<<35),reale(4989,25591LL<<37),-reale(5766,5439LL<<35),
3841  reale(2335,38023LL<<36),-real(36776117LL<<35),-real(73810821LL<<31),
3842  reale(37610392,0xd75d61176d38fLL),
3843  // C4[16], coeff of eps^20, polynomial in n of order 6
3844  -reale(28603,8635LL<<37),reale(5695,63155LL<<36),reale(4892,14039LL<<38),
3845  -reale(3091,58619LL<<36),-real(29081577LL<<37),real(100489431LL<<36),
3846  -real(125982325LL<<34),reale(37610392,0xd75d61176d38fLL),
3847  // C4[16], coeff of eps^19, polynomial in n of order 7
3848  -real(44186749LL<<35),reale(28752,63675LL<<36),-reale(37202,72039LL<<35),
3849  reale(26902,18169LL<<37),-reale(11512,105649LL<<35),
3850  reale(2229,59753LL<<36),real(26382181LL<<35),-real(267675387LL<<31),
3851  reale(37610392,0xd75d61176d38fLL),
3852  // C4[16], coeff of eps^18, polynomial in n of order 8
3853  reale(51956,3503LL<<39),-reale(52000,65291LL<<36),
3854  reale(36995,30461LL<<37),-reale(12343,54705LL<<36),
3855  -reale(9828,2065LL<<38),reale(19743,35337LL<<36),
3856  -reale(17124,20865LL<<37),reale(8752,19043LL<<36),
3857  -reale(2081,554945LL<<32),reale(37610392,0xd75d61176d38fLL),
3858  // C4[16], coeff of eps^17, polynomial in n of order 9
3859  reale(11351,15263LL<<35),-reale(21031,10301LL<<38),
3860  reale(32809,38737LL<<35),-reale(42826,1799LL<<36),
3861  reale(46156,123299LL<<35),-reale(40102,7421LL<<37),
3862  reale(26942,16853LL<<35),-reale(13031,12333LL<<36),
3863  reale(3987,20263LL<<35),-real(1198915809LL<<31),
3864  reale(37610392,0xd75d61176d38fLL),
3865  // C4[16], coeff of eps^16, polynomial in n of order 10
3866  real(100180065LL<<34),-real(583401555LL<<33),reale(2759,6541LL<<36),
3867  -reale(5863,45661LL<<33),reale(10706,132871LL<<34),
3868  -reale(16773,276519LL<<33),reale(22364,92173LL<<35),
3869  -reale(24871,48433LL<<33),reale(21929,91821LL<<34),
3870  -reale(12958,132347LL<<33),reale(3525,1706711LL<<30),
3871  reale(37610392,0xd75d61176d38fLL),
3872  // C4[17], coeff of eps^26, polynomial in n of order 0
3873  real(1LL<<32),real(0x62a61c3e4dd975LL),
3874  // C4[17], coeff of eps^25, polynomial in n of order 1
3875  real(4057LL<<35),-real(45015LL<<31),reale(8569,0x3d59f665e75a3LL),
3876  // C4[17], coeff of eps^24, polynomial in n of order 2
3877  real(43463LL<<40),-real(16895LL<<39),-real(11395LL<<34),
3878  reale(299923,0x634cafeea1549LL),
3879  // C4[17], coeff of eps^23, polynomial in n of order 3
3880  -real(1242717LL<<35),real(138325LL<<36),real(435713LL<<35),
3881  -real(3030063LL<<31),reale(299923,0x634cafeea1549LL),
3882  // C4[17], coeff of eps^22, polynomial in n of order 4
3883  real(2302621LL<<39),-real(9225219LL<<37),real(1747781LL<<38),
3884  -real(372113LL<<37),-real(1948863LL<<32),
3885  reale(2099463,0xb718cf86694ffLL),
3886  // C4[17], coeff of eps^21, polynomial in n of order 5
3887  reale(2996,69763LL<<35),reale(5105,30307LL<<37),-reale(2616,23051LL<<35),
3888  -real(67503821LL<<36),real(191814791LL<<35),-real(933454921LL<<31),
3889  reale(39889810,0x96d766f9d0eedLL),
3890  // C4[17], coeff of eps^20, polynomial in n of order 6
3891  reale(30327,1293LL<<39),-reale(35084,3299LL<<38),reale(23968,2311LL<<40),
3892  -reale(9776,7093LL<<38),real(14159215LL<<39),real(3853577LL<<38),
3893  -real(61360803LL<<33),reale(39889810,0x96d766f9d0eedLL),
3894  // C4[17], coeff of eps^19, polynomial in n of order 7
3895  -reale(47757,47889LL<<35),reale(31664,61447LL<<36),
3896  -reale(8326,73443LL<<35),-reale(11212,17667LL<<37),
3897  reale(19076,23915LL<<35),-reale(15916,62675LL<<36),
3898  reale(8026,42649LL<<35),-real(3989637911LL<<31),
3899  reale(39889810,0x96d766f9d0eedLL),
3900  // C4[17], coeff of eps^18, polynomial in n of order 8
3901  -reale(22252,923LL<<40),reale(33139,2449LL<<37),-reale(41618,6905LL<<38),
3902  reale(43458,30291LL<<37),-reale(36814,1531LL<<39),
3903  reale(24253,3845LL<<37),-reale(11561,2707LL<<38),reale(3500,30023LL<<37),
3904  -real(522604327LL<<32),reale(39889810,0x96d766f9d0eedLL),
3905  // C4[17], coeff of eps^17, polynomial in n of order 9
3906  -real(175857885LL<<35),reale(3123,8343LL<<38),-reale(6297,123891LL<<35),
3907  reale(11012,26677LL<<36),-reale(16654,74217LL<<35),
3908  reale(21593,16599LL<<37),-reale(23509,7807LL<<35),reale(20422,743LL<<36),
3909  -reale(11961,60789LL<<35),reale(3239,1180923LL<<31),
3910  reale(39889810,0x96d766f9d0eedLL),
3911  // C4[18], coeff of eps^26, polynomial in n of order 0
3912  -real(56087LL<<33),reale(47221,0xfaefc0318df67LL),
3913  // C4[18], coeff of eps^25, polynomial in n of order 1
3914  -real(19981LL<<39),-real(10755LL<<35),reale(443886,0x9d340e9e9cd95LL),
3915  // C4[18], coeff of eps^24, polynomial in n of order 2
3916  real(84155LL<<39),real(380011LL<<38),-real(1249051LL<<35),
3917  reale(2219433,0x12044919103e9LL),
3918  // C4[18], coeff of eps^23, polynomial in n of order 3
3919  -real(2130987LL<<39),real(379583LL<<40),-real(70649LL<<39),
3920  -real(240567LL<<35),reale(2219433,0x12044919103e9LL),
3921  // C4[18], coeff of eps^22, polynomial in n of order 4
3922  real(4417441LL<<38),-real(7513869LL<<36),-real(1960735LL<<37),
3923  real(4812241LL<<36),-real(11409363LL<<33),
3924  reale(2219433,0x12044919103e9LL),
3925  // C4[18], coeff of eps^21, polynomial in n of order 5
3926  -real(28350547LL<<38),real(4603793LL<<40),-real(7176677LL<<38),
3927  real(573937LL<<39),real(220745LL<<38),-real(1482145LL<<34),
3928  reale(2219433,0x12044919103e9LL),
3929  // C4[18], coeff of eps^20, polynomial in n of order 6
3930  reale(26896,5159LL<<38),-reale(4987,8879LL<<37),-reale(12193,6323LL<<39),
3931  reale(18360,26775LL<<37),-reale(14825,8691LL<<38),
3932  reale(7390,26973LL<<37),-real(457982805LL<<34),
3933  reale(42169228,0x56516cdc34a4bLL),
3934  // C4[18], coeff of eps^19, polynomial in n of order 7
3935  reale(11070,12259LL<<38),-reale(13431,6105LL<<39),
3936  reale(13633,4633LL<<38),-reale(11288,2771LL<<40),reale(7306,11663LL<<38),
3937  -reale(3437,4851LL<<39),real(16896453LL<<38),-real(38239341LL<<34),
3938  reale(14056409,0x721b244966e19LL),
3939  // C4[18], coeff of eps^18, polynomial in n of order 8
3940  reale(3471,5433LL<<39),-reale(6682,62369LL<<36),reale(11244,10859LL<<37),
3941  -reale(16478,49907LL<<36),reale(20837,10809LL<<38),
3942  -reale(22258,26821LL<<36),reale(19078,20857LL<<37),
3943  -reale(11086,15383LL<<36),reale(2990,191861LL<<33),
3944  reale(42169228,0x56516cdc34a4bLL),
3945  // C4[19], coeff of eps^26, polynomial in n of order 0
3946  -real(113LL<<37),reale(16591,0x81ae2ec54d8dfLL),
3947  // C4[19], coeff of eps^25, polynomial in n of order 1
3948  real(94099LL<<40),-real(1178305LL<<35),reale(2339402,0x6cefc2abb72d3LL),
3949  // C4[19], coeff of eps^24, polynomial in n of order 2
3950  real(41263LL<<43),-real(6583LL<<42),-real(117501LL<<36),
3951  reale(2339402,0x6cefc2abb72d3LL),
3952  // C4[19], coeff of eps^23, polynomial in n of order 3
3953  -real(384159LL<<40),-real(130977LL<<41),real(286571LL<<40),
3954  -real(2657049LL<<35),reale(2339402,0x6cefc2abb72d3LL),
3955  // C4[19], coeff of eps^22, polynomial in n of order 4
3956  real(64121LL<<46),-real(23919LL<<46),real(6837LL<<45),real(901LL<<46),
3957  -real(170289LL<<37),reale(2339402,0x6cefc2abb72d3LL),
3958  // C4[19], coeff of eps^21, polynomial in n of order 5
3959  -real(955747LL<<39),-real(1386619LL<<41),real(7599723LL<<39),
3960  -real(2983211LL<<40),real(2945369LL<<39),-real(22232175LL<<34),
3961  reale(2339402,0x6cefc2abb72d3LL),
3962  // C4[19], coeff of eps^20, polynomial in n of order 6
3963  -real(2096679LL<<42),real(4148625LL<<41),-real(841269LL<<43),
3964  real(2143479LL<<41),-real(498253LL<<42),real(296429LL<<41),
3965  -real(2667861LL<<35),reale(2339402,0x6cefc2abb72d3LL),
3966  // C4[19], coeff of eps^19, polynomial in n of order 7
3967  -real(3026933LL<<39),real(2460315LL<<40),-real(7010575LL<<39),
3968  real(2166905LL<<41),-real(9101001LL<<39),real(3853577LL<<40),
3969  -real(4446435LL<<39),real(38239341LL<<34),
3970  reale(2339402,0x6cefc2abb72d3LL),
3971  // C4[20], coeff of eps^26, polynomial in n of order 0
3972  -real(34781LL<<40),reale(2459371,0xc7db3c3e5e1bdLL),
3973  // C4[20], coeff of eps^25, polynomial in n of order 1
3974  -real(4771LL<<42),-real(28479LL<<38),reale(2459371,0xc7db3c3e5e1bdLL),
3975  // C4[20], coeff of eps^24, polynomial in n of order 2
3976  -real(68467LL<<42),real(136501LL<<41),-real(310209LL<<38),
3977  reale(2459371,0xc7db3c3e5e1bdLL),
3978  // C4[20], coeff of eps^23, polynomial in n of order 3
3979  -real(327189LL<<42),real(20533LL<<43),real(14681LL<<42),
3980  -real(78387LL<<38),reale(2459371,0xc7db3c3e5e1bdLL),
3981  // C4[20], coeff of eps^22, polynomial in n of order 4
3982  -real(179129LL<<44),real(910389LL<<42),-real(348793LL<<43),
3983  real(341479LL<<42),-real(321657LL<<40),reale(2459371,0xc7db3c3e5e1bdLL),
3984  // C4[20], coeff of eps^21, polynomial in n of order 5
3985  real(1952379LL<<42),-real(388557LL<<44),real(975677LL<<42),
3986  -real(224349LL<<43),real(132447LL<<42),-real(296429LL<<38),
3987  reale(2459371,0xc7db3c3e5e1bdLL),
3988  // C4[20], coeff of eps^20, polynomial in n of order 6
3989  real(1242423LL<<41),-real(3451175LL<<40),real(1045213LL<<42),
3990  -real(4322097LL<<40),real(1810109LL<<41),-real(2075003LL<<40),
3991  real(4446435LL<<37),reale(2459371,0xc7db3c3e5e1bdLL),
3992  // C4[21], coeff of eps^26, polynomial in n of order 0
3993  -real(199LL<<39),reale(37381,0xc16e795c129fbLL),
3994  // C4[21], coeff of eps^25, polynomial in n of order 1
3995  real(65027LL<<42),-real(290455LL<<38),reale(2579341,0x22c6b5d1050a7LL),
3996  // C4[21], coeff of eps^24, polynomial in n of order 2
3997  real(1883LL<<46),real(1837LL<<45),-real(18073LL<<40),
3998  reale(2579341,0x22c6b5d1050a7LL),
3999  // C4[21], coeff of eps^23, polynomial in n of order 3
4000  real(871509LL<<42),-real(326909LL<<43),real(317735LL<<42),
4001  -real(1195627LL<<38),reale(2579341,0x22c6b5d1050a7LL),
4002  // C4[21], coeff of eps^22, polynomial in n of order 4
4003  -real(29971LL<<46),real(74261LL<<44),-real(16907LL<<45),real(9911LL<<44),
4004  -real(44149LL<<39),reale(859780,0x60ece745ac58dLL),
4005  // C4[21], coeff of eps^21, polynomial in n of order 5
4006  -real(848003LL<<42),real(252109LL<<44),-real(1027829LL<<42),
4007  real(426173LL<<43),-real(485639LL<<42),real(2075003LL<<38),
4008  reale(2579341,0x22c6b5d1050a7LL),
4009  // C4[22], coeff of eps^26, polynomial in n of order 0
4010  -real(2963LL<<40),reale(117361,0x5360ca6881e97LL),
4011  // C4[22], coeff of eps^25, polynomial in n of order 1
4012  real(79LL<<45),-real(363LL<<41),reale(117361,0x5360ca6881e97LL),
4013  // C4[22], coeff of eps^24, polynomial in n of order 2
4014  -real(76751LL<<45),real(74129LL<<44),-real(139337LL<<41),
4015  reale(2699310,0x7db22f63abf91LL),
4016  // C4[22], coeff of eps^23, polynomial in n of order 3
4017  real(102051LL<<45),-real(23023LL<<46),real(13409LL<<45),
4018  -real(29733LL<<41),reale(2699310,0x7db22f63abf91LL),
4019  // C4[22], coeff of eps^22, polynomial in n of order 4
4020  real(121647LL<<45),-real(489555LL<<43),real(201135LL<<44),
4021  -real(227953LL<<43),real(485639LL<<40),reale(2699310,0x7db22f63abf91LL),
4022  // C4[23], coeff of eps^26, polynomial in n of order 0
4023  -real(1LL<<45),reale(5837,0x4b04b152e489LL),
4024  // C4[23], coeff of eps^25, polynomial in n of order 1
4025  real(377LL<<47),-real(5665LL<<41),reale(122577,0x627628bccbf3dLL),
4026  // C4[23], coeff of eps^24, polynomial in n of order 2
4027  -real(57LL<<50),real(33LL<<49),-real(583LL<<42),
4028  reale(122577,0x627628bccbf3dLL),
4029  // C4[23], coeff of eps^23, polynomial in n of order 3
4030  -real(1269LL<<47),real(517LL<<48),-real(583LL<<47),real(9911LL<<41),
4031  reale(122577,0x627628bccbf3dLL),
4032  // C4[24], coeff of eps^26, polynomial in n of order 0
4033  -real(83LL<<47),reale(127793,0x718b871115fe3LL),
4034  // C4[24], coeff of eps^25, polynomial in n of order 1
4035  real(5LL<<50),-real(11LL<<46),reale(42597,0xd083d7b05caa1LL),
4036  // C4[24], coeff of eps^24, polynomial in n of order 2
4037  real(245LL<<49),-real(275LL<<48),real(583LL<<45),
4038  reale(127793,0x718b871115fe3LL),
4039  // C4[25], coeff of eps^26, polynomial in n of order 0
4040  -real(1LL<<47),reale(8867,0x4cd786c27dde7LL),
4041  // C4[25], coeff of eps^25, polynomial in n of order 1
4042  -real(13LL<<50),real(55LL<<46),reale(26601,0xe6869447799b5LL),
4043  // C4[26], coeff of eps^26, polynomial in n of order 0
4044  real(1LL<<48),reale(2126,0x8c0e9e949456fLL),
4045  }; // count = 4032
4046 #elif GEOGRAPHICLIB_GEODESICEXACT_ORDER == 30
4047  static const real coeff[] = {
4048  // C4[0], coeff of eps^29, polynomial in n of order 0
4049  3361,real(109067695),
4050  // C4[0], coeff of eps^28, polynomial in n of order 1
4051  real(121722048),real(30168404),real(0x269c465a0c9LL),
4052  // C4[0], coeff of eps^27, polynomial in n of order 2
4053  real(21708121824LL),-real(10786479696LL),real(8048130587LL),
4054  real(0xbfa33c13e963LL),
4055  // C4[0], coeff of eps^26, polynomial in n of order 3
4056  real(0x738319564e0LL),-real(0x4c2475635c0LL),real(0x25d0be52da0LL),
4057  real(643173496654LL),real(0xa0f21774b90225LL),
4058  // C4[0], coeff of eps^25, polynomial in n of order 4
4059  real(0x7a99ea0a52f40LL),-real(0x5a5f53e2c3b50LL),real(0x3b83d2c0c8da0LL),
4060  -real(0x1d8a81cb5cc70LL),real(0x1605bd50459c1LL),
4061  real(0x6fb2ae4757107d03LL),
4062  // C4[0], coeff of eps^24, polynomial in n of order 5
4063  real(0x2507d929b7f89580LL),-real(0x1ce7bf02c3715a00LL),
4064  real(0x15463c23456c8680LL),-real(0xdfecff0050dfd00LL),
4065  real(0x6f141ba97196780LL),real(0x1b71ab9c78b8b48LL),
4066  reale(1520879,0x957266bcf90f9LL),
4067  // C4[0], coeff of eps^23, polynomial in n of order 6
4068  reale(5214,0xb54b8c26f5620LL),-reale(4202,0x4ae5f5bcbf950LL),
4069  reale(3272,0xab988a50dfac0LL),-reale(2404,0x84ae60c9e7b30LL),
4070  real(0x62be65b26227b760LL),-real(0x30f2645200be8b10LL),
4071  real(0x2472ebc3f09ad327LL),reale(9429453,0x6b5ee3606e93bLL),
4072  // C4[0], coeff of eps^22, polynomial in n of order 7
4073  reale(213221,0x21fe88963f0e0LL),-reale(174746,0x12fe03af82e40LL),
4074  reale(140344,0xd3dfad978d4a0LL),-reale(109009,0x13ee03d15f180LL),
4075  reale(79932,0x9fff01479b460LL),-reale(52447,0x53ea945b584c0LL),
4076  reale(25976,0xa5a6ee990f820LL),reale(6403,0x87dc4a069efc6LL),
4077  reale(273454149,0x29bfc1ec86bafLL),
4078  // C4[0], coeff of eps^21, polynomial in n of order 8
4079  reale(1513769,0x9572babb99080LL),-reale(1247902,0x66609b16e1250LL),
4080  reale(1017692,0x228016ac84e60LL),-reale(814136,0x86ec313455df0LL),
4081  reale(630421,0xa88f591713840LL),-reale(461205,0x487f023b60f90LL),
4082  reale(302134,0x36942691aea20LL),-reale(149503,0x5a1d9af94cb30LL),
4083  reale(111169,0xb14ab93d4ba6dLL),reale(1367270745,0xd0bec99ea1a6bLL),
4084  // C4[0], coeff of eps^20, polynomial in n of order 9
4085  reale(2196138,0xe1b60fe1808c0LL),-reale(1802572,0x3b4b1c2a34200LL),
4086  reale(1475191,0x47b8ccbe8340LL),-reale(1196055,0x2e2a401c46980LL),
4087  reale(952413,0x117e9e1fb75c0LL),-reale(734856,0x2e19f1e7be100LL),
4088  reale(536171,0x8daa599335040LL),-reale(350594,0xa58d466a3880LL),
4089  reale(173293,0x7b19cdc9682c0LL),reale(42591,0xb005bdeb82d74LL),
4090  reale(1367270745,0xd0bec99ea1a6bLL),
4091  // C4[0], coeff of eps^19, polynomial in n of order 10
4092  reale(9954363,0x5ecc5371ca720LL),-reale(8035921,0x7cc90565e0670LL),
4093  reale(6522783,0x32e1ec30d1a80LL),-reale(5291286,0x4172ef2beb090LL),
4094  reale(4260231,0x65c388ed45de0LL),-reale(3373847,0x4da61e8c704b0LL),
4095  reale(2592185,0xcd194d02dbd40LL),-reale(1885401,0xa08c9a20ef6d0LL),
4096  reale(1230164,0x4c527bc6a84a0LL),-reale(607279,0x24d6e51bd7af0LL),
4097  reale(450701,0xae98337b7d081LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4098  // C4[0], coeff of eps^18, polynomial in n of order 11
4099  reale(16160603,0x85a3ec5761ce0LL),-reale(12587219,0x97b7f7c505ac0LL),
4100  reale(9979192,0xa0e43863a93a0LL),-reale(7988280,0xcfaf566027f00LL),
4101  reale(6410314,0xbffc30c12660LL),-reale(5117692,0xfd9318db4c340LL),
4102  reale(4026292,0x94c482b815d20LL),-reale(3077917,0x9c480ad851f80LL),
4103  reale(2230377,0x99db799d8bfe0LL),-reale(1451530,0xb0005d9658bc0LL),
4104  reale(715485,0xdbe6a2ef6d6a0LL),reale(175141,0x3547b8669b9beLL),
4105  reale(4101812237LL,0x723c5cdbe4f41LL),
4106  // C4[0], coeff of eps^17, polynomial in n of order 12
4107  reale(30091817,0x8745c27487540LL),-reale(21716256,0x7a4bb1495e170LL),
4108  reale(16366670,0xd4e8bc19a0660LL),-reale(12670374,0x9eda0f5df2ed0LL),
4109  reale(9963727,0x5ae4f6d3c8380LL),-reale(7887824,0x191034733ae30LL),
4110  reale(6231873,0x96448488ef0a0LL),-reale(4863678,0x67c3c74b1b90LL),
4111  reale(3695513,0x2e7ae0f4851c0LL),-reale(2665992,0xe6864878c32f0LL),
4112  reale(1729741,0xf881cba41aae0LL),-reale(851104,0x888fd5b7ab050LL),
4113  reale(629987,0x9ea5a19626943LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4114  // C4[0], coeff of eps^16, polynomial in n of order 13
4115  reale(79181861,0x46beef62ca900LL),-reale(45969492,0x85a19d8425400LL),
4116  reale(30736937,0x10d9a95bb4f00LL),-reale(22084618,0xaf3a6659fa600LL),
4117  reale(16548053,0x58583f22e9500LL),-reale(12711232,0x3d7f1b1be3800LL),
4118  reale(9889259,0xbbf5d84b2bb00LL),-reale(7711253,0x36b17889dca00LL),
4119  reale(5958759,0x73d1ebe040100LL),-reale(4493987,0xfa374abbe1c00LL),
4120  reale(3224517,0x29027e04ea700LL),-reale(2084431,0x8d77e42beee00LL),
4121  reale(1023433,0xbf113370eed00LL),reale(249103,0x93cdbdabe0fb0LL),
4122  reale(4101812237LL,0x723c5cdbe4f41LL),
4123  // C4[0], coeff of eps^15, polynomial in n of order 14
4124  reale(100415733,0x1c7e0d98777e0LL),-reale(220472579,0x196c2a7ff77f0LL),
4125  reale(81497972,0xcf48e14d7b2c0LL),-reale(47157604,0xb4c79beff0c90LL),
4126  reale(31400333,0x3ade51fc905a0LL),-reale(22437640,0x62c8445afeb30LL),
4127  reale(16688020,0xb49b2cc64ec80LL),-reale(12687475,0x35a524f08d7d0LL),
4128  reale(9727302,0xc96eb1166e360LL),-reale(7422875,0x3574dc9ff9670LL),
4129  reale(5546536,0x3897621326640LL),-reale(3953280,0x7a61d237aeb10LL),
4130  reale(2544043,0x942757fc8f120LL),-reale(1245848,0x5f59e2e2499b0LL),
4131  reale(918672,0xb7e149f3f515dLL),reale(4101812237LL,0x723c5cdbe4f41LL),
4132  // C4[0], coeff of eps^14, polynomial in n of order 15
4133  -reale(410150575,0x33edeefdadd60LL),reale(389451478,0x4a8eb37cf8e40LL),
4134  reale(102537774,0xdf54e754057e0LL),-reale(228145792,0x9928ef6984980LL),
4135  reale(84014235,0x8c476a1354120LL),-reale(48417903,0x9486b64af140LL),
4136  reale(32072368,0xac5157de0d660LL),-reale(22757026,0x6fd3c1d71f100LL),
4137  reale(16760216,0x75de552320fa0LL),-reale(12564203,0xce657c7ead0c0LL),
4138  reale(9433140,0xee7b325fde4e0LL),-reale(6966096,0xc0a9d97231880LL),
4139  reale(4923714,0x7fe1a8c934e20LL),-reale(3150864,0xcacdc5bf45040LL),
4140  reale(1538058,0xc6e75548f4360LL),reale(371250,0x9b28ca926da22LL),
4141  reale(4101812237LL,0x723c5cdbe4f41LL),
4142  // C4[0], coeff of eps^13, polynomial in n of order 16
4143  reale(10071346,0xbead2787bab00LL),reale(77935892,0xc8037e807a610LL),
4144  -reale(424974584,0x95c58aa2abc60LL),reale(405632040,0xf37804095de30LL),
4145  reale(104709205,0x2c34dddf07040LL),-reale(236671973,0xc06ad427a5bb0LL),
4146  reale(86756233,0x36f6256b264e0LL),-reale(49748360,0xa42ca4c379390LL),
4147  reale(32735340,0x1aa6eba145580LL),-reale(23012513,0x41e6e60af5570LL),
4148  reale(16722020,0xa0e65eb557620LL),-reale(12285046,0x712c138942d50LL),
4149  reale(8933912,0x44131ea6cfac0LL),-reale(6247309,0xac4879043a730LL),
4150  reale(3969671,0x8774cc7c1760LL),-reale(1929932,0x2a739696c4f10LL),
4151  reale(1414943,0x9f9bcb791811fLL),reale(4101812237LL,0x723c5cdbe4f41LL),
4152  // C4[0], coeff of eps^12, polynomial in n of order 17
4153  reale(1301009,0x7885767b34dc0LL),reale(3139452,0x6299dbe8eac00LL),
4154  reale(10399899,0xe9c2f692aa40LL),reale(80694987,0xafcfc919b1e80LL),
4155  -reale(441529449,0x34f14f083e140LL),reale(423985433,0x2e9be95704100LL),
4156  reale(106892519,0x9a909730adb40LL),-reale(246219322,0x3cc21ecefbc80LL),
4157  reale(89751674,0x8e9ea1f760fc0LL),-reale(51139306,0x4d1fa35b2aa00LL),
4158  reale(33357165,0x391836578ec40LL),-reale(23152852,0x670df382e5780LL),
4159  reale(16502135,0xfb453b1baa0c0LL),-reale(11755175,0x732a395d89500LL),
4160  reale(8105218,0xa64658fb65d40LL),-reale(5103238,0xc9c658d3f3280LL),
4161  reale(2468214,0x7d6aacb2351c0LL),reale(588064,0xecbdce72e5104LL),
4162  reale(4101812237LL,0x723c5cdbe4f41LL),
4163  // C4[0], coeff of eps^11, polynomial in n of order 18
4164  reale(365173,0x141eb92882aa0LL),reale(660579,0x721db1cc80890LL),
4165  reale(1339643,0x6f3cff39e7d00LL),reale(3240370,0xc29100e665970LL),
4166  reale(10762711,0xac38fa6376f60LL),reale(83769430,0x6edf90fa38050LL),
4167  -reale(460180081,0xa7a2c15d05240LL),reale(445039582,0xb96af8d66e930LL),
4168  reale(109020126,0x840edc5d1e420LL),-reale(257005247,0x2ec795996fff0LL),
4169  reale(93028106,0x54adfb574be80LL),-reale(52565819,0x1d828e2b6cf10LL),
4170  reale(33879206,0x109475f98e8e0LL),-reale(23088279,0x158dbde3c1830LL),
4171  reale(15975944,0x7a6ca24c70f40LL),-reale(10806612,0x3c0d699b76f50LL),
4172  reale(6721635,0xd5a36326ddda0LL),-reale(3228909,0xe44dc20d06870LL),
4173  reale(2345355,0x81bdf10588059LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4174  // C4[0], coeff of eps^10, polynomial in n of order 19
4175  reale(142358,0x43f28ef2bce60LL),reale(224104,0xc49bf70fb8540LL),
4176  reale(374789,0x29edb81ed2220LL),reale(679606,0x56dce126b3a00LL),
4177  reale(1381751,0x3315a15e701e0LL),reale(3351469,0xe4cb186e3aec0LL),
4178  reale(11166107,0x295c18ed1d5a0LL),reale(87224183,0xbf27e3cc5cb80LL),
4179  -reale(481408924,0xf800e4fbbfaa0LL),reale(469519077,0x9e18ca33e7840LL),
4180  reale(110970854,0x606788cedf920LL),-reale(269315695,0x90dadb20d6300LL),
4181  reale(96606791,0x8c213171618e0LL),-reale(53972000,0xd509f5454de40LL),
4182  reale(34191407,0x9021dc5d4cca0LL),-reale(22654105,0x9f8b9187f1180LL),
4183  reale(14912791,0x946e9b2907c60LL),-reale(9121084,0x6067cd3f714c0LL),
4184  reale(4341360,0x73b562399020LL),reale(1011849,0x75de66a5bdb46LL),
4185  reale(4101812237LL,0x723c5cdbe4f41LL),
4186  // C4[0], coeff of eps^9, polynomial in n of order 20
4187  reale(66631,0x784cbdfb1b2c0LL),reale(96606,0x3419bb8e05f90LL),
4188  reale(145459,0xb79bffbfb42e0LL),reale(229589,0x824d22506cd30LL),
4189  reale(385010,0x35e34fd0f4f00LL),reale(700134,0x4df5413db48d0LL),
4190  reale(1427794,0x581b23c083b20LL),reale(3474469,0x224df4c0f7670LL),
4191  reale(11618119,0x6c8cba4306b40LL),reale(91144571,0x713d14f45fa10LL),
4192  -reale(505869523,0xd3d937aa3bca0LL),reale(498449385,0x686859af477b0LL),
4193  reale(112524504,0x2ca5b0e042780LL),-reale(283533725,0xba4eec11a6cb0LL),
4194  reale(100487121,0xc424152de7ba0LL),-reale(55236514,0x8c4dd4ee50f10LL),
4195  reale(34077723,0x322bbe9b9a3c0LL),-reale(21528502,0x2ca44d130cb70LL),
4196  reale(12851809,0x7f1d30d5603e0LL),-reale(6038295,0xecbfc0da7fdd0LL),
4197  reale(4313665,0xa0fbedf62e95bLL),reale(4101812237LL,0x723c5cdbe4f41LL),
4198  // C4[0], coeff of eps^8, polynomial in n of order 21
4199  reale(34939,0x4781a8598a880LL),reale(47986,0x870a153a0ba00LL),
4200  reale(67643,0xf93c5a3d5fb80LL),reale(98366,0xdef5527b5d100LL),
4201  reale(148567,0x565e4f7b51e80LL),reale(235242,0x766e64b79c800LL),
4202  reale(395796,0x5614c84bc3180LL),reale(722239,0xc9f1a6fcbf00LL),
4203  reale(1478257,0xd3352c2795480LL),reale(3611438,0xfdbc40cced600LL),
4204  reale(12129091,0x5ec9e3d72a780LL),reale(95645231,0xe79e249b02d00LL),
4205  -reale(534473300,0x6333290e9b580LL),reale(533336700,0xd7635e240e400LL),
4206  reale(113268651,0x31e09daaa5d80LL),-reale(300181610,0x6cd38634ee500LL),
4207  reale(104606327,0x6a6e0bd3d0080LL),-reale(56090968,0xcfc000b8f0e00LL),
4208  reale(33084425,0x428f85e945380LL),-reale(19025074,0x3fea5ea1f7700LL),
4209  reale(8768855,0x59c11511e7680LL),reale(1959911,0x57aea52b92dd8LL),
4210  reale(4101812237LL,0x723c5cdbe4f41LL),
4211  // C4[0], coeff of eps^7, polynomial in n of order 22
4212  reale(19712,0xac93bc6991f60LL),reale(26064,0x47e63bb6f7b10LL),
4213  reale(35129,0x85349dd791940LL),reale(48412,0xcf2b50a5e4170LL),
4214  reale(68486,0xf23457a2e7b20LL),reale(99959,0x1aee9379bdd0LL),
4215  reale(151547,0xc976e86422100LL),reale(240911,0x67a8290f88c30LL),
4216  reale(407002,0x79f859786e6e0LL),reale(745880,0xf6e3b80f24890LL),
4217  reale(1533569,0xcfffb4a9fa8c0LL),reale(3764807,0xab1a08cbd8ef0LL),
4218  reale(12712489,0x4098eb8542a0LL),reale(100884327,0x9a754746dfb50LL),
4219  -reale(568536969,0xbcc82f5b36f80LL),reale(576497219,0x10ca042b229b0LL),
4220  reale(112392819,0xaecaa4a6c6e60LL),-reale(319979712,0xfe05e4aae49f0LL),
4221  reale(108728942,0x9b1cd9ac3b840LL),-reale(55904982,0xfebe8a174c390LL),
4222  reale(30158727,0xd0df7149f4a20LL),-reale(13482566,0x2ca2af46da730LL),
4223  reale(9304222,0x6328f1d67a7f5LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4224  // C4[0], coeff of eps^6, polynomial in n of order 23
4225  reale(11639,0x4298ebe4bc020LL),reale(14966,0xe9089607c0a40LL),
4226  reale(19534,0x1996a62965260LL),reale(25928,0xdcaffa7bfcb80LL),
4227  reale(35089,0x59fa64f7d88a0LL),reale(48563,0x32ed377221cc0LL),
4228  reale(69004,0xe5c9403173ae0LL),reale(101181,0xf483b00105600LL),
4229  reale(154143,0xf39432e434120LL),reale(246274,0xfc90899a3cf40LL),
4230  reale(418255,0xdad9486cf7360LL),reale(770731,0xbf0321b55e080LL),
4231  reale(1593877,0xd61fe95ba9a0LL),reale(3937200,0x3820413b3e1c0LL),
4232  reale(13385919,0xf48ca237dbbe0LL),reale(107086956,0x9d1b10f932b00LL),
4233  -reale(610048075,0x6c1b2715a7de0LL),reale(631706048,0xcac1d46451440LL),
4234  reale(108187733,0xaf9fd1440d460LL),-reale(343908890,0x37b3c0b50a80LL),
4235  reale(112109635,0x3a73d439f8aa0LL),-reale(53028119,0x15d1799f5d940LL),
4236  reale(22454404,0x49a70d2177ce0LL),reale(4553016,0x22f700960daaaLL),
4237  reale(4101812237LL,0x723c5cdbe4f41LL),
4238  // C4[0], coeff of eps^5, polynomial in n of order 24
4239  reale(7030,0x634f92bbfec80LL),reale(8852,0x183ea9c784b10LL),
4240  reale(11280,0x864427e0ea420LL),reale(14569,0x4ed71f4155e30LL),
4241  reale(19103,0x13b2c1ad2ffc0LL),reale(25480,0x35983eb20bf50LL),
4242  reale(34659,0x18ad59c5f9360LL),reale(48227,0x95f2c0574270LL),
4243  reale(68917,0x8c5b3ac32f300LL),reale(101660,0x272f49f96bb90LL),
4244  reale(155850,0xbc628b339b2a0LL),reale(250657,0x122490d07feb0LL),
4245  reale(428675,0x21f5a97506640LL),reale(795748,0x8d9dd2ee8dfd0LL),
4246  reale(1658420,0x22b44d2c5a1e0LL),reale(4130702,0x814b60cb632f0LL),
4247  reale(14171990,0xb8691b29bf980LL),reale(114585240,0x7599d8275cc10LL),
4248  -reale(662180135,0x55c1167b3fee0LL),reale(705602404,0xf6219ee07f30LL),
4249  reale(96655880,0xe42cfbbc64cc0LL),-reale(373149978,0xd8d5a94d3dfb0LL),
4250  reale(112272021,0x704341a757060LL),-reale(42251989,0xbf5a94cca7c90LL),
4251  reale(26498553,0xea37274059c77LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4252  // C4[0], coeff of eps^4, polynomial in n of order 25
4253  reale(4244,0x3972351df5940LL),reale(5257,0xaa8f87b5d5600LL),
4254  reale(6578,0xed6cb3b3fa2c0LL),reale(8324,0xb4008d853180LL),
4255  reale(10662,0x703b07259b440LL),reale(13846,0x8f2f6ca125d00LL),
4256  reale(18261,0x3a455b4269dc0LL),reale(24508,0x5045fb81ae880LL),
4257  reale(33557,0x1b3e945f36f40LL),reale(47022,0x9499ec44e400LL),
4258  reale(67699,0x7a940285938c0LL),reale(100662,0x403646e1e5f80LL),
4259  reale(155637,0xf20897fb50a40LL),reale(252593,0x7106d86756b00LL),
4260  reale(436178,0xe720d891ff3c0LL),reale(818051,0x1d79595b01680LL),
4261  reale(1723706,0xc365c92e70540LL),reale(4344105,0xb055b91247200LL),
4262  reale(15096896,0xe96c54f834ec0LL),reale(123888911,0x435c586708d80LL),
4263  -reale(730395130,0x8d07d85ee1fc0LL),reale(811137162,0xd7ccf03d27900LL),
4264  reale(66848989,0xdd39a234bc9c0LL),-reale(407950245,0xd67367b7fbb80LL),
4265  reale(99073631,0x21cb91dfe1b40LL),reale(14205410,0x589c3f44ce7acLL),
4266  reale(4101812237LL,0x723c5cdbe4f41LL),
4267  // C4[0], coeff of eps^3, polynomial in n of order 26
4268  reale(2481,0x8d2c27b46b620LL),reale(3034,0xe44720f3fdf90LL),
4269  reale(3743,0xf82fc54a92780LL),reale(4662,0xb922ac44f6b70LL),
4270  reale(5867,0xae02c805f08e0LL),reale(7469,0x40a687e9b4d50LL),
4271  reale(9629,0xbb2099bca6640LL),reale(12592,0xa0727e14e5130LL),
4272  reale(16731,0xdc4cfea134ba0LL),reale(22636,0xbf84f9dc44310LL),
4273  reale(31263,0xfe99294d5c500LL),reale(44220,0x78f2e666feef0LL),
4274  reale(64313,0xe77c1f84fde60LL),reale(96684,0x43c9282e120d0LL),
4275  reale(151281,0x84eb0984fa3c0LL),reale(248729,0xa2c4a502aa4b0LL),
4276  reale(435615,0xd80deb212120LL),reale(829647,0x194fc60e84690LL),
4277  reale(1777619,0x17dfea7bc6280LL),reale(4562307,0x417bb8824d270LL),
4278  reale(16175470,0xd3a7db47373e0LL),reale(135804489,0xbb999e2601450LL),
4279  -reale(825156505,0xa8162cc9f9ec0LL),reale(977623624,0xd8c5ee7f4d830LL),
4280  -reale(20397512,0x4ab8f862cc960LL),-reale(435632583,0xf2b7943e115f0LL),
4281  reale(143237887,0xa8277df5ccab1LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4282  // C4[0], coeff of eps^2, polynomial in n of order 27
4283  real(0x52cac993243497e0LL),real(0x6437dfaee57b9d40LL),
4284  real(0x7a3f9cad4d2f48a0LL),reale(2405,0xee01eec3f2b00LL),
4285  reale(2986,0x65a22988df560LL),reale(3743,0xe8ba104bd58c0LL),
4286  reale(4745,0x82561551e620LL),reale(6086,0xa7581d3ddee80LL),
4287  reale(7912,0x8561dfdd262e0LL),reale(10440,0x7aa2aab74b440LL),
4288  reale(14008,0x9b1a2c148b3a0LL),reale(19155,0xcd3b8407d7200LL),
4289  reale(26767,0x9792b4f9c2060LL),reale(38350,0xb50c17257efc0LL),
4290  reale(56574,0xaf828f4edf120LL),reale(86399,0xb1bc40483f580LL),
4291  reale(137581,0x7d29442656de0LL),reale(230687,0xc9059cc5d4b40LL),
4292  reale(413025,0xcba5d91bbdea0LL),reale(806439,0xbad85d457b900LL),
4293  reale(1777226,0xdb254a1088b60LL),reale(4709200,0x187f6563b06c0LL),
4294  reale(17312174,0x4c53d944cbc20LL),reale(151524377,0x682a2ddefc80LL),
4295  -reale(970338799,0x73aba5c04720LL),reale(1287957204,0xb756685e76240LL),
4296  -reale(416692036,0xd1e73fe253660LL),-reale(78129756,0xe75b5bfa6fa32LL),
4297  reale(4101812237LL,0x723c5cdbe4f41LL),
4298  // C4[0], coeff of eps^1, polynomial in n of order 28
4299  real(0xb4c355cd41c92c0LL),real(0xd8fea3a41cc7830LL),
4300  real(0x1064f0c6b9a6ad20LL),real(0x13f7a88902ef1b10LL),
4301  real(0x1884a414973fcb80LL),real(0x1e5fa2ae5243d7f0LL),
4302  real(0x25fe0bb384ddd9e0LL),real(0x3006f6e3e0e25ad0LL),
4303  real(0x3d6c2c13c34ec440LL),real(0x4f91f34825bd4fb0LL),
4304  real(0x688ffb74f98676a0LL),reale(2233,0xdec33bb086290LL),
4305  reale(3036,0xe53843c2cdd00LL),reale(4213,0xb13e1137e3f70LL),
4306  reale(5984,0xaa1cca8abe360LL),reale(8732,0xb9880d6c69250LL),
4307  reale(13152,0x1eadcfcfd75c0LL),reale(20566,0x4e1752c3c0730LL),
4308  reale(33653,0xf4262a5798020LL),reale(58247,0x3a420e3524a10LL),
4309  reale(108257,0x7934f39e3ee80LL),reale(221025,0xaccc1c0dc06f0LL),
4310  reale(514222,0xffbb852faace0LL),reale(1456965,0x29e8a4070e9d0LL),
4311  reale(5827860,0xa7a2901c3a740LL),reale(56821641,0x6270fd1339eb0LL),
4312  -reale(416692036,0xd1e73fe253660LL),reale(625038055,0x3adadfd37d190LL),
4313  -reale(273454149,0x29bfc1ec86bafLL),reale(1367270745,0xd0bec99ea1a6bLL),
4314  // C4[0], coeff of eps^0, polynomial in n of order 29
4315  reale(42171,0xbca3d5a569b4LL),reale(46862,0xd0a41cdef9cf0LL),
4316  reale(52277,0xa2d5316ac1b2cLL),reale(58560,0x6f94d669a7a28LL),
4317  reale(65892,0x788629d238da4LL),reale(74502,0x6b99bdf690d60LL),
4318  reale(84681,0x87b277eadbb1cLL),reale(96804,0x8c76c6701c898LL),
4319  reale(111359,0x1427f62cd3d94LL),reale(128987,0x59921e2221dd0LL),
4320  reale(150546,0xaa0136eb20f0cLL),reale(177198,0x7742592373f08LL),
4321  reale(210542,0x4360b9bd64984LL),reale(252821,0x8a8c09196de40LL),
4322  reale(307248,0x66986780ae6fcLL),reale(378530,0x79d0ac77ed78LL),
4323  reale(473750,0x5114d83948174LL),reale(603901,0x80acdb5cb5eb0LL),
4324  reale(786661,0x2afc1dbf812ecLL),reale(1051686,0xda8ab314e3e8LL),
4325  reale(1451326,0xc0ede2017b564LL),reale(2083956,0x5d3b51a63af20LL),
4326  reale(3149615,0xde5c8fc3f62dcLL),reale(5099378,0x12ae3e18b3258LL),
4327  reale(9106032,0x45ee012c1b554LL),reale(18940547,0x20d0545bbdf90LL),
4328  reale(52086504,0x9a3ce7fc4a6ccLL),reale(312519027,0x9d6d6fe9be8c8LL),
4329  -reale(1093816596,0xa6ff07b21aebcLL),
4330  reale(2734541491LL,0xa17d933d434d6LL),
4331  reale(4101812237LL,0x723c5cdbe4f41LL),
4332  // C4[1], coeff of eps^29, polynomial in n of order 0
4333  917561,real(273868982145LL),
4334  // C4[1], coeff of eps^28, polynomial in n of order 1
4335  -real(125915776),real(90505212),real(0x73d4d30e25bLL),
4336  // C4[1], coeff of eps^27, polynomial in n of order 2
4337  -real(0x2f7e4f2fca0LL),real(0x161b06db8f0LL),real(379339642199LL),
4338  real(0x145a25f15d59339LL),
4339  // C4[1], coeff of eps^26, polynomial in n of order 3
4340  -real(0x780f9f651c0LL),real(0x49cd6538080LL),-real(0x275396e6f40LL),
4341  real(0x1c1406225eaLL),real(0x1e2d6465e2b066fLL),
4342  // C4[1], coeff of eps^25, polynomial in n of order 4
4343  -real(0x226e68a74f6c2c0LL),real(0x178fbd94c6e4130LL),
4344  -real(0x10bafa7048ffb60LL),real(0x7b204e43552d10LL),
4345  real(0x1ebd785c76c649LL),reale(369943,0xaebaf6655156dLL),
4346  // C4[1], coeff of eps^24, polynomial in n of order 5
4347  -real(0x26adfa4c2bcf8500LL),real(0x1be7e116f09bc400LL),
4348  -real(0x1641521374362300LL),real(0xd7dd4a2b1831200LL),
4349  -real(0x7449d087ac65100LL),real(0x525502d56a2a1d8LL),
4350  reale(4562638,0xc0573436eb2ebLL),
4351  // C4[1], coeff of eps^23, polynomial in n of order 6
4352  -reale(27299,0x1e7fae46f2ae0LL),reale(20250,0xb050f61211530LL),
4353  -reale(17170,0x1ccacfb407b40LL),reale(11560,0x5557506ac7a50LL),
4354  -reale(8300,0x1ee1dfec0f3a0LL),reale(3760,0xc5da39149a170LL),
4355  real(0x3aaaad07e2dbe15fLL),reale(141441801,0x4a8f52a67aa75LL),
4356  // C4[1], coeff of eps^22, polynomial in n of order 7
4357  -reale(223720,0xada70de871dc0LL),reale(168212,0x95f7a36b8e780LL),
4358  -reale(147708,0x4639d71413140LL),reale(104570,0x398040c96dd00LL),
4359  -reale(84304,0x27ca2fe2f28c0LL),reale(50205,0xd862a9f308280LL),
4360  -reale(27426,0xbe7e08935dc40LL),reale(19210,0x9794de13dcf52LL),
4361  reale(820362447,0x7d3f45c59430dLL),
4362  // C4[1], coeff of eps^21, polynomial in n of order 8
4363  -reale(1591044,0x45108afb80980LL),reale(1200725,0xfaaefe8d2aff0LL),
4364  -reale(1074110,0x244b18cc1fd20LL),reale(779463,0x6e55e2794e4d0LL),
4365  -reale(667443,0x7f273db50d4c0LL),reale(440073,0xbd38cdf5ffbb0LL),
4366  -reale(320490,0xb0902bc064460LL),reale(142410,0x1eb038cc00090LL),
4367  reale(35531,0x5cce3f7afbb81LL),reale(4101812237LL,0x723c5cdbe4f41LL),
4368  // C4[1], coeff of eps^20, polynomial in n of order 9
4369  -reale(6932123,0xff59c6bb56f80LL),reale(5207764,0x9d4c81592dc00LL),
4370  -reale(4682178,0xdef9cf054a880LL),reale(3431350,0xdcd7f0ab97d00LL),
4371  -reale(3036244,0xeb9781cfe3980LL),reale(2097463,0x35c6f48ae00LL),
4372  -reale(1714507,0xab45478b85280LL),reale(997568,0xe75b4df283f00LL),
4373  -reale(555001,0x356f72a492380LL),reale(383325,0x3033ad4799914LL),
4374  reale(12305436712LL,0x56b51693aedc3LL),
4375  // C4[1], coeff of eps^19, polynomial in n of order 10
4376  -reale(10475274,0x80e3f984eb560LL),reale(7761418,0x6cb2d37d31d50LL),
4377  -reale(6912729,0x2574b8548f80LL),reale(5061056,0xbff13b9f8e7b0LL),
4378  -reale(4542234,0x9c8561f8559a0LL),reale(3202970,0x45874de1c0010LL),
4379  -reale(2776395,0x2331e9957c0LL),reale(1780809,0x24244086de270LL),
4380  -reale(1321308,0xb7d4404aacde0LL),reale(572110,0xf0d923e3d0ad0LL),
4381  reale(142666,0x15ad08c690505LL),reale(12305436712LL,0x56b51693aedc3LL),
4382  // C4[1], coeff of eps^18, polynomial in n of order 11
4383  -reale(16991539,0x3bfa3a952a5c0LL),reale(12232630,0xc216625651e80LL),
4384  -reale(10582386,0xca84c044c7740LL),reale(7659664,0x22fef68736200LL),
4385  -reale(6852368,0xbf4b993050cc0LL),reale(4854746,0x78ae9dfa88580LL),
4386  -reale(4332124,0x5850c11d91e40LL),reale(2896859,0x8330e6242d100LL),
4387  -reale(2410777,0x3c4e4b27563c0LL),reale(1359574,0x6f5bc7e308c80LL),
4388  -reale(775169,0xf705a84369540LL),reale(525423,0x9fd72933d2d3aLL),
4389  reale(12305436712LL,0x56b51693aedc3LL),
4390  // C4[1], coeff of eps^17, polynomial in n of order 12
4391  -reale(31605635,0x9b2a6245129c0LL),reale(21349095,0xec111ef51efd0LL),
4392  -reale(17343382,0xc6b59d854f620LL),reale(12224940,0xad54b9902f0LL),
4393  -reale(10665275,0xcb2c9d1586680LL),reale(7495419,0x2bbe593f97c10LL),
4394  -reale(6731026,0x5bd11498926e0LL),reale(4567553,0xbb95797dfef30LL),
4395  -reale(4019270,0xe17fb3dce340LL),reale(2483542,0x18261977df050LL),
4396  -reale(1889445,0x252a3b83f47a0LL),reale(789608,0x3727b34041370LL),
4397  reale(196748,0x5030b26b63d7fLL),reale(12305436712LL,0x56b51693aedc3LL),
4398  // C4[1], coeff of eps^16, polynomial in n of order 13
4399  -reale(83651327,0x7df35b769ce00LL),reale(46183264,0x6a662d0fec800LL),
4400  -reale(32523895,0xbf44a3e60200LL),reale(21575930,0xbd1dba7599c00LL),
4401  -reale(17706525,0xdbcb8c6749600LL),reale(12151631,0x7c587583d3000LL),
4402  -reale(10707728,0xa79806e6f4a00LL),reale(7245171,0x8aa6d7e27c400LL),
4403  -reale(6517082,0x9ff2c462fde00LL),reale(4168671,0x7a21919979800LL),
4404  -reale(3551918,0x26047c5101200LL),reale(1918361,0x786d4fd8aec00LL),
4405  -reale(1131511,0x7e7a26769a600LL),reale(747310,0xbb693903a2f10LL),
4406  reale(12305436712LL,0x56b51693aedc3LL),
4407  // C4[1], coeff of eps^15, polynomial in n of order 14
4408  -reale(63372442,0x2cb5338504ea0LL),reale(236021120,0xed659df2db350LL),
4409  -reale(86667901,0x5273be9be40LL),reale(47209611,0xc1161d91d1e30LL),
4410  -reale(33537857,0x3d1f3cdba35e0LL),reale(21739691,0xd5c3b2c9df710LL),
4411  -reale(18074666,0x2123c601d8980LL),reale(11984705,0x3d2e52a8729f0LL),
4412  -reale(10682808,0x1cfcfab158d20LL),reale(6875060,0xeec2e9924a2d0LL),
4413  -reale(6158904,0xf3892aedc14c0LL),reale(3612073,0x775a08e9d4db0LL),
4414  -reale(2844696,0x4fdad4b74f460LL),reale(1130419,0xe52285ff91690LL),
4415  reale(281319,0xf8ed6ce679421LL),reale(12305436712LL,0x56b51693aedc3LL),
4416  // C4[1], coeff of eps^14, polynomial in n of order 15
4417  reale(377918798,0xab0ca9f0672c0LL),-reale(418618018,0x8099eba53f80LL),
4418  -reale(60854873,0x3eafa33f453c0LL),reale(245263030,0xf5560cf897d00LL),
4419  -reale(90083330,0xb4182a1e90640LL),reale(48226005,0xa87e22e4ae980LL),
4420  -reale(34666917,0x2b03feac26cc0LL),reale(21804113,0xa9bac4593e00LL),
4421  -reale(18434597,0x75e58711b4f40LL),reale(11683388,0x18da60c9eb280LL),
4422  -reale(10544255,0x717858fde75c0LL),reale(6335167,0xce8110cc57f00LL),
4423  -reale(5568830,0x1a6ca9ba6a840LL),reale(2826076,0xf4ab3cac7db80LL),
4424  -reale(1750284,0x2ff80145eaec0LL),reale(1113751,0xd17a5fb748e66LL),
4425  reale(12305436712LL,0x56b51693aedc3LL),
4426  // C4[1], coeff of eps^13, polynomial in n of order 16
4427  -reale(7676111,0x5b2a6c5f6c100LL),-reale(64415807,0x4cf1fd08a9430LL),
4428  reale(389009273,0x614b445047d20LL),-reale(437396877,0xd309fa5941090LL),
4429  -reale(57368388,0x6af986a1a0c0LL),reale(255600151,0x61702d3245910LL),
4430  -reale(94005962,0x2924b0b2256a0LL),reale(49188288,0xa4967a4d0acb0LL),
4431  -reale(35935634,0xccf0586b2e080LL),reale(21713831,0x3869a07cfee50LL),
4432  -reale(18759173,0xcf3c8197a7a60LL),reale(11187408,0x277eed08021f0LL),
4433  -reale(10209411,0xbc33094486040LL),reale(5549613,0x5f33e35304b90LL),
4434  -reale(4590963,0x90f6e6e49ce20LL),reale(1692490,0x5de933ef26f30LL),
4435  reale(420297,0x50d0b3d8c1d9bLL),reale(12305436712LL,0x56b51693aedc3LL),
4436  // C4[1], coeff of eps^12, polynomial in n of order 17
4437  -reale(852919,0x6a82cfa963080LL),-reale(2188759,0x20ca5d762f800LL),
4438  -reale(7786929,0x3421dcca91f80LL),-reale(65787035,0x1d560be049100LL),
4439  reale(401061675,0x8c48395cfc980LL),-reale(458713135,0x22175c326fa00LL),
4440  -reale(52544362,0x54a9b8a28c580LL),reale(267237346,0x9f71e62ba7d00LL),
4441  -reale(98592445,0x567d144d01c80LL),reale(50019657,0x7efcd81e48400LL),
4442  -reale(37374118,0xabf7952238b80LL),reale(21383288,0xfc61768bbcb00LL),
4443  -reale(18992011,0x5234632e06280LL),reale(10406178,0xe1fef86250200LL),
4444  -reale(9523344,0xe57e66503f180LL),reale(4398013,0x8a16c0de4d900LL),
4445  -reale(2932033,0xa738784cb8880LL),reale(1764194,0xc6396b58af30cLL),
4446  reale(12305436712LL,0x56b51693aedc3LL),
4447  // C4[1], coeff of eps^11, polynomial in n of order 18
4448  -reale(210362,0x76b369d3025e0LL),-reale(399459,0x1eaf9acef0ab0LL),
4449  -reale(856141,0xe229f972ba700LL),-reale(2206922,0xef935c87bb50LL),
4450  -reale(7896496,0x6b0bc697c0820LL),-reale(67217074,0x2cc6331df1df0LL),
4451  reale(414202467,0x2b5605d0252c0LL),-reale(483149583,0xa02db175d690LL),
4452  -reale(45836711,0xc18042256fa60LL),reale(280420397,0xa9af8baa076d0LL),
4453  -reale(104078404,0x7a91f5b525380LL),reale(50585814,0x9d940e3bb2630LL),
4454  -reale(39015494,0x6a69555b81ca0LL),reale(20678727,0x5f0f1f3a9390LL),
4455  -reale(19012332,0x416957968b9c0LL),reale(9200947,0xc21b589061af0LL),
4456  -reale(8178296,0xad1e8ab768ee0LL),reale(2676456,0xd6956da2a1850LL),
4457  reale(661843,0xede00571b821dLL),reale(12305436712LL,0x56b51693aedc3LL),
4458  // C4[1], coeff of eps^10, polynomial in n of order 19
4459  -reale(73282,0x88acf774cdcc0LL),-reale(119856,0xfafc4232d6980LL),
4460  -reale(209310,0xc95dad3d9d040LL),-reale(398728,0xc3246fdb30c00LL),
4461  -reale(857927,0x8ca89fdf097c0LL),-reale(2222415,0x7f22a8f79ee80LL),
4462  -reale(8002412,0xa401cae100b40LL),-reale(68698832,0xcf05dd2d1e900LL),
4463  reale(428572510,0x4af905b8fd40LL),-reale(511480829,0xaa7af93dad380LL),
4464  -reale(36412636,0xa51695c145640LL),reale(295430858,0x62539c3ab7a00LL),
4465  -reale(110834541,0xf7ac6a286ddc0LL),reale(50648730,0xf42d6a1912780LL),
4466  -reale(40882711,0xc825af61d7140LL),reale(19389515,0xc578a6be65d00LL),
4467  -reale(18548541,0x30b0433e6e8c0LL),reale(7353872,0xa4f0c77ab4280LL),
4468  -reale(5517208,0xc642445621c40LL),reale(3035548,0x619b33f1391d2LL),
4469  reale(12305436712LL,0x56b51693aedc3LL),
4470  // C4[1], coeff of eps^9, polynomial in n of order 20
4471  -reale(31116,0x5ced59f2a6a40LL),-reale(46466,0x39ef1648a3c30LL),
4472  -reale(72339,0x13bec712995a0LL),-reale(118591,0xe96704ee23c10LL),
4473  -reale(207681,0xf3272ddf69500LL),-reale(396975,0x5586a3fda15f0LL),
4474  -reale(857776,0x96a9e394d3460LL),-reale(2234014,0x9c760527155d0LL),
4475  -reale(8101033,0x1f3b77f93fc0LL),-reale(70217181,0xc7476a97287b0LL),
4476  reale(444320933,0x84d59896b7ce0LL),-reale(544755366,0x60ab42e093790LL),
4477  -reale(22958170,0x5fc77e584ca80LL),reale(312550991,0xea91e4bc80e90LL),
4478  -reale(119474190,0x655c7a979e1e0LL),reale(49778595,0x69cfb591beb0LL),
4479  -reale(42938053,0xad555dfab9540LL),reale(17185991,0x9567a8e814cd0LL),
4480  -reale(16947236,0xc941a0517b0a0LL),reale(4507394,0xb6bfddcb2cf0LL),
4481  reale(1103154,0xee71952935057LL),reale(12305436712LL,0x56b51693aedc3LL),
4482  // C4[1], coeff of eps^8, polynomial in n of order 21
4483  -reale(15013,0x669ca85dbff00LL),-reale(21081,0x7f4d799198400LL),
4484  -reale(30470,0xbdb587d74d900LL),-reale(45587,0xe4badb51b1a00LL),
4485  -reale(71124,0x646ea35b6300LL),-reale(116891,0x8adb62aa4d000LL),
4486  -reale(205315,0x1aa2ab2ec7d00LL),-reale(393884,0x4b8d8eda78600LL),
4487  -reale(855000,0x2faa553050700LL),-reale(2239966,0xb31164c141c00LL),
4488  -reale(8186764,0x97347e701e100LL),-reale(71742883,0x7f111739b7200LL),
4489  reale(461586973,0x9a516d5401500LL),-reale(584418823,0xe1245bd6e6800LL),
4490  -reale(3315305,0x14110f9c0500LL),reale(331936814,0x28269ca022200LL),
4491  -reale(131069117,0x7ee7ad0730f00LL),reale(47184778,0x227a729454c00LL),
4492  -reale(44897669,0x9cd1b2a1e900LL),reale(13574545,0xcd96a182a3600LL),
4493  -reale(12485695,0x45db16a057300LL),reale(5879734,0x70bef82b8988LL),
4494  reale(12305436712LL,0x56b51693aedc3LL),
4495  // C4[1], coeff of eps^7, polynomial in n of order 22
4496  -reale(7900,0x638c66d8a8320LL),-reale(10613,0xf2ac3092c9cb0LL),
4497  -reale(14565,0xe107ae27501c0LL),-reale(20489,0xead89ce414d0LL),
4498  -reale(29670,0x849ce08edf860LL),-reale(44482,0xeb1f022729ef0LL),
4499  -reale(69562,0xbdfcfee35b00LL),-reale(114632,0x975e8fa16f10LL),
4500  -reale(201989,0x9411d71111da0LL),-reale(389021,0x33d7ff034b930LL),
4501  -reale(848628,0xc0285ec233440LL),-reale(2237713,0xb97d9ca55b150LL),
4502  -reale(8250880,0x9132887d792e0LL),-reale(73221392,0xf1ffe05c8b70LL),
4503  reale(480452831,0x383b5471fd280LL),-reale(632496874,0xca3591eba7b90LL),
4504  reale(26233104,0x13df159bb07e0LL),reale(353203487,0x101c2c33c4a50LL),
4505  -reale(147596513,0x7a337ff05e6c0LL),reale(41406718,0x88562e0e69230LL),
4506  -reale(45513246,0x22b5bfcbced60LL),reale(7934370,0xa8c8e9d8c2810LL),
4507  reale(1869414,0xdc5c61854a479LL),reale(12305436712LL,0x56b51693aedc3LL),
4508  // C4[1], coeff of eps^6, polynomial in n of order 23
4509  -reale(4406,0xf939ae5c97c40LL),-reale(5729,0xf863eba5bf80LL),
4510  -reale(7570,0xa927e082c4c0LL),-reale(10189,0xdc3d2b5930900LL),
4511  -reale(14011,0xfd72406188940LL),-reale(19751,0x4ee9330f94280LL),
4512  -reale(28665,0xa6c18d00fb1c0LL),-reale(43078,0xe8ed052a45400LL),
4513  -reale(67543,0xd4150add2640LL),-reale(111634,0xb28e55bb02580LL),
4514  -reale(197389,0xccdd68505cec0LL),-reale(381765,0x22e00b9b89f00LL),
4515  -reale(837258,0xa000eefe9340LL),-reale(2223425,0xd3d15b309a880LL),
4516  -reale(8279438,0xc28db224c5bc0LL),-reale(74551261,0xb7816e54f2a00LL),
4517  reale(500824278,0x3891b999befc0LL),-reale(691847154,0x918a2dd450b80LL),
4518  reale(72461747,0xa045596356740LL),reale(374046829,0x41b777218cb00LL),
4519  -reale(172833056,0x62b9485f4dd40LL),reale(29915148,0x80284d25e7180LL),
4520  -reale(39423763,0x40d338467c5c0LL),reale(13659048,0x68e501c228ffeLL),
4521  reale(12305436712LL,0x56b51693aedc3LL),
4522  // C4[1], coeff of eps^5, polynomial in n of order 24
4523  -reale(2545,0x1363104362d80LL),-reale(3226,0xe67b1424a4830LL),
4524  -reale(4144,0x8c711302fa660LL),-reale(5400,0xc1bfe2853af90LL),
4525  -reale(7153,0xb2c26c1682b40LL),-reale(9653,0x9e8ef4e7cf0f0LL),
4526  -reale(13308,0xeb09aee491820LL),-reale(18810,0x561040fe22850LL),
4527  -reale(27375,0xc35e0fb3fc900LL),-reale(41260,0x7d7f41fc271b0LL),
4528  -reale(64893,0xc7a96414399e0LL),-reale(107622,0xe02e2157de910LL),
4529  -reale(191035,0x6ce8a0a1be6c0LL),-reale(371181,0x96988a373aa70LL),
4530  -reale(818768,0xa91a46aa60ba0LL),-reale(2191167,0x9fde37effd1d0LL),
4531  -reale(8249435,0xe27cdc35b6480LL),-reale(75540143,0x55cc77d97b30LL),
4532  reale(522119910,0xf5aa540a8b2a0LL),-reale(766397212,0x64559a510c290LL),
4533  reale(148547296,0x8152775e2ddc0LL),reale(385247751,0x81b301a133c10LL),
4534  -reale(213402544,0x90fce845e3f20LL),reale(10198756,0x255c7c31664b0LL),
4535  reale(1365904,0xd74a19c69db33LL),reale(12305436712LL,0x56b51693aedc3LL),
4536  // C4[1], coeff of eps^4, polynomial in n of order 25
4537  -real(0x5cd20bbc3c672180LL),-real(0x73720b2d98187c00LL),
4538  -reale(2321,0xc4eb857568680LL),-reale(2952,0xb2617088c8f00LL),
4539  -reale(3804,0x417bd8fa2e380LL),-reale(4973,0x5ec86f601d200LL),
4540  -reale(6609,0x998272f30a880LL),-reale(8950,0x197c7ab46b500LL),
4541  -reale(12382,0xcc481e2a44580LL),-reale(17565,0x5f7861969a800LL),
4542  -reale(25660,0x4a6f330e22a80LL),-reale(38825,0xe447100991b00LL),
4543  -reale(61313,0x47573aa0ec780LL),-reale(102123,0xa55bb6037e00LL),
4544  -reale(182121,0xfb4d0590e8c80LL),-reale(355742,0x340be91b74100LL),
4545  -reale(789743,0xf318e4285e980LL),-reale(2131260,0x2c59b0f82d400LL),
4546  -reale(8121193,0x3f9cc7c594e80LL),-reale(75808472,0x814742dd4a700LL),
4547  reale(542406027,0xe15955752d480LL),-reale(860719085,0xb088c959b2a00LL),
4548  reale(281794203,0x6d691a09a0f80LL),reale(349671639,0x4a19c69db3300LL),
4549  -reale(268081590,0x1f35e51280d80LL),reale(42616231,0x9d4bdce6b704LL),
4550  reale(12305436712LL,0x56b51693aedc3LL),
4551  // C4[1], coeff of eps^3, polynomial in n of order 26
4552  -real(0x34f88b61ee2c2e60LL),-real(0x40e8b73250ad02b0LL),
4553  -real(0x50402824a1190680LL),-real(0x643133a56bf6de50LL),
4554  -real(0x7e70b50d7e53aea0LL),-reale(2583,0x89ee9103c6bf0LL),
4555  -reale(3343,0x2d56b6f20aac0LL),-reale(4390,0x9150bee746f90LL),
4556  -reale(5862,0xecb9ee1767ee0LL),-reale(7978,0x9b4551158ad30LL),
4557  -reale(11096,0x13774a5e7af00LL),-reale(15825,0x3f23db737e8d0LL),
4558  -reale(23248,0xf45a340cbf20LL),-reale(35380,0xaf4478627e670LL),
4559  -reale(56209,0x8a81f32e3340LL),-reale(94205,0x2f98ae2576a10LL),
4560  -reale(169093,0xeae4ad4ee8f60LL),-reale(332577,0xf0ed8664037b0LL),
4561  -reale(743995,0x906300fb45780LL),-reale(2026493,0x9c6e844791350LL),
4562  -reale(7821602,0x7531c16940fa0LL),-reale(74557824,0x1ed43b2e7c0f0LL),
4563  reale(555703654,0x34418f385c440LL),-reale(974709694,0x84f4a67130490LL),
4564  reale(527421389,0x42f7f1faaa020LL),reale(94702735,0xa411a5cab5dd0LL),
4565  -reale(117194635,0x5b0909f7a774bLL),
4566  reale(12305436712LL,0x56b51693aedc3LL),
4567  // C4[1], coeff of eps^2, polynomial in n of order 27
4568  -real(0x1bd57a8f504dd3c0LL),-real(0x21b6ff10b9172180LL),
4569  -real(0x292825cda3a88940LL),-real(0x32aacbfadedfca00LL),
4570  -real(0x3ef38a62fa0322c0LL),-real(0x4f013a1cfd80d280LL),
4571  -real(0x64414a4729c69840LL),-reale(2060,0x90ead26a03300LL),
4572  -reale(2683,0x237c6d92be1c0LL),-reale(3547,0x3d9a05c33e380LL),
4573  -reale(4770,0x6ec9da59bf740LL),-reale(6541,0x1657e411dc00LL),
4574  -reale(9170,0x1a8b4944fd0c0LL),-reale(13190,0xb069410801480LL),
4575  -reale(19554,0x9e393a3b06640LL),-reale(30047,0xba30505448500LL),
4576  -reale(48224,0x707d4f4f6afc0LL),-reale(81689,0xf05ca40b52580LL),
4577  -reale(148265,0xab90de58ba540LL),-reale(294962,0x64373b047ee00LL),
4578  -reale(667587,0xc0c688fa83ec0LL),-reale(1840377,0xc842d822d680LL),
4579  -reale(7199121,0xfc41489b57440LL),-reale(69934327,0xdb9ec152bd700LL),
4580  reale(541991040,0xe60e5a413c240LL),-reale(1060670639,0x2d9274118e780LL),
4581  reale(833384073,0xa3ce7fc4a6cc0LL),-reale(234389270,0xb61213ef4ee96LL),
4582  reale(12305436712LL,0x56b51693aedc3LL),
4583  // C4[1], coeff of eps^1, polynomial in n of order 28
4584  -real(0xb4c355cd41c92c0LL),-real(0xd8fea3a41cc7830LL),
4585  -real(0x1064f0c6b9a6ad20LL),-real(0x13f7a88902ef1b10LL),
4586  -real(0x1884a414973fcb80LL),-real(0x1e5fa2ae5243d7f0LL),
4587  -real(0x25fe0bb384ddd9e0LL),-real(0x3006f6e3e0e25ad0LL),
4588  -real(0x3d6c2c13c34ec440LL),-real(0x4f91f34825bd4fb0LL),
4589  -real(0x688ffb74f98676a0LL),-reale(2233,0xdec33bb086290LL),
4590  -reale(3036,0xe53843c2cdd00LL),-reale(4213,0xb13e1137e3f70LL),
4591  -reale(5984,0xaa1cca8abe360LL),-reale(8732,0xb9880d6c69250LL),
4592  -reale(13152,0x1eadcfcfd75c0LL),-reale(20566,0x4e1752c3c0730LL),
4593  -reale(33653,0xf4262a5798020LL),-reale(58247,0x3a420e3524a10LL),
4594  -reale(108257,0x7934f39e3ee80LL),-reale(221025,0xaccc1c0dc06f0LL),
4595  -reale(514222,0xffbb852faace0LL),-reale(1456965,0x29e8a4070e9d0LL),
4596  -reale(5827860,0xa7a2901c3a740LL),-reale(56821641,0x6270fd1339eb0LL),
4597  reale(416692036,0xd1e73fe253660LL),-reale(625038055,0x3adadfd37d190LL),
4598  reale(273454149,0x29bfc1ec86bafLL),
4599  reale(12305436712LL,0x56b51693aedc3LL),
4600  // C4[2], coeff of eps^29, polynomial in n of order 0
4601  185528,real(30429886905LL),
4602  // C4[2], coeff of eps^28, polynomial in n of order 1
4603  real(17366491968LL),real(4404238552LL),real(0x74e318fa9c07fLL),
4604  // C4[2], coeff of eps^27, polynomial in n of order 2
4605  real(412763643136LL),-real(248137794944LL),real(164642704408LL),
4606  real(0x4d882f0532d9e9LL),
4607  // C4[2], coeff of eps^26, polynomial in n of order 3
4608  real(0x11462b92d913a0LL),-real(0xdd4620ebadc40LL),
4609  real(0x5974730e46be0LL),real(0x16bcec57851ccLL),
4610  reale(33547,0x1cf91962af003LL),
4611  // C4[2], coeff of eps^25, polynomial in n of order 4
4612  real(0xc83679b433c00LL),-real(0xb29b6d58dfb00LL),real(0x5f4e3bdd4de00LL),
4613  -real(0x3affd9960e900LL),real(0x2665fb625f490LL),
4614  reale(15809,0x8f200ee7e2a7dLL),
4615  // C4[2], coeff of eps^24, polynomial in n of order 5
4616  real(0x67b92a8524a18e80LL),-real(0x609d7d3ca356ae00LL),
4617  real(0x39db180d1b52d580LL),-real(0x2fa1e9183dec9700LL),
4618  real(0x1294d8f2627edc80LL),real(0x4bc94ddbc9bad70LL),
4619  reale(22813193,0xc1b4051297e97LL),
4620  // C4[2], coeff of eps^23, polynomial in n of order 6
4621  reale(24830,0x3d0fb879bb600LL),-reale(23212,0xa100635ccdb00LL),
4622  reale(14957,0x147cd156ba400LL),-reale(13653,0x51ea4b9c89d00LL),
4623  reale(7024,0x2535370909200LL),-reale(4511,0x3af63b60c9f00LL),
4624  reale(2865,0xf50f5adcce1f0LL),reale(235736335,0x7c44346acc6c3LL),
4625  // C4[2], coeff of eps^22, polynomial in n of order 7
4626  reale(1046092,0x25a6222f26060LL),-reale(949436,0x14a3a722f1840LL),
4627  reale(652845,0xb96689ab42720LL),-reale(615919,0x6f1345ab50580LL),
4628  reale(356624,0x982d38f2a9de0LL),-reale(303839,0x22c37d5c832c0LL),
4629  reale(113262,0x286189b57e4a0LL),reale(28978,0x12ae8b059bc84LL),
4630  reale(6836353729LL,0x13b9f01928417LL),
4631  // C4[2], coeff of eps^21, polynomial in n of order 8
4632  reale(4643688,0x71b79cbf7cc00LL),-reale(3959056,0x83e38a4f9d180LL),
4633  reale(2926140,0x6f81ce5fc3900LL),-reale(2722736,0xdd03df5282c80LL),
4634  reale(1710940,0xc70403130e600LL),-reale(1602990,0x9ebb76967a780LL),
4635  reale(787738,0x6bf60987b1300LL),-reale(530212,0xcde2a88ab0280LL),
4636  reale(326645,0xab9033855e368LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4637  // C4[2], coeff of eps^20, polynomial in n of order 9
4638  reale(2366152,0x4fc26559c91c0LL),-reale(1830925,0x4d73259824200LL),
4639  reale(1477489,0x62c9a90a52a40LL),-reale(1299560,0xe7bf798235180LL),
4640  reale(885946,0x5cb0a99f5e2c0LL),-reale(843740,0x47153eb842100LL),
4641  reale(469359,0x79db9d7cfb40LL),-reale(417111,0x1a4c5e2477080LL),
4642  reale(146559,0x51b0aa3dcb3c0LL),reale(37677,0x6dd5ee66abd48LL),
4643  reale(6836353729LL,0x13b9f01928417LL),
4644  // C4[2], coeff of eps^19, polynomial in n of order 10
4645  reale(11390177,0xa8f910291300LL),-reale(7729638,0x6f23cf47c2480LL),
4646  reale(6929266,0x5fb765e065c00LL),-reale(5514735,0x5eb0876136380LL),
4647  reale(4148166,0x27d6c40aa500LL),-reale(3788609,0xfef33001c8280LL),
4648  reale(2322601,0x1de03c2bc2e00LL),-reale(2237878,0x77b7642b94180LL),
4649  reale(1037457,0x571c66f013700LL),-reale(742165,0x8c39e6d5b6080LL),
4650  reale(439349,0xf7cfa6e796fc8LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4651  // C4[2], coeff of eps^18, polynomial in n of order 11
4652  reale(19643005,0x3eb0d373a0e0LL),-reale(11359402,0x98e8f09139c0LL),
4653  reale(11381255,0xacc1b03fd73a0LL),-reale(7834592,0x92741bdd3b00LL),
4654  reale(6664656,0xa317edb25b660LL),-reale(5516050,0x3ff87cc43bc40LL),
4655  reale(3774293,0xd5e83edc68920LL),-reale(3594547,0xbec9f61701d80LL),
4656  reale(1908400,0x61c5f793c0be0LL),-reale(1786093,0xfaf3f7a19bec0LL),
4657  reale(579905,0x9d50696085ea0LL),reale(150042,0xa9efa9004c604LL),
4658  reale(20509061187LL,0x3b2dd04b78c45LL),
4659  // C4[2], coeff of eps^17, polynomial in n of order 12
4660  reale(38321815,0x1e48683dc9800LL),-reale(18616913,0x727791f8dfa00LL),
4661  reale(20113440,0xb841223d75400LL),-reale(11495937,0x9838f29931e00LL),
4662  reale(11261630,0x21fd3747b1000LL),-reale(7960716,0x75135ee9c200LL),
4663  reale(6275150,0xa8a2fa972cc00LL),-reale(5471565,0x945df446e600LL),
4664  reale(3293426,0x6eab44c698800LL),-reale(3257897,0x559df659f8a00LL),
4665  reale(1401057,0x756ea738a4400LL),-reale(1086629,0xf49cb94a8ae00LL),
4666  reale(610116,0x479bdc6c290e0LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4667  // C4[2], coeff of eps^16, polynomial in n of order 13
4668  reale(102781113,0x98fe5a9192500LL),-reale(40336104,0xccc089a851400LL),
4669  reale(40165652,0x6e617f3b73300LL),-reale(18616625,0x95536d5576600LL),
4670  reale(20514709,0xd39b96f5ec100LL),-reale(11691503,0x7c1154bb0b800LL),
4671  reale(10980290,0x40d1adbe6cf00LL),-reale(8104717,0x4a433bfb60a00LL),
4672  reale(5726151,0xc3b2b2965d00LL),-reale(5331323,0xa4559d80c5c00LL),
4673  reale(2689333,0x7cf2f82446b00LL),-reale(2678624,0x7904ff2b8ae00LL),
4674  reale(779755,0xfacbca777f900LL),reale(203539,0xb4670b88476e0LL),
4675  reale(20509061187LL,0x3b2dd04b78c45LL),
4676  // C4[2], coeff of eps^15, polynomial in n of order 14
4677  -reale(23295494,0x8be82e34e6400LL),-reale(256522224,0x1264f586eb600LL),
4678  reale(109420782,0x9692235ce1800LL),-reale(40005401,0x76f47ac799a00LL),
4679  reale(42210732,0x9175627089400LL),-reale(18637789,0x360d04338fe00LL),
4680  reale(20777547,0x32d7f69c1000LL),-reale(11978808,0x3c6fce691e200LL),
4681  reale(10467739,0x890cbd2438c00LL),-reale(8246695,0x5d95a89294600LL),
4682  reale(4981450,0x2e83f5dba0800LL),-reale(4997884,0x48d2490e42a00LL),
4683  reale(1949724,0xd6b9d613a8400LL),-reale(1687002,0x42840cd678e00LL),
4684  reale(881316,0x5154c853b06e0LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4685  // C4[2], coeff of eps^14, polynomial in n of order 15
4686  -reale(315852553,0x127aa1fb9560LL),reale(452067016,0x32f06289dc340LL),
4687  -reale(36389203,0xc905d2dd0bc20LL),-reale(265701999,0x414c3c9652f80LL),
4688  reale(117462481,0xb44ff33f8ed20LL),-reale(39375172,0xb9e521c5c6240LL),
4689  reale(44443567,0x98c20ae94660LL),-reale(18737379,0x9088d09ce7500LL),
4690  reale(20789662,0x74772cb6e2fa0LL),-reale(12399165,0xc39cbc16e07c0LL),
4691  reale(9634015,0x48be8ec7788e0LL),-reale(8326007,0x8f1246dddba80LL),
4692  reale(4012687,0x8a9763f933220LL),-reale(4283805,0xe15bd5742d40LL),
4693  reale(1064918,0x3e0322e890b60LL),reale(281445,0x189dacfa2913cLL),
4694  reale(20509061187LL,0x3b2dd04b78c45LL),
4695  // C4[2], coeff of eps^13, polynomial in n of order 16
4696  reale(4607575,0xc9d7900c88800LL),reale(44527228,0x61b96ac1eb380LL),
4697  -reale(320302478,0xa276d3450e900LL),reale(471382647,0x4d0623cc86a80LL),
4698  -reale(52535715,0x404f1a5b09a00LL),-reale(275262322,0xf3348bb543e80LL),
4699  reale(127364360,0xbf0504ec13500LL),-reale(38376532,0x74833ebc78780LL),
4700  reale(46801690,0x6a3245e5c4400LL),-reale(19021914,0x3bda110f1b080LL),
4701  reale(20372666,0xf7fc04d85300LL),-reale(12992077,0x825700022f980LL),
4702  reale(8374681,0xba502a56d2200LL),-reale(8187369,0x8d48a8bba280LL),
4703  reale(2818780,0x7113503f27100LL),-reale(2834494,0xf2038f04beb80LL),
4704  reale(1337917,0xc906f381aecf8LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4705  // C4[2], coeff of eps^12, polynomial in n of order 17
4706  reale(388658,0x19c7c6f8ea2c0LL),reale(1117971,0xaadcbdb38ac00LL),
4707  reale(4519560,0xaee28ee393540LL),reale(44278119,0xe09b9f50af680LL),
4708  -reale(324493551,0x5c00bae29840LL),reale(492697628,0x7d1cc3fd18100LL),
4709  -reale(72657626,0xb42806bf185c0LL),-reale(284925253,0x57cc84a557480LL),
4710  reale(139770748,0x33e950dc3acc0LL),-reale(36961790,0xef70c005baa00LL),
4711  reale(49119876,0xa052562f03f40LL),-reale(19681131,0xbaa50226adf80LL),
4712  reale(19252422,0xc3af9265b71c0LL),-reale(13755373,0x2f0960c0cd500LL),
4713  reale(6600104,0x6565773f88440LL),-reale(7462805,0xbfb982e534a80LL),
4714  reale(1452711,0x6b2cd84feb6c0LL),reale(390635,0x965de9321fbe8LL),
4715  reale(20509061187LL,0x3b2dd04b78c45LL),
4716  // C4[2], coeff of eps^11, polynomial in n of order 18
4717  reale(73868,0xf53613318fd00LL),reale(155158,0x6bea1fc037e80LL),
4718  reale(370865,0xe686995a3a800LL),reale(1077531,0xb6b00d00e5180LL),
4719  reale(4409046,0x1d5f244685300LL),reale(43860006,0xf94485a638480LL),
4720  -reale(328226208,0x254b380304200LL),reale(516242826,0x48cfde1d3d780LL),
4721  -reale(98028430,0xc7227901d5700LL),-reale(294125055,0xf41dd5cbff580LL),
4722  reale(155591277,0xc58331ae9d400LL),-reale(35168366,0x6c3820d072280LL),
4723  reale(51023141,0xfcae9f00dff00LL),-reale(21033813,0x6b0840ce0ef80LL),
4724  reale(17035669,0xa0ab037f7ea00LL),-reale(14520825,0x209891efc9c80LL),
4725  reale(4321952,0xda1143d705500LL),-reale(5322397,0x9ed9b44796980LL),
4726  reale(2165443,0xa5af00ad58358LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4727  // C4[2], coeff of eps^10, polynomial in n of order 19
4728  reale(19809,0x63304b335a660LL),reale(35566,0xcb4164f348e40LL),
4729  reale(68577,0xe86c972757e20LL),reale(145245,0xbc9cc7446e200LL),
4730  reale(350489,0x7e29a3d4285e0LL),reale(1029750,0x45087f82835c0LL),
4731  reale(4270842,0x2203011585da0LL),reale(43220702,0xa65b618eca980LL),
4732  -reale(331199124,0xa89ccd5235aa0LL),reale(542217711,0x200e3727c5d40LL),
4733  -reale(130429686,0x3b8b1d50d02e0LL),-reale(301749371,0x2c4d836f88f00LL),
4734  reale(176097282,0x8ddfe73d104e0LL),-reale(33280999,0x8c12e2a85fb40LL),
4735  reale(51717673,0x23cc103525ca0LL),-reale(23558374,0x76fe0e70fc780LL),
4736  reale(13250268,0x69c1c450ca460LL),-reale(14595460,0xd8a80a3d5d3c0LL),
4737  reale(1848614,0x7d3564e37c20LL),reale(506231,0x2a6100a6a6db4LL),
4738  reale(20509061187LL,0x3b2dd04b78c45LL),
4739  // C4[2], coeff of eps^9, polynomial in n of order 20
4740  reale(6397,0xfcd62c9faa400LL),reale(10440,0x3fc8ff8e75700LL),
4741  reale(17841,0xb7bede1dba00LL),reale(32272,0x7935213063d00LL),
4742  reale(62742,0x8933a9bfd5000LL),reale(134128,0x223daf23d6300LL),
4743  reale(327129,0xfca43cca0e600LL),reale(973230,0x31dda9e44900LL),
4744  reale(4098328,0x3528b970ffc00LL),reale(42289297,0xe5d54d5326f00LL),
4745  -reale(332951092,0xecfda756dee00LL),reale(570709002,0x2878cf4ff5500LL),
4746  -reale(172380399,0x5788b53115800LL),-reale(305626020,0x9c65fcc7d8500LL),
4747  reale(202987914,0xbd0aab0ad3e00LL),-reale(32233434,0x3f0406dec9f00LL),
4748  reale(49604551,0xc747777555400LL),-reale(27757216,0x323bffb167900LL),
4749  reale(7652705,0x1c15203ae6a00LL),-reale(11782806,0x2b7827f239300LL),
4750  reale(3811565,0x362856b8e6d30LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4751  // C4[2], coeff of eps^8, polynomial in n of order 21
4752  reale(2297,0xe5959dcaf9680LL),reale(3515,0xaf44e93439a00LL),
4753  reale(5557,0xf844363205d80LL),reale(9134,0x3148872cf3100LL),
4754  reale(15730,0x1f27208afe480LL),reale(28695,0xbe2e993314800LL),
4755  reale(56314,0x2c7b05479ab80LL),reale(121661,0x287926e675f00LL),
4756  reale(300328,0xfc8a376113280LL),reale(906274,0xf1fb199eef600LL),
4757  reale(3883000,0x5f528c391f980LL),reale(40968060,0xe6e08c5558d00LL),
4758  -reale(332763533,0x8282a4a507f80LL),reale(601507851,0xf6ba284c8a400LL),
4759  -reale(227453313,0x642fd223ab880LL),-reale(301473974,0xbe5976c5a4500LL),
4760  reale(238209921,0x57c5b91e6ce80LL),-reale(34582562,0x41ecac4f5ae00LL),
4761  reale(41696071,0xee870caef9580LL),-reale(33183269,0xa456f79c1700LL),
4762  reale(1407347,0x27b05f0931c80LL),reale(329283,0x26010fabff570LL),
4763  reale(20509061187LL,0x3b2dd04b78c45LL),
4764  // C4[2], coeff of eps^7, polynomial in n of order 22
4765  real(0x367dbe5da7953e00LL),real(0x4f9a921ac6fb1900LL),
4766  real(0x773454548df74400LL),reale(2938,0xbc18faed4af00LL),
4767  reale(4681,0x407a350a64a00LL),reale(7756,0xa0ed83ee90500LL),
4768  reale(13477,0x2fbfd87edd000LL),reale(24826,0x9ea174e739b00LL),
4769  reale(49249,0xd3391f1d95600LL),reale(107696,0xcac2013cff100LL),
4770  reale(269571,0xe064d3a745c00LL),reale(826840,0x70825da398700LL),
4771  reale(3613882,0x7ef0aa40a6200LL),reale(39120270,0xc5673698bdd00LL),
4772  -reale(329492011,0x53f65ac991800LL),reale(633695353,0xfeb5c44027300LL),
4773  -reale(300630213,0xecf09fbea9200LL),-reale(280700646,0xcee0a2073700LL),
4774  reale(282664342,0x7b726e8a17400LL),-reale(46720160,0x11dfe8c55a100LL),
4775  reale(23527957,0x90f427ad67a00LL),-reale(33848503,0x5eac35f0d4b00LL),
4776  reale(7456233,0x7c1f0b332cab0LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4777  // C4[2], coeff of eps^6, polynomial in n of order 23
4778  real(0x14f52a063dc5fc20LL),real(0x1d93a1e9ceb48740LL),
4779  real(0x2a911c303b723a60LL),real(0x3ea26bba66a54980LL),
4780  real(0x5e84fad71b3608a0LL),reale(2349,0x85d3117e94bc0LL),
4781  reale(3776,0x1c9d51cf2c6e0LL),reale(6317,0x5193932d16e00LL),
4782  reale(11091,0xc7716ff97d520LL),reale(20667,0xe33c2c4a29040LL),
4783  reale(41523,0x1a30a42ae9360LL),reale(92100,0xbd0a1f1419280LL),
4784  reale(234309,0x70b77706661a0LL),reale(732507,0x72fafb4df54c0LL),
4785  reale(3276808,0xe462aef209fe0LL),reale(36551902,0x4c4d10a4b700LL),
4786  -reale(321265885,0x720bf168351e0LL),reale(664675522,0x65892c55e9940LL),
4787  -reale(398339257,0x2b82ef41c13a0LL),-reale(225754486,0xf240500d62480LL),
4788  reale(330356701,0xbb7252695baa0LL),-reale(82401980,0x37f104ae0a240LL),
4789  -reale(4970822,0x52bf5cccc8720LL),-reale(3278171,0x9e4b710fe0e14LL),
4790  reale(20509061187LL,0x3b2dd04b78c45LL),
4791  // C4[2], coeff of eps^5, polynomial in n of order 24
4792  real(0x7d5242068d47400LL),real(0xac3832c9e621080LL),
4793  real(0xf0840d5e59cf500LL),real(0x155fabefd3362980LL),
4794  real(0x1f01ffac4c30b600LL),real(0x2e0489bbd6aca280LL),
4795  real(0x461560bdbc05f700LL),real(0x6df6210d29c3bb80LL),
4796  reale(2857,0xf2e1b87d2f800LL),reale(4836,0xd8d8f4249b480LL),
4797  reale(8600,0x17271d36df900LL),reale(16248,0x163bc1ffccd80LL),
4798  reale(33146,0xc23750bad3a00LL),reale(74792,0x260310eab4680LL),
4799  reale(194024,0xef2cdae46fb00LL),reale(620545,0xfcf47db535f80LL),
4800  reale(2853712,0x7228ad7b17c00LL),reale(32984640,0x1c4ce82435880LL),
4801  -reale(304937768,0x83ef272fd0300LL),reale(687819348,0xf9e0f9c397180LL),
4802  -reale(526420007,0xa1ce2482e4200LL),-reale(101220737,0xb065c6f7c1580LL),
4803  reale(344186593,0xf79ee4a13ff00LL),-reale(151524377,0x682a2ddefc80LL),
4804  reale(15298134,0x380aba4a19708LL),reale(20509061187LL,0x3b2dd04b78c45LL),
4805  // C4[2], coeff of eps^4, polynomial in n of order 25
4806  real(0x2b077c634ede840LL),real(0x39e80232e455600LL),
4807  real(0x4f004399e9803c0LL),real(0x6d6a8dd96e7d980LL),
4808  real(0x9a16639c690ff40LL),real(0xdd0eb6a29ee1d00LL),
4809  real(0x143ca2e567649ac0LL),real(0x1e583a687f6ce080LL),
4810  real(0x2ebb5ae27bca9640LL),real(0x4a366ef6d0a8e400LL),
4811  real(0x7a244f6987aeb1c0LL),reale(3355,0xff6a995ee780LL),
4812  reale(6059,0x95d9afc38ad40LL),reale(11647,0x91c4ac30bab00LL),
4813  reale(24220,0xbe377a4d448c0LL),reale(55835,0xd9394a033ee80LL),
4814  reale(148417,0x27a782b394440LL),reale(488256,0xe5126fdac7200LL),
4815  reale(2322515,0xb040a0735fc0LL),reale(28019858,0x3d9464fe1f580LL),
4816  -reale(275064197,0x290d46715a4c0LL),reale(686424553,0x6984a82213900LL),
4817  -reale(677745912,0x9f6fb36960940LL),reale(151524377,0x682a2ddefc80LL),
4818  reale(169007958,0xfd6a53329f240LL),-reale(85232462,0x13a97b9cd6e08LL),
4819  reale(20509061187LL,0x3b2dd04b78c45LL),
4820  // C4[2], coeff of eps^3, polynomial in n of order 26
4821  real(0xc4c78b5f73e700LL),real(0x1046756e5efb980LL),
4822  real(0x15cbc98d9fba400LL),real(0x1d9279681ffce80LL),
4823  real(0x28b2f34344c6100LL),real(0x38e6214caec8380LL),
4824  real(0x50f0f0d0c655e00LL),real(0x7563dc0de2d1880LL),
4825  real(0xadfad5eb325db00LL),real(0x1083ab8775a8cd80LL),
4826  real(0x19c9d8efc1ad1800LL),real(0x29945e7f0056e280LL),
4827  real(0x4594bf2102ba5500LL),real(0x79a9d12705de9780LL),
4828  reale(3587,0xb2b264e0cd200LL),reale(7053,0x1d58043372c80LL),
4829  reale(15040,0x44c8073c3cf00LL),reale(35667,0x702872e47e180LL),
4830  reale(97902,0x6929355be8c00LL),reale(334186,0x1d1de4e87f680LL),
4831  reale(1659947,0xed2beccfc4900LL),reale(21110207,0x53559189eab80LL),
4832  -reale(222144335,0x8c70c0703ba00LL),reale(617753229,0x694fabb034080LL),
4833  -reale(769277606,0x6fd24e8e23d00LL),reale(454573131,0x1387e899cf580LL),
4834  -reale(104173009,0x3479cff894d98LL),
4835  reale(20509061187LL,0x3b2dd04b78c45LL),
4836  // C4[2], coeff of eps^2, polynomial in n of order 27
4837  real(0x24546bc28a93e0LL),real(0x2f6c4d745b8e40LL),
4838  real(0x3e90f252c210a0LL),real(0x5380c389acd700LL),
4839  real(0x70da9adde57d60LL),real(0x9aa08aca5a9fc0LL),
4840  real(0xd7127fe199fa20LL),real(0x130248120008880LL),
4841  real(0x1b6103e1c56a6e0LL),real(0x283fa247b6e3140LL),
4842  real(0x3c89da46fe8a3a0LL),real(0x5d71643158b3a00LL),
4843  real(0x948b363af771060LL),real(0xf445a32263b42c0LL),
4844  real(0x1a1d56e9fe070d20LL),real(0x2ecb290f0241eb80LL),
4845  real(0x58a5da95527fb9e0LL),reale(2876,0x680343126d440LL),
4846  reale(6354,0x3e35c062e36a0LL),reale(15689,0x7d2910c199d00LL),
4847  reale(45107,0x47d6102c9a360LL),reale(162386,0x35cf6d6d5e5c0LL),
4848  reale(857038,0x54e3334f72020LL),reale(11655721,0x4f45203874e80LL),
4849  -reale(131126864,0xbbc9aa7b23320LL),reale(378810942,0x9046972ad7740LL),
4850  -reale(416692036,0xd1e73fe253660LL),reale(156259513,0xceb6b7f4df464LL),
4851  reale(20509061187LL,0x3b2dd04b78c45LL),
4852  // C4[3], coeff of eps^29, polynomial in n of order 0
4853  594728,real(456448303575LL),
4854  // C4[3], coeff of eps^28, polynomial in n of order 1
4855  -real(3245452288LL),real(1965206256),real(0x17609e98859b3LL),
4856  // C4[3], coeff of eps^27, polynomial in n of order 2
4857  -real(0x15f49b7dd3600LL),real(0x7876e24c6900LL),real(0x1f5dd75c0b28LL),
4858  reale(4837,0x68f14547adebLL),
4859  // C4[3], coeff of eps^26, polynomial in n of order 3
4860  -real(0x33418e8004000LL),real(0x17b00d59dc000LL),
4861  -real(0x11669ade1c000LL),real(0xa37322475bc0LL),
4862  reale(6709,0x6c31d1e089667LL),
4863  // C4[3], coeff of eps^25, polynomial in n of order 4
4864  -real(0xc3e38d2fc36800LL),real(0x6a604d6faf7a00LL),
4865  -real(0x650b3de948f400LL),real(0x20a6596010be00LL),
4866  real(0x88f534a1fae70LL),reale(275086,0x53fa9cf60167fLL),
4867  // C4[3], coeff of eps^24, polynomial in n of order 5
4868  -real(0xdd5f9d233a5800LL),real(0x8b724926c9e000LL),
4869  -real(0x8af41510346800LL),real(0x3d05686ce77000LL),
4870  -real(0x2f9901c72df800LL),real(0x1ae74f29ea4ce0LL),
4871  reale(223345,0xf3eec944ed143LL),
4872  // C4[3], coeff of eps^23, polynomial in n of order 6
4873  -reale(81630,0xcf55ff9c68c00LL),reale(60811,0x59dd5ef6a6e00LL),
4874  -reale(57592,0x6457f059a8800LL),reale(30387,0x2572e53b9c200LL),
4875  -reale(30167,0xe11b4690d8400LL),reale(9044,0xd72699d03d600LL),
4876  reale(2392,0x21f43a8f7f830LL),reale(990092609,0x9eb428d5a933LL),
4877  // C4[3], coeff of eps^22, polynomial in n of order 7
4878  -reale(3070961,0xf14af9164000LL),reale(2767073,0x4d2d51bbc4000LL),
4879  -reale(2322170,0xf623e90f3c000LL),reale(1476552,0x4ed8bf53f8000LL),
4880  -reale(1490469,0x7e13eaba44000LL),reale(616004,0x8b84c9ea6c000LL),
4881  -reale(517487,0xf3178ed39c000LL),reale(279040,0x23dc4dd774ec0LL),
4882  reale(28712685662LL,0x1fa68a0342ac7LL),
4883  // C4[3], coeff of eps^21, polynomial in n of order 8
4884  -reale(3998482,0x374a7520d6800LL),reale(4351696,0x89a9dbf785900LL),
4885  -reale(3077852,0x4b8dc9fbd6e00LL),reale(2436308,0x9b47462d3fb00LL),
4886  -reale(2230379,0xda399323b400LL),reale(1147885,0x7a5199072bd00LL),
4887  -reale(1196012,0x91bb473d37a00LL),reale(325643,0x5e75ef9e35f00LL),
4888  reale(87110,0x728c765d95698LL),reale(28712685662LL,0x1fa68a0342ac7LL),
4889  // C4[3], coeff of eps^20, polynomial in n of order 9
4890  -reale(5536106,0x41a6dc97e5400LL),reale(6819318,0x7020ae33aa000LL),
4891  -reale(3996497,0x7d04a5d65ec00LL),reale(4026336,0x4a526eb153800LL),
4892  -reale(3081046,0x922df73cac400LL),reale(2027203,0x8c3cc70035000LL),
4893  -reale(2046086,0x4cc9bc51b5c00LL),reale(787253,0x8fa9057e6800LL),
4894  -reale(725367,0x21dd9ffc63400LL),reale(368582,0x69a43eb914890LL),
4895  reale(28712685662LL,0x1fa68a0342ac7LL),
4896  // C4[3], coeff of eps^19, polynomial in n of order 10
4897  -reale(8942538,0x3b8622ae62a00LL),reale(10481872,0x1e7c948175300LL),
4898  -reale(5381394,0x830498d800800LL),reale(6645195,0x535f47efddd00LL),
4899  -reale(4043713,0x9ba9cf138e600LL),reale(3563786,0x6253b3df24700LL),
4900  -reale(3045580,0xe2f1f7a110400LL),reale(1548984,0x4828fbf665100LL),
4901  -reale(1694435,0x63dcfc138a200LL),reale(406057,0xe76a74dc3bb00LL),
4902  reale(110280,0xa64ca1bbeb438LL),reale(28712685662LL,0x1fa68a0342ac7LL),
4903  // C4[3], coeff of eps^18, polynomial in n of order 11
4904  -reale(18204995,0x3f490d6ed8000LL),reale(15367333,0xa666c37198000LL),
4905  -reale(8424707,0xb9613a5da8000LL),reale(10765521,3190860555LL<<17),
4906  -reale(5300295,0xd300940f58000LL),reale(6273886,0xba1b2aa228000LL),
4907  -reale(4137511,0x6a32b5bc28000LL),reale(2951915,0x3ffeb65fb0000LL),
4908  -reale(2898950,0x38c8743c58000LL),reale(1027617,0x2c3889c5b8000LL),
4909  -reale(1062542,0x7c8a4a4828000LL),reale(500325,0x147f19cd83980LL),
4910  reale(28712685662LL,0x1fa68a0342ac7LL),
4911  // C4[3], coeff of eps^17, polynomial in n of order 12
4912  -reale(46659673,0x7940546261000LL),reale(20576887,0xb72d09f420c00LL),
4913  -reale(17371112,0xc460beb873800LL),reale(16552256,0x8d133b2d84400LL),
4914  -reale(7883306,0x3c181b1016000LL),reale(10867815,0x95ba8c80bfc00LL),
4915  -reale(5343012,0x31a34980f8800LL),reale(5640245,0x12558783a3400LL),
4916  -reale(4241979,0x47a64b12cb000LL),reale(2204426,0xf7d60f21fec00LL),
4917  -reale(2506924,0x6e46ed413d800LL),reale(503732,0xa322eb69a2400LL),
4918  reale(139663,0x777cb98300b20LL),reale(28712685662LL,0x1fa68a0342ac7LL),
4919  // C4[3], coeff of eps^16, polynomial in n of order 13
4920  -reale(156865464,0x9b4a437ced000LL),reale(26751997,0x84cabd1d8c000LL),
4921  -reale(47510066,0xf418e3e50b000LL),reale(22667291,0xeea5410a3a000LL),
4922  -reale(16175537,0xc4ceea20b9000LL),reale(17818506,0xfb6c54d608000LL),
4923  -reale(7402653,0x2459922697000LL),reale(10650742,0xeb52d29456000LL),
4924  -reale(5558253,0xfdda6aad45000LL),reale(4690304,0xc3737ed884000LL),
4925  -reale(4248624,0xb4bb4dab63000LL),reale(1382140,0xc755b095f2000LL),
4926  -reale(1646389,0x4c787b5791000LL),reale(701746,0xdc0286e009640LL),
4927  reale(28712685662LL,0x1fa68a0342ac7LL),
4928  // C4[3], coeff of eps^15, polynomial in n of order 14
4929  reale(158569992,0x763cf17d39800LL),reale(242045827,0xf358b9d531400LL),
4930  -reale(171801710,0xfbdaa54751000LL),reale(26564510,0xe59a1e6b54c00LL),
4931  -reale(47715397,0x8fdbdb93bb800LL),reale(25503418,0x124aa89300400LL),
4932  -reale(14593564,0x65519680b6000LL),reale(19028249,0x27fd86c303c00LL),
4933  -reale(7127523,0x40a42052f0800LL),reale(9926805,0x1876eddc2f400LL),
4934  -reale(5956098,0xfb7e2f3f1b000LL),reale(3422018,0xde3cf0f552c00LL),
4935  -reale(3909386,0x4ce6da2de5800LL),reale(606166,0xec68c0e73e400LL),
4936  reale(172919,0x9ad62b665b520LL),reale(28712685662LL,0x1fa68a0342ac7LL),
4937  // C4[3], coeff of eps^14, polynomial in n of order 15
4938  reale(234628808,0x48818da828000LL),-reale(452308383,0x26baa88038000LL),
4939  reale(184630907,0xde7b734758000LL),reale(240946965,0x4db221ae90000LL),
4940  -reale(189474421,0xed4c1e36d8000LL),reale(27214973,0x55324802d8000LL),
4941  -reale(46882338,0xe5fcdfdca8000LL),reale(29262846,2319362995LL<<17),
4942  -reale(12682237,0x3cee53d458000LL),reale(19904432,0x70537f02e8000LL),
4943  -reale(7274198,0xbf917ba828000LL),reale(8480909,0x438c3da230000LL),
4944  -reale(6415713,0xc95c9b8258000LL),reale(1960896,0x685dc04df8000LL),
4945  -reale(2745254,0xf883406d28000LL),reale(1023946,0x4eef421f04580LL),
4946  reale(28712685662LL,0x1fa68a0342ac7LL),
4947  // C4[3], coeff of eps^13, polynomial in n of order 16
4948  -reale(2272755,0x57fd708a77000LL),-reale(26091168,0x1366cec7d9d00LL),
4949  reale(231976719,0xafe6927fcde00LL),-reale(464894868,0x24c5c39795700LL),
4950  reale(215184123,0xaf8273d716c00LL),reale(236438336,0xab29f0bfd4f00LL),
4951  -reale(210344218,0x367ffa8b78600LL),reale(29454299,0x2f129bee9500LL),
4952  -reale(44460297,0xf9cfdfb8bb800LL),reale(34058265,0xda8305b9abb00LL),
4953  -reale(10677799,0x93543d448ea00LL),reale(19950418,0xbb16c712a0100LL),
4954  -reale(8097327,0xc3857f1ecdc00LL),reale(6164437,0x8a1d8a85ca700LL),
4955  -reale(6487914,0xa92c56ec54e00LL),reale(653539,0x4a58f163aed00LL),
4956  reale(193289,0xc4fa7fb371708LL),reale(28712685662LL,0x1fa68a0342ac7LL),
4957  // C4[3], coeff of eps^12, polynomial in n of order 17
4958  -reale(136365,0x73a1fcfe6ac00LL),-reale(450638,0xd074750f34000LL),
4959  -reale(2128024,0x54e7feac4d400LL),-reale(24952088,0x92a9c1fc91800LL),
4960  reale(228113259,0x85d44607e4400LL),-reale(477191195,0x7e69e50f07000LL),
4961  reale(251096618,0x1896eb4cd1c00LL),reale(226763725,0xac7cda7d93800LL),
4962  -reale(234776156,0x14cc4b0edcc00LL),reale(34557325,0x4230b4bd66000LL),
4963  -reale(39741101,0x3a85821c7f400LL),reale(39764072,0x42dd69fc98800LL),
4964  -reale(9161206,0x9c1a792d6dc00LL),reale(18380268,0xf302f56753000LL),
4965  -reale(9708385,0x581708d300400LL),reale(3148914,0x8380fab1bd800LL),
4966  -reale(5050904,0x8a565e3e8ec00LL),reale(1566765,0x6fd98617e9df0LL),
4967  reale(28712685662LL,0x1fa68a0342ac7LL),
4968  // C4[3], coeff of eps^11, polynomial in n of order 18
4969  -reale(18810,0x4977f6cdda600LL),-reale(44617,0xf507aa2256700LL),
4970  -reale(121680,0x26c8d0378b000LL),-reale(408670,0xadcc6d8f87900LL),
4971  -reale(1967116,0xd731d207dba00LL),-reale(23614778,0x5c1a1fadbeb00LL),
4972  reale(222693980,0x695506ba87c00LL),-reale(488598159,0xe2ab67bc47d00LL),
4973  reale(293333811,0x10f016a3f3200LL),reale(209273530,0x4db1c2b811100LL),
4974  -reale(262769616,0x9b49f60945800LL),reale(44647130,0x3acb33bfff00LL),
4975  -reale(31983858,0x227f1389ce200LL),reale(45626356,0x9e16c6ccb8d00LL),
4976  -reale(9276161,0xf8fb16a652c00LL),reale(14205372,0x289c377eefb00LL),
4977  -reale(11490116,0xc948e407f600LL),reale(414830,0x163387d5d8900LL),
4978  reale(117690,0xc756ec17c4aa8LL),reale(28712685662LL,0x1fa68a0342ac7LL),
4979  // C4[3], coeff of eps^10, polynomial in n of order 19
4980  -reale(3667,0x8ba48fb7ec000LL),-reale(7355,0xde5d961edc000LL),
4981  -reale(15963,0x138d280434000LL),-reale(38393,53315683LL<<17),
4982  -reale(106358,0x1cca460dcc000LL),-reale(363723,0x77fed5aee4000LL),
4983  -reale(1788619,0xb46088e414000LL),-reale(22045766,0x7d53064fc8000LL),
4984  reale(215267089,0x7c4e47994000LL),-reale(498143540,0xc077eb386c000LL),
4985  reale(342855614,0x4b25e0bbcc000LL),reale(179961617,0x7ca6ea4dd0000LL),
4986  -reale(293329289,0xb4e43f9ccc000LL),reale(63137066,0xbcee02f98c000LL),
4987  -reale(20920174,0xdceb909f94000LL),reale(49479848,0x7088e98168000LL),
4988  -reale(12768344,0x1ee1d8cbec000LL),reale(6948560,0xd8f6969c04000LL),
4989  -reale(10643749,0x466c677134000LL),reale(2529930,0x161dcdf222440LL),
4990  reale(28712685662LL,0x1fa68a0342ac7LL),
4991  // C4[3], coeff of eps^9, polynomial in n of order 20
4992  -real(0x354d49acec3dd800LL),-real(0x606a7d34c50a0200LL),
4993  -reale(2939,0xdc47a7c209c00LL),-reale(5971,0x671f2d9dad600LL),
4994  -reale(13140,0xcdf9f327fe000LL),-reale(32101,0x6baea5bb9ea00LL),
4995  -reale(90511,0x408ba9a232400LL),-reale(315893,0xc97e5e852be00LL),
4996  -reale(1591343,0xfce30d8d1e800LL),-reale(20207205,0x8b4272e60d200LL),
4997  reale(205238828,0x21c1cf60c5400LL),-reale(504251582,0xb2b181bcfa600LL),
4998  reale(400330413,0xa384192d01000LL),reale(132810886,0x4094526254600LL),
4999  -reale(323039224,0xd5680dd0e3400LL),reale(95085342,0xbfbbc74d27200LL),
5000  -reale(8279837,0x6ce790195f800LL),reale(46514941,0x8e0e73ffc5e00LL),
5001  -reale(20732718,0x38ef4b2eebc00LL),-reale(922541,0xf2a1d94487600LL),
5002  -reale(491669,0x5bd07d195db30LL),reale(28712685662LL,0x1fa68a0342ac7LL),
5003  // C4[3], coeff of eps^8, polynomial in n of order 21
5004  -real(0xd828cefda55a800LL),-real(0x16c6eac98e7b6000LL),
5005  -real(0x27e1e798049c9800LL),-real(0x490330552dbbf000LL),
5006  -reale(2255,0x88ea2b8740800LL),-reale(4647,0x88c66c31f8000LL),
5007  -reale(10390,0xd13f35560f800LL),-reale(25836,0xfcd55e2db1000LL),
5008  -reale(74324,0xc0bfff0e86800LL),-reale(265480,0xf5ce67923a000LL),
5009  -reale(1374647,0xa0b10ca8f5800LL),-reale(18058373,0x723761b2e3000LL),
5010  reale(191831943,0xc85920c253800LL),-reale(504361484,0x6e935002fc000LL),
5011  reale(465423127,0xbaa71ebb04800LL),reale(59036306,0xf120275a2b000LL),
5012  -reale(342905949,0x5a93131732800LL),reale(146354899,0x9f9c2b8142000LL),
5013  -reale(1641748,0x1e8ba62ca1800LL),reale(28969072,0x51c8dabef9000LL),
5014  -reale(27136540,0x3d9359d98800LL),reale(4249105,0xd55e5a0325120LL),
5015  reale(28712685662LL,0x1fa68a0342ac7LL),
5016  // C4[3], coeff of eps^7, polynomial in n of order 22
5017  -real(0x38123cee860f400LL),-real(0x59d375c04e8be00LL),
5018  -real(0x942bf86bd4c1800LL),-real(0xfcbda8858afb200LL),
5019  -real(0x1c02af2dc3443c00LL),-real(0x33fc822f8d2b6600LL),
5020  -real(0x65e35fc07de4e000LL),-reale(3414,0xc7eb297eb5a00LL),
5021  -reale(7775,0x1c0e884298400LL),-reale(19731,0x6a31912ef0e00LL),
5022  -reale(58089,0x9471e600da800LL),-reale(213111,0x15a6331c60200LL),
5023  -reale(1139019,0x77ee6ce2ccc00LL),-reale(15560104,0x33d66a0afb600LL),
5024  reale(174045800,0x2f0a20e9d9000LL),-reale(494300177,0xd9e4761bbaa00LL),
5025  reale(535087920,0xe9f8f195ec00LL),-reale(53102016,0x93f6bbbe95e00LL),
5026  -reale(331738553,0x77bff637f3800LL),reale(216985631,0x987f3afb7ae00LL),
5027  -reale(21074121,0x8043eaffd5c00LL),-reale(4185955,0xa3ff769180600LL),
5028  -reale(4713710,0xd2e19a34f30b0LL),reale(28712685662LL,0x1fa68a0342ac7LL),
5029  // C4[3], coeff of eps^6, polynomial in n of order 23
5030  -real(0xe0ca252d14c000LL),-real(0x15a70af15f24000LL),
5031  -real(0x222b3f817554000LL),-real(0x375f97b48cd8000LL),
5032  -real(0x5c7b9631f8ac000LL),-real(0x9fe2527c7fcc000LL),
5033  -real(0x11face3d5ef34000LL),-real(0x21e77d8dabde0000LL),
5034  -real(0x439dcbf7fdccc000LL),-reale(2310,0x1731d0ccf4000LL),
5035  -reale(5373,0x35ee2c1554000LL),-reale(13965,0xf39edc32e8000LL),
5036  -reale(42247,0xa0aa0b1cac000LL),-reale(159930,0xa2319a759c000LL),
5037  -reale(887131,0xc123fa86b4000LL),-reale(12685735,0x6243721af0000LL),
5038  reale(150650948,0x968da6a8b4000LL),-reale(467294064,0x1610ada8c4000LL),
5039  reale(599544322,0x5feb9b1dac000LL),-reale(214883240,0x150075a4f8000LL),
5040  -reale(244806233,0x53bd4b2bac000LL),reale(272520146,0x88b0e96a94000LL),
5041  -reale(87760725,0x27ae1fc734000LL),reale(5827860,0xa7a2901c3a740LL),
5042  reale(28712685662LL,0x1fa68a0342ac7LL),
5043  // C4[3], coeff of eps^5, polynomial in n of order 24
5044  -real(0x32b69e04189800LL),-real(0x4bd39320660300LL),
5045  -real(0x73a508e7ef1600LL),-real(0xb44a7ec206b900LL),
5046  -real(0x1200d9d52c6d400LL),-real(0x1d916a5ad4bcf00LL),
5047  -real(0x321a3f994641200LL),-real(0x57fce6d660f8500LL),
5048  -real(0xa10c564a22b1000LL),-real(0x1356fa3ebba41b00LL),
5049  -real(0x275fd13435900e00LL),-real(0x5604e2d76283d100LL),
5050  -reale(3283,0xdf8f52c874c00LL),-reale(8783,0x8ddc09700e700LL),
5051  -reale(27451,0x143e179f50a00LL),-reale(107903,0xe48c7d6f59d00LL),
5052  -reale(625732,0xe2abef41d8800LL),-reale(9446536,0xacc19c0743300LL),
5053  reale(120325828,0x5507fb0eafa00LL),-reale(412649247,0xc3fe82376e900LL),
5054  reale(633089704,0xd19d26ed03c00LL),-reale(418090362,0x84d33548fff00LL),
5055  -reale(13712613,0x4e3334f720200LL),reale(163180098,0x55c7c31664b00LL),
5056  -reale(61921019,0x751f3b2bed108LL),
5057  reale(28712685662LL,0x1fa68a0342ac7LL),
5058  // C4[3], coeff of eps^4, polynomial in n of order 25
5059  -real(0x30fab48eb2c00LL),-real(0x4779db0cde000LL),
5060  -real(0x6a1a5308c1400LL),-real(0xa07c7893bf800LL),
5061  -real(0xf7d15b087bc00LL),-real(0x1878e181999000LL),
5062  -real(0x27ab652bf7a400LL),-real(0x422ed0b6682800LL),
5063  -real(0x721448fff54c00LL),-real(0xcc1e5699294000LL),
5064  -real(0x17d5829db9a3400LL),-real(0x2ed74923dde5800LL),
5065  -real(0x61c84aba5ffdc00LL),-real(0xdbaa1b53c88f000LL),
5066  -real(0x21cc8beefe3fc400LL),-real(0x5da8efb832aa8800LL),
5067  -reale(4876,0x5d83861736c00LL),-reale(20082,0x8bb9af0c4a000LL),
5068  -reale(123005,0x97d1502b45400LL),-reale(1983151,0x65e045fd8b800LL),
5069  reale(27425226,0x9c6669ee40400LL),-reale(105081920,0xe8c662ae85000LL),
5070  reale(191976586,0x46cce583c1c00LL),-reale(186491540,0xf45203874e800LL),
5071  reale(93245770,0x7a2901c3a7400LL),-reale(18940547,0x20d0545bbdf90LL),
5072  reale(9570895220LL,0xb53783566b8edLL),
5073  // C4[3], coeff of eps^3, polynomial in n of order 26
5074  -real(0x10330cb256200LL),-real(0x172cb16211100LL),
5075  -real(0x21a8187537800LL),-real(0x31b06260f1f00LL),
5076  -real(0x4ab014ab28e00LL),-real(0x7280309c9cd00LL),
5077  -real(0xb366eef7be400LL),-real(0x11ff8a58b05b00LL),
5078  -real(0x1dae666558ba00LL),-real(0x327547ac4a0900LL),
5079  -real(0x58c9207d125000LL),-real(0xa2826b77361700LL),
5080  -real(0x137557a5841e600LL),-real(0x275355b4b1bc500LL),
5081  -real(0x54b37d85300bc00LL),-real(0xc517d06239a5300LL),
5082  -real(0x1f8f2f623d981200LL),-real(0x5b85a3034c390100LL),
5083  -reale(5020,0xa2ee6bc312800LL),-reale(21965,0x48d3177570f00LL),
5084  -reale(144343,0x4c469a2853e00LL),-reale(2526007,0xb6d389c1bbd00LL),
5085  reale(38395317,0x415c2de726c00LL),-reale(163180098,0x55c7c31664b00LL),
5086  reale(326360196,0xab8f862cc9600LL),-reale(303048754,0xd0545bbdf900LL),
5087  reale(104173009,0x3479cff894d98LL),
5088  reale(28712685662LL,0x1fa68a0342ac7LL),
5089  // C4[4], coeff of eps^29, polynomial in n of order 0
5090  4519424,real(0x13ed3512585LL),
5091  // C4[4], coeff of eps^28, polynomial in n of order 1
5092  real(322327509504LL),real(86419033792LL),real(0x12e7203d54087bdLL),
5093  // C4[4], coeff of eps^27, polynomial in n of order 2
5094  real(0xdf868e997000LL),-real(0xc54488fde800LL),real(0x67996a8dfb80LL),
5095  reale(6219,0x86ed0fee71e5LL),
5096  // C4[4], coeff of eps^26, polynomial in n of order 3
5097  real(0x1e30d5f17398800LL),-real(0x20335f44c005000LL),
5098  real(0x8656a9da59d800LL),real(0x246f3281df3200LL),
5099  reale(1871928,0xea4bbbb5bea41LL),
5100  // C4[4], coeff of eps^25, polynomial in n of order 4
5101  real(0x640278dc982000LL),-real(0x64de2b5e388800LL),
5102  real(0x266cf1cb211000LL),-real(0x24af02897bd800LL),
5103  real(0x125236c4932c80LL),reale(225070,0xa1cd0c0f186c5LL),
5104  // C4[4], coeff of eps^24, polynomial in n of order 5
5105  real(0x183393315f62f400LL),-real(0x147c8a635ba4f000LL),
5106  real(0xaadb07a361e2c00LL),-real(0xbd0a07cdca37800LL),
5107  real(0x2c490db64a86400LL),real(0xc3000bbe3e2580LL),
5108  reale(8327613,0x62a2be2e87a79LL),
5109  // C4[4], coeff of eps^23, polynomial in n of order 6
5110  reale(7399,0xe4703b1ceb000LL),-reale(4925,0x718bf750ef800LL),
5111  reale(3656,0xc01290e152000LL),-reale(3594,0x9ae0aefbbc800LL),
5112  real(0x5080258211e79000LL),-real(0x5458466826cf9800LL),
5113  real(0x27a09e95cf36b080LL),reale(97921247,0xc3bd6c206251LL),
5114  // C4[4], coeff of eps^22, polynomial in n of order 7
5115  reale(4319137,0xe5044c1364800LL),-reale(2259378,0xc043aee633000LL),
5116  reale(2431286,0xcceb783bf5800LL),-reale(1865690,0x884902c9a2000LL),
5117  reale(996566,0x94ae3b7946800LL),-reale(1135368,0x2cb1c30811000LL),
5118  reale(231629,0x92b25177d7800LL),reale(64961,0x89605803fda00LL),
5119  reale(36916310137LL,0x41f43bb0c949LL),
5120  // C4[4], coeff of eps^21, polynomial in n of order 8
5121  reale(6174501,0x53f34a829c000LL),-reale(2885765,0xddf01a0f35800LL),
5122  reale(4089976,0x588848e445000LL),-reale(2309244,0x73683320c8800LL),
5123  reale(1950621,0xac1b944ace000LL),-reale(1810054,0xa24c07eb4b800LL),
5124  reale(609590,0x74daa18497000LL),-reale(712107,0x16cff78e5e800LL),
5125  reale(310317,0x16957f6a36b80LL),reale(36916310137LL,0x41f43bb0c949LL),
5126  // C4[4], coeff of eps^20, polynomial in n of order 9
5127  reale(7763095,0xd98a0c3214600LL),-reale(4551997,0xf65d38a54d000LL),
5128  reale(6348004,0x7dcc619ba1a00LL),-reale(2777846,0x11091dc381c00LL),
5129  reale(3645151,0x5af876afd6e00LL),-reale(2403756,0x12692c3266800LL),
5130  reale(1377366,0xde24866584200LL),-reale(1585712,0xf2192bea6b400LL),
5131  reale(268682,0xb0f056b079600LL),reale(77255,0xca5a822ebf740LL),
5132  reale(36916310137LL,0x41f43bb0c949LL),
5133  // C4[4], coeff of eps^19, polynomial in n of order 10
5134  reale(8073134,0x8bff962f2e000LL),-reale(9331256,0xe8e10405e1000LL),
5135  reale(8608510,0x42ad0321d8000LL),-reale(3959617,0x4c778c1e2f000LL),
5136  reale(6283090,0x55033b3d82000LL),-reale(2832307,0xbbdb17809d000LL),
5137  reale(2955095,0x929c8347ec000LL),-reale(2459067,0xd43d49c36b000LL),
5138  reale(787004,0x9cc4866d6000LL),-reale(1039103,0x6b1983acd9000LL),
5139  reale(412222,0xf695367aa1b00LL),reale(36916310137LL,0x41f43bb0c949LL),
5140  // C4[4], coeff of eps^18, polynomial in n of order 11
5141  reale(8586281,0xffd2991fd000LL),-reale(20926106,0xdd733d721a000LL),
5142  reale(9282973,0x193483c94f000LL),-reale(8121077,0x9b55004148000LL),
5143  reale(9430655,0x90c0e29221000LL),-reale(3512067,0x80c2ac76000LL),
5144  reale(5840995,0x1886eb4173000LL),-reale(3061324,0xab1a78b4a4000LL),
5145  reale(2049544,0x4067911445000LL),-reale(2292525,0x617c054ad2000LL),
5146  reale(297833,0x966e637f97000LL),reale(88539,0x9a2e50b8c6400LL),
5147  reale(36916310137LL,0x41f43bb0c949LL),
5148  // C4[4], coeff of eps^17, polynomial in n of order 12
5149  reale(32196457,0xd679f8ae1c000LL),-reale(40594018,0x37167c5ef5000LL),
5150  reale(8052650,0x2eda271162000LL),-reale(20325613,0xcd34eeff17000LL),
5151  reale(11030346,0x5827875768000LL),-reale(6662972,0x9685f0fc59000LL),
5152  reale(10015916,0xfa65faac6e000LL),-reale(3377057,0x1ef6021e7b000LL),
5153  reale(4892320,0x94cb79bcb4000LL),-reale(3369439,0x93437f1d3d000LL),
5154  reale(1068721,0xdee482d47a000LL),-reale(1596884,0xcb3e26805f000LL),
5155  reale(562334,0xcf5270735f500LL),reale(36916310137LL,0x41f43bb0c949LL),
5156  // C4[4], coeff of eps^16, polynomial in n of order 13
5157  reale(239019678,0x7928c61a8b800LL),-reale(41200119,0x147c0b11e000LL),
5158  reale(27063572,0xac3757be98800LL),-reale(45155983,0xc412cf1f79000LL),
5159  reale(8354845,0xf8b6ea7445800LL),-reale(18750027,0x4e7377c014000LL),
5160  reale(13292220,0xfed958edd2800LL),-reale(5165101,0x26aa3105af000LL),
5161  reale(10025000,0x43fec217f800LL),-reale(3715677,0xed5a4430a000LL),
5162  reale(3405288,0xc16fe1018c800LL),-reale(3440521,0x6cb0e4f2e5000LL),
5163  reale(291108,0x30be23439800LL),reale(90314,0xe93f4121c6900LL),
5164  reale(36916310137LL,0x41f43bb0c949LL),
5165  // C4[4], coeff of eps^15, polynomial in n of order 14
5166  -reale(301344600,0x1f7a69f35a000LL),-reale(137666269,0x81776c9d9b000LL),
5167  reale(257500426,0xa27a71193c000LL),-reale(52745704,0xa8e59f44d000LL),
5168  reale(20527629,0x3707e00852000LL),-reale(49389175,0x1679a6a55f000LL),
5169  reale(10057417,0xa546ce8428000LL),-reale(15960633,0x79a78f6a91000LL),
5170  reale(15828795,0x3b7a7e96fe000LL),-reale(4041479,0x5385608da3000LL),
5171  reale(9015452,0x8a056dcb14000LL),-reale(4531739,0xb18fd7c855000LL),
5172  reale(1608583,0x5c81da4aaa000LL),-reale(2620079,0xb9c03a2467000LL),
5173  reale(790676,0xf12036cb88d00LL),reale(36916310137LL,0x41f43bb0c949LL),
5174  // C4[4], coeff of eps^14, polynomial in n of order 15
5175  -reale(152316078,0x9ee9710b1f000LL),reale(396132268,0xf6300698d2000LL),
5176  -reale(331944543,0x2a26efc8bd000LL),-reale(111967823,0x409ccb544c000LL),
5177  reale(276102802,0x8592b62d25000LL),-reale(69409637,0x2e4659b6a000LL),
5178  reale(12806364,0xaa4a38387000LL),-reale(52382533,0xaa3aad6588000LL),
5179  reale(13858261,0x7d9fda6f69000LL),-reale(11925525,0x17f68feba6000LL),
5180  reale(17994828,0x2633a57dcb000LL),-reale(3926621,0x9c334da6c4000LL),
5181  reale(6610729,0xa84ec063ad000LL),-reale(5341800,0xcfe0c57fe2000LL),
5182  reale(171304,0xc92dc0ce0f000LL),reale(53498,0x8a12fdd94c400LL),
5183  reale(36916310137LL,0x41f43bb0c949LL),
5184  // C4[4], coeff of eps^13, polynomial in n of order 16
5185  reale(945329,0x3e694a5630000LL),reale(13046260,0xd11553dc81000LL),
5186  -reale(145063327,0x6c5bbd04f6000LL),reale(395288944,0x9758cc3483000LL),
5187  -reale(364989750,0x4da45c465c000LL),-reale(77659847,0x7f601a5fdb000LL),
5188  reale(293261136,0xdb46a6c9be000LL),-reale(92956699,0x68d702f4d9000LL),
5189  reale(4748491,0xd717292318000LL),-reale(52641236,0xde7217eeb7000LL),
5190  reale(20401071,0xa831b35d72000LL),-reale(7165143,0xe2daef21b5000LL),
5191  reale(18530179,0x70f1fa908c000LL),-reale(5449998,0x995f61f213000LL),
5192  reale(2985284,0xf423c13426000LL),-reale(4674955,0x4c99b17411000LL),
5193  reale(1148405,0xaa811667d8300LL),reale(36916310137LL,0x41f43bb0c949LL),
5194  // C4[4], coeff of eps^12, polynomial in n of order 17
5195  reale(39064,0xc457745427a00LL),reale(149707,0xe179ab818a000LL),
5196  reale(834482,0xb3de3faf4c600LL),reale(11844090,0x43801d34c0c00LL),
5197  -reale(136492367,0x606ac4f4b6e00LL),reale(391413380,0x8b1b355567800LL),
5198  -reale(399991879,0xf56c51d232200LL),-reale(32313943,0x670cb1cd91c00LL),
5199  reale(306137820,0x47c0d4df8aa00LL),-reale(125355715,0x12c37db13b000LL),
5200  -reale(1549012,0x61de67b1d0a00LL),-reale(48002827,0x1ef791fca4400LL),
5201  reale(29707099,0x80264b6e6c200LL),-reale(3304868,0xd90dacdedd800LL),
5202  reale(15595740,0x1c41b85df0e00LL),-reale(8339676,0x731c5b6cf6c00LL),
5203  -reale(264319,0x3253133a92600LL),-reale(128183,0x1fd72f4c70540LL),
5204  reale(36916310137LL,0x41f43bb0c949LL),
5205  // C4[4], coeff of eps^11, polynomial in n of order 18
5206  reale(3796,0xb8b80a685d000LL),reale(10243,0xe5415b1644800LL),
5207  reale(32134,0x75fe9c2f28000LL),reale(125896,0x13cc0b67cb800LL),
5208  reale(720062,0x2eb5ef2cf3000LL),reale(10542664,0x8e7784ebe2800LL),
5209  -reale(126401502,0xa942d02d22000LL),reale(383396973,0xa914c081a9800LL),
5210  -reale(435856143,0x9e18e4ddf7000LL),reale(26921352,0xa17bcee040800LL),
5211  reale(309790567,0x432113bb94000LL),-reale(168177156,0xf5a6b5d938800LL),
5212  -reale(1732899,0x7848d10f61000LL),-reale(36033193,0x6ff05a93a1800LL),
5213  reale(39850986,0x4a7ce5d24a000LL),-reale(3520516,0x12d4d9afda800LL),
5214  reale(7904559,0x47211641b5000LL),-reale(9293198,0x11e52b76c3800LL),
5215  reale(1712350,0xd1c47193d5a80LL),reale(36916310137LL,0x41f43bb0c949LL),
5216  // C4[4], coeff of eps^10, polynomial in n of order 19
5217  real(0x20b0c3dbe662b800LL),real(0x49a4ee6b654d5000LL),
5218  reale(2895,0xbb9a481b3e800LL),reale(7963,0xd6290c9168000LL),
5219  reale(25525,0x742091bd91800LL),reale(102493,0xec03f49fb000LL),
5220  reale(603292,0x6fe940faa4800LL),reale(9144553,0x3f081030e000LL),
5221  -reale(114581171,0x9502f66408800LL),reale(369767644,0x159b783921000LL),
5222  -reale(470438620,0x42537ac0f5800LL),reale(102998223,0x33db2118b4000LL),
5223  reale(295924658,0xfd504b0d5d800LL),-reale(220875824,0xd68590c9b9000LL),
5224  reale(12088406,0x3b87c77470800LL),-reale(15966308,0xf7cc70b9a6000LL),
5225  reale(44660638,0xbb68d3ddc3800LL),-reale(11155854,0x316b572a93000LL),
5226  -reale(1400757,0x91d7719929800LL),-reale(909990,0x5b4dcbdcd9200LL),
5227  reale(36916310137LL,0x41f43bb0c949LL),
5228  // C4[4], coeff of eps^9, polynomial in n of order 20
5229  real(0x55091490e3fe000LL),real(0xab3101736f26800LL),
5230  real(0x16d77945c4e3b000LL),real(0x345d2a91137d7800LL),
5231  reale(2099,0xc55d2c398000LL),reale(5898,0x424192198800LL),
5232  reale(19366,0xa6f5f449f5000LL),reale(79943,0x847cdfac49800LL),
5233  reale(486014,0x6a1dc16732000LL),reale(7659629,0x94cc8fca800LL),
5234  -reale(100839015,0x651046eed1000LL),reale(348607247,0x22ddc22bfb800LL),
5235  -reale(499815073,0x4df2756234000LL),reale(197958555,0x77a0b2f8bc800LL),
5236  reale(251323198,0x2663cfb2e9000LL),-reale(276534810,0xe292670a12800LL),
5237  reale(51555588,0x6a67a23666000LL),reale(5587968,0x5e92831b6e800LL),
5238  reale(32523682,0xed2ae23e23000LL),-reale(21111776,0x46401336e0800LL),
5239  reale(2489921,0xe3c1e337a6d80LL),reale(36916310137LL,0x41f43bb0c949LL),
5240  // C4[4], coeff of eps^8, polynomial in n of order 21
5241  real(0xeb8379f6b27c00LL),real(0x1b6c4de1f1d7000LL),
5242  real(0x355a1dadc956400LL),real(0x6d308de46411800LL),
5243  real(0xed54313f63d4c00LL),real(0x22ae87428a2ac000LL),
5244  real(0x58ce5dd980bc3400LL),reale(4090,0xd3c824bc46800LL),
5245  reale(13806,0x44b4a8a441c00LL),reale(58809,0x7ab991df81000LL),
5246  reale(370898,0xe410033e70400LL),reale(6109620,0x6402b9f6fb800LL),
5247  -reale(85053139,0x4bf446ca91400LL),reale(317515928,0x1b63894556000LL),
5248  -reale(517123103,0xa7a388b5a2c00LL),reale(310296682,0xe98bc80130800LL),
5249  reale(156996715,0xaa3cf3c05bc00LL),-reale(312601560,0xdd28200ed5000LL),
5250  reale(125126811,0xf01e02788a400LL),reale(4091818,0xb5091207e5800LL),
5251  -reale(866059,0xc9a79cf1f7400LL),-reale(4943757,0xf4721fe538b80LL),
5252  reale(36916310137LL,0x41f43bb0c949LL),
5253  // C4[4], coeff of eps^7, polynomial in n of order 22
5254  real(0x2814d49c0c5000LL),real(0x468b0d3a3db800LL),
5255  real(0x80724d98876000LL),real(0xf31dbc49b20800LL),
5256  real(0x1e12cb4a6a67000LL),real(0x3eb5a58b5455800LL),
5257  real(0x8b1eef20fbf8000LL),real(0x14cb29a266eda800LL),
5258  real(0x36974c82ca289000LL),reale(2585,0xefae20720f800LL),
5259  reale(9007,0x1d6baf437a000LL),reale(39779,0x24ec74fd54800LL),
5260  reale(261696,0x442f64f42b000LL),reale(4534975,0xa5b17f809800LL),
5261  -reale(67279179,0x4d9bf05604000LL),reale(273758534,0xd27122c18e800LL),
5262  -reale(510920394,0x40d515b3000LL),reale(428723861,0x53ee2b6143800LL),
5263  -reale(7330129,0x37be948582000LL),-reale(275708250,0xae16364977800LL),
5264  reale(204390109,0xe684af0fef000LL),-reale(52540960,0x7463315742800LL),
5265  reale(2056891,0xfeee14beab380LL),reale(36916310137LL,0x41f43bb0c949LL),
5266  // C4[4], coeff of eps^6, polynomial in n of order 23
5267  real(0x628e4f4bb7800LL),real(0xa60e374943000LL),real(0x11fae77940e800LL),
5268  real(0x2022ddc061a000LL),real(0x3b7f2e2d7a5800LL),
5269  real(0x72aa26ca9f1000LL),real(0xe77392a11fc800LL),
5270  real(0x1ed1e51d0348000LL),real(0x460248a5fa93800LL),
5271  real(0xabd9e84dc89f000LL),real(0x1d078c2cd5cea800LL),
5272  real(0x58c9fda5cf076000LL),reale(5134,0xa77137081800LL),
5273  reale(23653,0x63d76094d000LL),reale(163469,0x772f4630d8800LL),
5274  reale(3004667,0x8d384291a4000LL),-reale(47956830,0xd53f134a90800LL),
5275  reale(214953528,0xfe0a5a4ffb000LL),-reale(463620631,0xbff95a7639800LL),
5276  reale(519033396,0x411553aad2000LL),-reale(237300381,0xd565fafaa2800LL),
5277  -reale(84296486,0x10fabff57000LL),reale(142611178,0x607af3a3b4800LL),
5278  -reale(46622885,0x3d1480e1d3a00LL),reale(36916310137LL,0x41f43bb0c949LL),
5279  // C4[4], coeff of eps^5, polynomial in n of order 24
5280  real(0xc0b5b2cac000LL),real(0x139ac5d2ed800LL),real(0x20abe97223000LL),
5281  real(0x37e2f8cba0800LL),real(0x6269b1d1ba000LL),real(0xb3074a8a43800LL),
5282  real(0x151de1e3911000LL),real(0x298e5ccaa76800LL),
5283  real(0x55d208375c8000LL),real(0xbb7ea958fd9800LL),
5284  real(0x1b5e1854857f000LL),real(0x4547c4b8360c800LL),
5285  real(0xc1cdc899e5d6000LL),real(0x2682d6f5e00af800LL),
5286  reale(2326,0xf44888e46d000LL),reale(11275,0x7d4afe8b62800LL),
5287  reale(82638,0x859516eee4000LL),reale(1628359,0xc1653179c5800LL),
5288  -reale(28286265,0xc31f9b1d25000LL),reale(141205400,0x2bb5164778800LL),
5289  -reale(353352393,0x632221a20e000LL),reale(504046796,0x730ece181b800LL),
5290  -reale(416863444,0x7c7b16f237000LL),reale(186491540,0xf45203874e800LL),
5291  -reale(34967163,0xedcf60a95eb80LL),reale(36916310137LL,0x41f43bb0c949LL),
5292  // C4[4], coeff of eps^4, polynomial in n of order 25
5293  real(0xe07098dae00LL),real(0x16338b625000LL),real(0x23dda179f200LL),
5294  real(0x3b41a69cf400LL),real(0x645a89a6b600LL),real(0xaeabe0e09800LL),
5295  real(0x1397028dcfa00LL),real(0x246014e923c00LL),real(0x4633de275be00LL),
5296  real(0x8d95c8a56e000LL),real(0x12c670f9ba0200LL),
5297  real(0x2a433484738400LL),real(0x6608a70542c600LL),
5298  real(0x10c10ac322d2800LL),real(0x30ddb4b92590a00LL),
5299  real(0xa2e30513d28cc00LL),real(0x289386109855ce00LL),
5300  reale(3347,0x17499d2cb7000LL),reale(26358,0x5763b5c021200LL),
5301  reale(564821,0x99c65b39a1400LL),-reale(10825747,0x58af29d092a00LL),
5302  reale(60624185,0x23d4ea299b800LL),-reale(172778927,0xa61ece902e600LL),
5303  reale(279737311,0x6e7b054af5c00LL),-reale(233114426,0x3166846922200LL),
5304  reale(75762188,0x8341516ef7e40LL),reale(36916310137LL,0x41f43bb0c949LL),
5305  // C4[5], coeff of eps^29, polynomial in n of order 0
5306  3108352,real(0x4338129a0b3LL),
5307  // C4[5], coeff of eps^28, polynomial in n of order 1
5308  -real(4961047LL<<17),real(304969986048LL),real(0x171a7cbcbc0a5e7LL),
5309  // C4[5], coeff of eps^27, polynomial in n of order 2
5310  -real(0xb7a8cf8589000LL),real(0x25cdf8a9f5800LL),real(0xaa8ee05df480LL),
5311  reale(53207,0x4825dfa147919LL),
5312  // C4[5], coeff of eps^26, polynomial in n of order 3
5313  -real(0x4519d2e6066000LL),real(0x17b1d503134000LL),
5314  -real(0x1b53dc2d3c2000LL),real(0xc104a529c3b00LL),
5315  reale(207992,0x1a086a30a3679LL),
5316  // C4[5], coeff of eps^25, polynomial in n of order 4
5317  -real(0xe48436400f9e000LL),real(0x825cbe3b5113800LL),
5318  -real(0x9657faac8f9f000LL),real(0x1ac735d19d16800LL),
5319  real(0x7b639e59c13780LL),reale(8527676,0x2b5901ca2b961LL),
5320  // C4[5], coeff of eps^24, polynomial in n of order 5
5321  -real(0x13b86e0d5c5dc000LL),real(0x135f9b0385fb0000LL),
5322  -real(0x10df1064c3304000LL),real(0x58b0ae17a818000LL),
5323  -real(0x70d05036b8ec000LL),real(0x2e5299a0b610e00LL),
5324  reale(10178194,0x2338af8e3405bLL),
5325  // C4[5], coeff of eps^23, polynomial in n of order 6
5326  -reale(126383,0x5f6b81564f000LL),reale(192332,0x2215a4d90d800LL),
5327  -reale(113392,0x893928fcaa000LL),reale(71665,0x3fb557978e800LL),
5328  -reale(81791,0xa6f9503f45000LL),reale(12036,0x1a6fad5adf800LL),
5329  reale(3561,0x9aef6f2cefa80LL),reale(3470764200LL,0xea81d86b4b937LL),
5330  // C4[5], coeff of eps^22, polynomial in n of order 7
5331  -reale(191647,0x188f775ada000LL),reale(308186,0x45ee8f2434000LL),
5332  -reale(124928,0xd21a49314e000LL),reale(153616,0xaed0e35eb8000LL),
5333  -reale(118466,0xc4b6a2a9a2000LL),reale(38029,0x77ad4b77bc000LL),
5334  -reale(53612,0x41f60b8316000LL),reale(20169,0xecfa5f7fa8900LL),
5335  reale(3470764200LL,0xea81d86b4b937LL),
5336  // C4[5], coeff of eps^21, polynomial in n of order 8
5337  -reale(5169843,0xc81db86efc000LL),reale(5341939,0xe957aa505800LL),
5338  -reale(2049228,0x2e9753666d000LL),reale(3734678,0xdcd2e44998800LL),
5339  -reale(1762099,0xebebc251fe000LL),reale(1337844,0xa441c7cbb800LL),
5340  -reale(1455577,0x7e18adc04f000LL),reale(163809,0xd9aab3cbce800LL),
5341  reale(50215,0x8f7a6f7ead780LL),reale(45119934611LL,0xe897fd72d67cbLL),
5342  // C4[5], coeff of eps^20, polynomial in n of order 9
5343  -reale(11201228,0x9af12fea90000LL),reale(5330620,7096189457LL<<19),
5344  -reale(4084126,0xa473ecba70000LL),reale(5776338,0xc1238f4360000LL),
5345  -reale(1850318,0x7e36514750000LL),reale(3091001,2788978033LL<<18),
5346  -reale(1978996,0x9854b5b30000LL),reale(651396,0xde4e2e0920000LL),
5347  -reale(1009381,0x5e1878c010000LL),reale(341219,0x67868049b6800LL),
5348  reale(45119934611LL,0xe897fd72d67cbLL),
5349  // C4[5], coeff of eps^19, polynomial in n of order 10
5350  -reale(19364139,0xf3aad6c27e000LL),reale(3661269,0x231a8ee911000LL),
5351  -reale(10171658,0x9bc1444518000LL),reale(6650152,0x1449aa44ff000LL),
5352  -reale(2982446,0xb2f133d6b2000LL),reale(5796709,0x225c7b8fcd000LL),
5353  -reale(2004712,0xb33d0f538c000LL),reale(2087887,0x2718a4e53b000LL),
5354  -reale(2041244,0xb9c4a8d7e6000LL),reale(150337,0x64e8ec0109000LL),
5355  reale(48205,0x4eea8f2f13300LL),reale(45119934611LL,0xe897fd72d67cbLL),
5356  // C4[5], coeff of eps^18, polynomial in n of order 11
5357  -reale(17821498,0x43ce2fe394000LL),reale(8113989,0x34042cf6f8000LL),
5358  -reale(21055211,0x1d823792dc000LL),reale(4458324,0xaba1762760000LL),
5359  -reale(8384573,0x54084121e4000LL),reale(8079221,0xcbb99849c8000LL),
5360  -reale(2172398,0x503335ed2c000LL),reale(5129813,0x3b8a4c21b0000LL),
5361  -reale(2481567,0xadec795134000LL),reale(934125,9279934035LL<<15),
5362  -reale(1531704,0x9cc504aa7c000LL),reale(453383,0xd34e451346a00LL),
5363  reale(45119934611LL,0xe897fd72d67cbLL),
5364  // C4[5], coeff of eps^17, polynomial in n of order 12
5365  reale(4095301,0x789aeb9e64000LL),reale(49542396,0x46ab457e8d000LL),
5366  -reale(24303219,0x1ccf0dd62000LL),reale(4679495,0x21a30e03df000LL),
5367  -reale(21666597,0xecbbb1868000LL),reale(6429258,0x6611bb6911000LL),
5368  -reale(5963806,0x7f45fe6c6e000LL),reale(9141324,0xab5773fc63000LL),
5369  -reale(2043796,0x5ca6f33334000LL),reale(3626747,0xd85dd12c15000LL),
5370  -reale(2919955,0xba0fdf867a000LL),reale(85758,0x333e03c667000LL),
5371  reale(28339,0x9119c9ad54d00LL),reale(45119934611LL,0xe897fd72d67cbLL),
5372  // C4[5], coeff of eps^16, polynomial in n of order 13
5373  -reale(273240474,0x43c43c74c8000LL),reale(133674826,0x952bfc30e0000LL),
5374  reale(7048142,0x68e4684408000LL),reale(44883009,0xdb6a70b90000LL),
5375  -reale(32370151,0x153b9e91a8000LL),reale(2006331,0xa0ac245340000LL),
5376  -reale(20459012,0x9d1a27ed8000LL),reale(9634139,0x6e1e5ebef0000LL),
5377  -reale(3415127,0x8d101d0c88000LL),reale(9090639,8214448173LL<<17),
5378  -reale(2849328,0xea461fc3b8000LL),reale(1554483,7516134885LL<<16),
5379  -reale(2460922,0x6540542d68000LL),reale(615586,0x6f27f96118400LL),
5380  reale(45119934611LL,0xe897fd72d67cbLL),
5381  // C4[5], coeff of eps^15, polynomial in n of order 14
5382  reale(385255297,0xc522d651da000LL),-reale(58599463,0x810289e63d000LL),
5383  -reale(271784816,0x96bdc01bbc000LL),reale(164665597,0xfc4f4e3665000LL),
5384  reale(6169937,0xa7ea1cfd2e000LL),reale(36278794,0xf1d4bf77a7000LL),
5385  -reale(41327996,0x5935502f28000LL),reale(1406713,0xae66a659c9000LL),
5386  -reale(16753028,0x6b0d0fac7e000LL),reale(13550589,0x7d5a3390b000LL),
5387  -reale(1765295,0x851b6e8694000LL),reale(7142364,0xca525091ad000LL),
5388  -reale(4183412,0x818c59892a000LL),-reale(96164,0xa4307ac011000LL),
5389  -reale(44020,0x281c2d0515b00LL),reale(45119934611LL,0xe897fd72d67cbLL),
5390  // C4[5], coeff of eps^14, polynomial in n of order 15
5391  reale(85300002,0xc7e70a9f1c000LL),-reale(294351273,0xafb8edef98000LL),
5392  reale(403760509,0xda2cbc2e94000LL),-reale(107444454,0x9ae8f34870000LL),
5393  -reale(261509454,0x4bda846b4000LL),reale(200593259,0xcaf344c1b8000LL),
5394  -reale(1492598,0x1c0b3e713c000LL),reale(23203659,0x98196f9e60000LL),
5395  -reale(49434335,0xf8209c0184000LL),reale(4620325,0x4eb0e8bd08000LL),
5396  -reale(10475101,0x343acca80c000LL),reale(16597245,8542632147LL<<16),
5397  -reale(2356576,0x3bbee61554000LL),reale(3249396,0x1edbdd7e58000LL),
5398  -reale(4240477,0x930e83f9dc000LL),reale(851256,0x2b979a0197a00LL),
5399  reale(45119934611LL,0xe897fd72d67cbLL),
5400  // C4[5], coeff of eps^13, polynomial in n of order 16
5401  -reale(334885,0xc6bdc7fcb0000LL),-reale(5563880,0xa3a405a9f1000LL),
5402  reale(77196254,0x955c2ca786000LL),-reale(280592470,0x60fd2cd013000LL),
5403  reale(419465490,0x135ebd637c000LL),-reale(164134806,0xd03e535795000LL),
5404  -reale(238238642,0xf95f61c30e000LL),reale(239782224,0x6d53e5d49000LL),
5405  -reale(20068072,0x4afa414658000LL),reale(6399560,0x53e56b4c47000LL),
5406  -reale(53380994,0xb54d3160a2000LL),reale(13179100,0x7f23319325000LL),
5407  -reale(3190623,0x71f1454c2c000LL),reale(15946535,0x7112262fa3000LL),
5408  -reale(5597132,0xd891768336000LL),-reale(517466,0x3872db407f000LL),
5409  -reale(280398,0x37b65ce5ca500LL),reale(45119934611LL,0xe897fd72d67cbLL),
5410  // C4[5], coeff of eps^12, polynomial in n of order 17
5411  -reale(9362,0x69735ac9d0000LL),-reale(41698,3327447843LL<<20),
5412  -reale(274851,0x56e2bdf830000LL),-reale(4724425,0xa83b5c01a0000LL),
5413  reale(68370240,0x5baadc4870000LL),-reale(262946254,0xff686b9240000LL),
5414  reale(430395020,0x66a0aab610000LL),-reale(228360148,0x64a23696e0000LL),
5415  -reale(196492193,0xc6f6cbf150000LL),reale(277855749,243039325LL<<19),
5416  -reale(54565881,0x3f0390efb0000LL),-reale(10430670,3478671393LL<<17),
5417  -reale(48232829,0x9769bd8710000LL),reale(26504611,0xd8be140f40000LL),
5418  reale(733724,0x9fb250690000LL),reale(8992810,0x9e09f3a6a0000LL),
5419  -reale(7946224,0xca1f6288d0000LL),reale(1176502,0x79934ee544800LL),
5420  reale(45119934611LL,0xe897fd72d67cbLL),
5421  // C4[5], coeff of eps^11, polynomial in n of order 18
5422  -real(0x274a66713f785000LL),-real(0x78cbe0a9df914800LL),
5423  -reale(6986,0x5cd0ed6f68000LL),-reale(31980,0xbaca6835fb800LL),
5424  -reale(217574,0x7dc41d384b000LL),-reale(3882916,0x2edd7dacd2800LL),
5425  reale(58859398,0xdc7c0f67f2000LL),-reale(240755855,0x78dc5ddf79800LL),
5426  reale(433769587,0x318800cb6f000LL),-reale(298315443,0xab75c9fd0800LL),
5427  -reale(129660149,0x66ef2473b4000LL),reale(305615878,0x94b6a51048800LL),
5428  -reale(109156237,0x593300db57000LL),-reale(18007247,0x43b21e10e800LL),
5429  -reale(29424146,0x61ad17715a000LL),reale(38156138,0xf0096c8a4a800LL),
5430  -reale(4683041,0xee399b1b9d000LL),-reale(1149725,0xbf46657f8c800LL),
5431  -reale(1106736,0x8c2ceac93e180LL),reale(45119934611LL,0xe897fd72d67cbLL),
5432  // C4[5], coeff of eps^10, polynomial in n of order 19
5433  -real(0x3bd4906e474e000LL),-real(0x97941b80ce3c000LL),
5434  -real(0x1a66716bc5afa000LL),-real(0x532298a0bc3e0000LL),
5435  -reale(4939,0xda9250746000LL),-reale(23308,0x7863f72384000LL),
5436  -reale(164254,0x558c90eef2000LL),-reale(3056120,0xcef6e5fe8000LL),
5437  reale(48766418,0xafc6204b42000LL),-reale(213414260,0xdc9b1ebcc000LL),
5438  reale(425806905,0x15318e0496000LL),-reale(369415923,0x757d6c39f0000LL),
5439  -reale(31178847,0x2c748765b6000LL),reale(306118804,0x213b4942ec000LL),
5440  -reale(181898310,0x263b289662000LL),reale(568685,0x4686791808000LL),
5441  -reale(309548,0x34bb55302e000LL),reale(32975540,0x34fcc4d2a4000LL),
5442  -reale(16246779,0x8dca2dd5da000LL),reale(1477949,0xdae92a7065f00LL),
5443  reale(45119934611LL,0xe897fd72d67cbLL),
5444  // C4[5], coeff of eps^9, polynomial in n of order 20
5445  -real(0x69d018a3b9e000LL),-real(0xed437c3919a800LL),
5446  -real(0x237e48279feb000LL),-real(0x5bea2151a0b3800LL),
5447  -real(0x10666acb6ec18000LL),-real(0x350c7e1643d3c800LL),
5448  -reale(3247,0xe2be74bf45000LL),-reale(15860,0x268da19a55800LL),
5449  -reale(116263,0x5e4790b892000LL),-reale(2266502,0x8314b6fb1e800LL),
5450  reale(38294967,0xecf46ee8e1000LL),-reale(180538484,0x555f9ed2b7800LL),
5451  reale(401643505,0x9c33fda5f4000LL),-reale(432258273,0xf8da98e440800LL),
5452  reale(101814780,0x5dd5e11f87000LL),reale(252370005,0x80f91f9d26800LL),
5453  -reale(252307179,0x99e21a8986000LL),reale(63455824,0x191a53ee5d800LL),
5454  reale(12621880,0x95e41abad000LL),reale(2033357,0xc3307b9c44800LL),
5455  -reale(4727243,0x20838a8bae80LL),reale(45119934611LL,0xe897fd72d67cbLL),
5456  // C4[5], coeff of eps^8, polynomial in n of order 21
5457  -real(0xc09a6adbf4000LL),-real(0x18cab6e3030000LL),
5458  -real(0x359d0ace62c000LL),-real(0x7ab7d9cc438000LL),
5459  -real(0x12c67ab580a4000LL),-real(856171152199LL<<18),
5460  -real(0x9233f1c13ddc000LL),-real(0x1e779de654b48000LL),
5461  -real(0x789f22a00b054000LL),-reale(9796,7021023797LL<<16),
5462  -reale(75089,0xae07706a8c000LL),-reale(1543001,0x638fcd4c58000LL),
5463  reale(27798321,0x1e96e700fc000LL),-reale(142306959,0xd3ad6eb8e0000LL),
5464  reale(355697955,0xce7f78ffc4000LL),-reale(469861249,0x5989105b68000LL),
5465  reale(259457720,0x1370b4ff4c000LL),reale(112194489,0x36d40ed990000LL),
5466  -reale(260872269,0xf8005192ec000LL),reale(151422395,0x58f7b5f388000LL),
5467  -reale(32332898,0xbdc6e34964000LL),reale(433029,0xe4d3ce78fba00LL),
5468  reale(45119934611LL,0xe897fd72d67cbLL),
5469  // C4[5], coeff of eps^7, polynomial in n of order 22
5470  -real(0x1441fa2f35000LL),-real(0x272c726527800LL),
5471  -real(0x4ebdd7b856000LL),-real(0xa564301b74800LL),
5472  -real(0x16d6333bd37000LL),-real(0x3580dec1951800LL),
5473  -real(0x865ae53c178000LL),-real(0x16ec61d7f65e800LL),
5474  -real(0x455fa2e228b9000LL),-real(0xef77f4cbfa3b800LL),
5475  -real(0x3d9c6e708569a000LL),-reale(5230,0x8a511fbc88800LL),
5476  -reale(42196,0xcfdba8cebb000LL),-reale(920786,0xf57a80c4e5800LL),
5477  reale(17837247,0x2fc56aab44000LL),-reale(100064916,0x5e72032af2800LL),
5478  reale(283253574,0xc37962f3c3000LL),-reale(455567530,0xe21e28364f800LL),
5479  reale(400948026,0xf028b16722000LL),-reale(118913774,0x549816fe9c800LL),
5480  -reale(112010399,0x36034a3e3f000LL),reale(121825743,0x78c43cf486800LL),
5481  -reale(36338425,0x426e19287b880LL),
5482  reale(45119934611LL,0xe897fd72d67cbLL),
5483  // C4[5], coeff of eps^6, polynomial in n of order 23
5484  -real(0x1b5badebe000LL),-real(0x326332ca4000LL),-real(0x5fd1bd93a000LL),
5485  -real(0xbcd8e5378000LL),-real(0x1837bef256000LL),
5486  -real(0x3404424ccc000LL),-real(0x75bf8cd1d2000LL),
5487  -real(38025986691LL<<17),-real(0x2dc96f11f6e000LL),
5488  -real(0x811a6e895f4000LL),-real(0x195036bc82ea000LL),
5489  -real(0x5af70d135548000LL),-real(0x187d57cdaa406000LL),
5490  -reale(2189,0x32d399c61c000LL),-reale(18742,0x385cb42a82000LL),
5491  -reale(438375,0xd6a8872030000LL),reale(9224813,0x89f7eb41e2000LL),
5492  -reale(57288808,0xfdc8999b44000LL),reale(184899999,0x331692f966000LL),
5493  -reale(357870966,0x3154fb6f18000LL),reale(431875147,0x7929b7544a000LL),
5494  -reale(318710001,0xe0f19bd36c000LL),reale(131641087,0xbb852faace000LL),
5495  -reale(23311442,0x9e8a4070e9d00LL),
5496  reale(45119934611LL,0xe897fd72d67cbLL),
5497  // C4[5], coeff of eps^5, polynomial in n of order 24
5498  -real(92116035LL<<14),-real(0x26e7bc2d800LL),-real(0x46d3779b000LL),
5499  -real(0x84e1d0c0800LL),-real(0x101cbc30a000LL),-real(0x2073376e3800LL),
5500  -real(0x442adb8b9000LL),-real(0x963884ff6800LL),-real(0x15dbd71e08000LL),
5501  -real(0x363ebc6d59800LL),-real(0x9122bbd857000LL),
5502  -real(0x1a90a4ab06c800LL),-real(0x56f0a68cd06000LL),
5503  -real(0x147a29992a8f800LL),-real(0x5d1402e6c175000LL),
5504  -real(0x228e263277d22800LL),-reale(5078,0x584c613b04000LL),
5505  -reale(128863,0x92233985800LL),reale(2982258,0xd360aa0ed000LL),
5506  -reale(20710125,0x5bbe664118800LL),reale(76213261,0x519df32cfe000LL),
5507  -reale(171479837,0xf7a363253b800LL),reale(241341994,0x2d1ed763cf000LL),
5508  -reale(186491540,0xf45203874e800LL),reale(58278606,0x8c59a11a48880LL),
5509  reale(45119934611LL,0xe897fd72d67cbLL),
5510  // C4[6], coeff of eps^29, polynomial in n of order 0
5511  139264,real(63626127165LL),
5512  // C4[6], coeff of eps^28, polynomial in n of order 1
5513  real(247833LL<<16),real(4782743552LL),real(0x219ae3fb400f15LL),
5514  // C4[6], coeff of eps^27, polynomial in n of order 2
5515  real(420150473LL<<18),-real(0x876551ce0000LL),real(0x350bfa156000LL),
5516  reale(4837,0x68f14547adebLL),
5517  // C4[6], coeff of eps^26, polynomial in n of order 3
5518  real(0x297e6b0e9e1000LL),-real(0x2e90de909aa000LL),
5519  real(0x6148b0a84b000LL),real(0x1d77336bca600LL),
5520  reale(207992,0x1a086a30a3679LL),
5521  // C4[6], coeff of eps^25, polynomial in n of order 4
5522  real(0x10bc6a9e4ee30000LL),-real(0xc179e3d40c9c000LL),
5523  real(0x3edf483df118000LL),-real(0x5c91fff78634000LL),
5524  real(0x216fdab58654400LL),reale(10078162,0xbedd8dc0620e7LL),
5525  // C4[6], coeff of eps^24, polynomial in n of order 5
5526  reale(17715,0xdb1cfba26000LL),-reale(7689,0x9976d7f948000LL),
5527  reale(6474,0xb1047d5d4a000LL),-reale(6855,0xa6eeabbaa4000LL),
5528  real(0x2ac3e335ea26e000LL),real(0xd6d2e7c22e28400LL),
5529  reale(372892021,0x96057cce2c163LL),
5530  // C4[6], coeff of eps^23, polynomial in n of order 6
5531  reale(279883,0xa92c150938000LL),-reale(86797,0xd10c69f53c000LL),
5532  reale(160072,0xfd9d58a4d0000LL),-reale(96731,0xc2b3d16724000LL),
5533  reale(32938,0x46d62be868000LL),-reale(52162,0xc27e2d9b0c000LL),
5534  reale(17103,0x67a9fde667c00LL),reale(4101812237LL,0x723c5cdbe4f41LL),
5535  // C4[6], coeff of eps^22, polynomial in n of order 7
5536  reale(293467,0x7db7c77729000LL),-reale(146628,0x46fd92fe6000LL),
5537  reale(282074,0xcdca0f3f8b000LL),-reale(92435,0x174eb2c344000LL),
5538  reale(105774,0xf5edeb18ed000LL),-reale(100726,0x78839052a2000LL),
5539  reale(6619,0xde4489894f000LL),reale(2174,0xdeb0a21cf2e00LL),
5540  reale(4101812237LL,0x723c5cdbe4f41LL),
5541  // C4[6], coeff of eps^21, polynomial in n of order 8
5542  reale(183603,8337878185LL<<19),-reale(387951,0x8934978f10000LL),
5543  reale(363243,0x9b8677d760000LL),-reale(100927,0x6adc79e30000LL),
5544  reale(246790,7131746729LL<<18),-reale(115867,0xce56197550000LL),
5545  reale(45470,0x976a005d20000LL),-reale(74789,0x6bec0ac470000LL),
5546  reale(21823,0x7d1eb3d72b000LL),reale(4101812237LL,0x723c5cdbe4f41LL),
5547  // C4[6], coeff of eps^20, polynomial in n of order 9
5548  reale(2390210,0x71ea4526d8000LL),-reale(11473167,6397281565LL<<18),
5549  reale(3566140,0xe9fdb6daa8000LL),-reale(3459649,0xbdbfad5d70000LL),
5550  reale(5328875,0xe507b89678000LL),-reale(1202839,0xbeff1963a0000LL),
5551  reale(2208040,0x527339ea48000LL),-reale(1770989,0xb71cae09d0000LL),
5552  reale(48626,0x557ebf6618000LL),reale(16670,0x4a1716aa8d000LL),
5553  reale(53323559086LL,0xcd10b72aa064dLL),
5554  // C4[6], coeff of eps^19, polynomial in n of order 10
5555  reale(16170911,0xf66942f9a0000LL),-reale(15946100,0x87937e1ff0000LL),
5556  reale(1191966,5683381737LL<<19),-reale(10381645,0x67a9610710000LL),
5557  reale(5401104,0xec5f94af60000LL),-reale(1916345,0x9f2b7d6630000LL),
5558  reale(5166787,7293640425LL<<18),-reale(1681428,0xa094a5ad50000LL),
5559  reale(912008,0xad6a83a520000LL),-reale(1452992,0x3f13404c70000LL),
5560  reale(367621,0xca46f4fdbb000LL),reale(53323559086LL,0xcd10b72aa064dLL),
5561  // C4[6], coeff of eps^18, polynomial in n of order 11
5562  reale(51879505,0x1c6021da42000LL),-reale(3388727,0x452f2e2244000LL),
5563  reale(10993546,0x58785d1036000LL),-reale(19450323,0x2862de39d0000LL),
5564  reale(1456775,0xebc764482a000LL),-reale(7922511,0x8d8f4f815c000LL),
5565  reale(7390372,0xfe1ce59e1e000LL),-reale(1065019,0x2a2a06ce8000LL),
5566  reale(3871757,0x7ef447ee12000LL),-reale(2395461,0x8df44bf074000LL),
5567  -reale(40351,0xb597a7abfa000LL),-reale(17707,0xeba2dcf1c1400LL),
5568  reale(53323559086LL,0xcd10b72aa064dLL),
5569  // C4[6], coeff of eps^17, polynomial in n of order 12
5570  reale(18941665,0xd940803e20000LL),-reale(2462456,0xc647b5b638000LL),
5571  reale(55543449,0x9a9f25d270000LL),-reale(10182797,0xdffcb19ee8000LL),
5572  reale(4836527,0xb44e233ec0000LL),-reale(21402374,0x58dcab98000LL),
5573  reale(3817083,0xbef1c88b10000LL),-reale(4459099,0x992120d448000LL),
5574  reale(8502561,0xac3fb5bf60000LL),-reale(1525489,0x80b8b610f8000LL),
5575  reale(1649611,0x4cebe6e3b0000LL),-reale(2280763,0x4f507e59a8000LL),
5576  reale(482782,0x1ffc428c24800LL),reale(53323559086LL,0xcd10b72aa064dLL),
5577  // C4[6], coeff of eps^16, polynomial in n of order 13
5578  reale(169672066,0xfc4e53058c000LL),-reale(255936417,0xcd4166f930000LL),
5579  reale(43044311,0x58bada2414000LL),reale(10984552,0x79ecf34458000LL),
5580  reale(54615551,0xb3c2ab069c000LL),-reale(20672829,0x547b9ae620000LL),
5581  -reale(762958,0xc96d76adc000LL),-reale(20252510,0xad74c43098000LL),
5582  reale(8266131,0x9541dc37ac000LL),-reale(1263055,0x9458475310000LL),
5583  reale(7416125,0xebded0d634000LL),-reale(3121438,0x16f54c0588000LL),
5584  -reale(225538,0xf843322744000LL),-reale(111163,0x41ef8785bb800LL),
5585  reale(53323559086LL,0xcd10b72aa064dLL),
5586  // C4[6], coeff of eps^15, polynomial in n of order 14
5587  -reale(371272727,0xe93844d330000LL),reale(258600199,0x3ab9b44ef8000LL),
5588  reale(127447726,0xd7dad2fc20000LL),-reale(278220404,0x7730102b8000LL),
5589  reale(77869881,0xad9b189b70000LL),reale(21813766,0xb09d2ff98000LL),
5590  reale(46644312,9197745227LL<<18),-reale(33841430,0x25b28aa218000LL),
5591  -reale(3096455,0x6fa54a95f0000LL),-reale(14807144,0xa86ee6dfc8000LL),
5592  reale(13281582,0xf66e06a960000LL),-reale(452377,0x35cd9cb178000LL),
5593  reale(3621811,0x85d91d8b0000LL),-reale(3791781,0x3a80710f28000LL),
5594  reale(636887,0x5f8cc1d1bc800LL),reale(53323559086LL,0xcd10b72aa064dLL),
5595  // C4[6], coeff of eps^14, polynomial in n of order 15
5596  -reale(40751652,0x879256f716000LL),reale(182461023,0x62c00442f4000LL),
5597  -reale(366891419,0xe235688602000LL),reale(303920923,0x2a6218fe88000LL),
5598  reale(70640959,0xa70aa30512000LL),-reale(290919308,0xf0cc1f4de4000LL),
5599  reale(124435738,0x116d522626000LL),reale(24575054,0x49539549b0000LL),
5600  reale(29829722,0x6d4c4f193a000LL),-reale(46205497,0xcd680acebc000LL),
5601  reale(1253661,0x8798d15a4e000LL),-reale(5829398,0x329c172b28000LL),
5602  reale(15178042,0x87d0f72562000LL),-reale(3413258,0x604057df94000LL),
5603  -reale(544537,0x1343d1098a000LL),-reale(371792,0x5ec0380ab3400LL),
5604  reale(53323559086LL,0xcd10b72aa064dLL),
5605  // C4[6], coeff of eps^13, polynomial in n of order 16
5606  reale(100946,21976965LL<<20),reale(2010862,0x3c46708bb0000LL),
5607  -reale(34502092,0x6e09dbf3a0000LL),reale(163298206,0x527fb2e110000LL),
5608  -reale(355839921,948516465LL<<18),reale(347383598,0x3243b82e70000LL),
5609  -reale(2611762,0xae3f6124e0000LL),-reale(286060486,421499843LL<<16),
5610  reale(181022396,2339564421LL<<19),reale(11053843,0x8ea9e8f130000LL),
5611  reale(5354229,0xc704cb69e0000LL),-reale(50862137,0xf12aeaf970000LL),
5612  reale(14064844,5665935493LL<<18),reale(1748678,0x2e869553f0000LL),
5613  reale(9719088,0x671cfc38a0000LL),-reale(6714197,0x76aa8fd6b0000LL),
5614  reale(816805,0x9ce5b98e4f000LL),reale(53323559086LL,0xcd10b72aa064dLL),
5615  // C4[6], coeff of eps^12, polynomial in n of order 17
5616  real(0x75cff722d22b8000LL),reale(9742,5260669319LL<<19),
5617  reale(75734,0x79163f0448000LL),reale(1568684,0xd935dd4310000LL),
5618  -reale(28213944,0x88db35f228000LL),reale(141802366,0xe4716652a0000LL),
5619  -reale(336424367,0x7aaa4f7098000LL),reale(384795625,0xe2aff0230000LL),
5620  -reale(92516926,0xbd45322708000LL),-reale(252728877,4730701433LL<<18),
5621  reale(239978666,0xfd893c3a88000LL),-reale(28528394,5445461995LL<<16),
5622  -reale(18370370,0x5cd8a4fbe8000LL),-reale(38961300,0x78b7628f20000LL),
5623  reale(30014507,0xb37b1485a8000LL),-reale(654615,0xa96a2bf90000LL),
5624  -reale(667571,0x85c41bf0c8000LL),-reale(1181523,0x1c81baa857000LL),
5625  reale(53323559086LL,0xcd10b72aa064dLL),
5626  // C4[6], coeff of eps^11, polynomial in n of order 18
5627  real(0x55d873de6520000LL),real(0x12c7cfeef6810000LL),
5628  real(0x4e200e3f1e1LL<<20),reale(6671,0xd2467fb9f0000LL),
5629  reale(53806,3275978471LL<<17),reale(1163348,0xd1cfb7f3d0000LL),
5630  -reale(22032298,0xf3cc53d740000LL),reale(118198962,4397370971LL<<16),
5631  -reale(306929389,0x72efa76b60000LL),reale(409945031,0xba4df5f90000LL),
5632  -reale(195574008,5584443935LL<<19),-reale(178055138,0x4cd4f3ce90000LL),
5633  reale(282861404,0xd715020c60000LL),-reale(99637722,0xf11193d4b0000LL),
5634  -reale(20986520,0xfb661347c0000LL),-reale(8771627,7018708525LL<<16),
5635  reale(31360164,0xdb2c51c420000LL),-reale(12477955,8590832271LL<<16),
5636  reale(873590,0xbe0d3e9693000LL),reale(53323559086LL,0xcd10b72aa064dLL),
5637  // C4[6], coeff of eps^10, polynomial in n of order 19
5638  real(0x5808512b12b000LL),real(0xfaa729276e2000LL),
5639  real(0x3175560e4519000LL),real(0xb21b680b3a90000LL),
5640  real(0x2fcbc5fe71407000LL),reale(4229,0xf0de326e3e000LL),
5641  reale(35532,0x38e22907f5000LL),reale(805604,0x42db4fa3ec000LL),
5642  -reale(16150031,0xfe4d67d51d000LL),reale(93034137,0xf6628ead9a000LL),
5643  -reale(265995225,0x398943192f000LL),reale(414315266,0x970145dd48000LL),
5644  -reale(301204836,0xc549c7ba41000LL),-reale(51738066,0x4e1063bb0a000LL),
5645  reale(275650719,0x10481031ad000LL),-reale(187610845,0x85f00095c000LL),
5646  reale(25230256,0x4ada23b49b000LL),reale(13917204,0x3da6dc4452000LL),
5647  reale(4066715,0x8660f73889000LL),-reale(4361677,0xea98323d07e00LL),
5648  reale(53323559086LL,0xcd10b72aa064dLL),
5649  // C4[6], coeff of eps^9, polynomial in n of order 20
5650  real(0x65fa8c6bf0000LL),real(0xfe88642ae4000LL),real(0x2aa82304e58000LL),
5651  real(0x7ca8bddcccc000LL),real(434853972467LL<<18),
5652  real(0x5e16320d44b4000LL),real(0x1a2859bf40b28000LL),
5653  reale(2409,0x1b825da69c000LL),reale(21179,0xabe6860d90000LL),
5654  reale(506292,0x5b6e5f0684000LL),-reale(10810252,0xeee1886808000LL),
5655  reale(67327238,0xa18a80786c000LL),-reale(213364581,0xe79aac41a0000LL),
5656  reale(387619687,0x51e3ba1054000LL),-reale(387180015,0xd550406b38000LL),
5657  reale(121695298,0x2400c6e23c000LL),reale(172879787,0x9e57682f30000LL),
5658  -reale(230507460,0xb74e70fddc000LL),reale(112381926,0x4eee70a198000LL),
5659  -reale(20283371,0x42949e7bf4000LL),-reale(288686,0x988d3450a7c00LL),
5660  reale(53323559086LL,0xcd10b72aa064dLL),
5661  // C4[6], coeff of eps^8, polynomial in n of order 21
5662  real(0x72e86a7de000LL),real(8772831327LL<<15),real(0x273ffc1812000LL),
5663  real(0x64635c5cac000LL),real(0x11473cdd246000LL),
5664  real(0x33fd816c260000LL),real(0xae6e2137a7a000LL),
5665  real(0x29ff10928814000LL),real(0xc26a115cf4ae000LL),
5666  real(0x492994f20c1c8000LL),reale(10833,0x80f3c9e4e2000LL),
5667  reale(274842,0xd406a2037c000LL),-reale(6296293,0xca802ed0ea000LL),
5668  reale(42731189,0xb6f3d1e130000LL),-reale(151191524,0x41a7e788b6000LL),
5669  reale(320575109,0xae49526ee4000LL),-reale(416345568,0xb8c8445e82000LL),
5670  reale(298319523,0xb52957c098000LL),-reale(42956565,0x78799bae4e000LL),
5671  -reale(119892798,0x70342c95b4000LL),reale(103927174,0x8691916be6000LL),
5672  -reale(29157346,0x2fb5a3d22ec00LL),
5673  reale(53323559086LL,0xcd10b72aa064dLL),
5674  // C4[6], coeff of eps^7, polynomial in n of order 22
5675  real(74709635LL<<15),real(0x4ba47734000LL),real(0xa7b994d0000LL),
5676  real(0x1869c5c6c000LL),real(0x3c23e3d88000LL),real(0x9e1c8b7a4000LL),
5677  real(1882100649LL<<18),real(0x573ad5a4dc000LL),real(0x12f915ab6f8000LL),
5678  real(0x4c1f4084014000LL),real(0x170ced7cbfb0000LL),
5679  real(0x921b89aca54c000LL),real(0x599b4a7922068000LL),
5680  reale(38914,0x1efa73f084000LL),-reale(964915,0x51a6da0ae0000LL),
5681  reale(7200274,0x92a23dbc000LL),-reale(28652022,0x356dea628000LL),
5682  reale(70837833,0x39cdeca8f4000LL),-reale(114872161,0xfcdf3a9570000LL),
5683  reale(122704354,0xd9bfe74e2c000LL),-reale(83141739,0x9edadabcb8000LL),
5684  reale(32332898,0xbdc6e34964000LL),-reale(5485045,0x527ae1fc73400LL),
5685  reale(17774519695LL,0x99b03d0e3576fLL),
5686  // C4[6], coeff of eps^6, polynomial in n of order 23
5687  real(257316433920LL),real(517719121920LL),real(0xfb6e649000LL),
5688  real(0x221f7064000LL),real(0x4d84a37f000LL),real(0xb958155a000LL),
5689  real(0x1d5dd0db5000LL),real(0x4faa5a050000LL),real(0xea04686eb000LL),
5690  real(0x2f40e3db46000LL),real(0xab8623d121000LL),real(0x2d147c4903c000LL),
5691  real(0xe63ae874e57000LL),real(0x60cd21bcc932000LL),
5692  real(0x3f869e23e408d000LL),reale(29814,0xcc97221028000LL),
5693  -reale(808726,0x6d837bf63d000LL),reale(6700876,0x1daf27af1e000LL),
5694  -reale(30153942,0x8594329407000LL),reale(86154121,0x7da76bf014000LL),
5695  -reale(165128732,0xdb80e436d1000LL),reale(210163841,0xd18cc55d0a000LL),
5696  -reale(153581269,0x570b79c9b000LL),reale(46622885,0x3d1480e1d3a00LL),
5697  reale(53323559086LL,0xcd10b72aa064dLL),
5698  // C4[7], coeff of eps^29, polynomial in n of order 0
5699  real(13087612928LL),real(0x90e6983c364f3dLL),
5700  // C4[7], coeff of eps^28, polynomial in n of order 1
5701  -real(161707LL<<21),real(7239297LL<<14),real(0xcf8f801ee602cdLL),
5702  // C4[7], coeff of eps^27, polynomial in n of order 2
5703  -real(3500022825LL<<20),real(630513507LL<<19),real(0x6038c37fa000LL),
5704  reale(72555,0x626230f3330c5LL),
5705  // C4[7], coeff of eps^26, polynomial in n of order 3
5706  -real(92252949633LL<<21),real(16187170389LL<<22),
5707  -real(51975912235LL<<21),real(0x7c00d0f2b78000LL),
5708  reale(3119881,0x867e38d993117LL),
5709  // C4[7], coeff of eps^25, polynomial in n of order 4
5710  -real(0x64d0a86bae7c0000LL),real(0x7c07ce24c65f0000LL),
5711  -real(0x739ece76489e0000LL),real(0x6e7bce15f550000LL),
5712  real(0x24fc420030b8400LL),reale(127915142,0x8a371ad88dcafLL),
5713  // C4[7], coeff of eps^24, polynomial in n of order 5
5714  -reale(5990,0xbd2326cc40000LL),reale(14992,4018200301LL<<20),
5715  -reale(6873,8929851351LL<<18),reale(2782,8051012645LL<<19),
5716  -reale(4583,0xc89924b340000LL),real(0x52aed30dcf988800LL),
5717  reale(430260024,0xe82db7640b7c1LL),
5718  // C4[7], coeff of eps^23, polynomial in n of order 6
5719  -reale(169326,4206873009LL<<17),reale(261065,0x25b4e353d0000LL),
5720  -reale(59142,0xf0c50992c0000LL),reale(111182,4597550539LL<<16),
5721  -reale(88869,504433083LL<<17),reale(2313,0xe34bfe3f90000LL),
5722  real(0x32dc48b9e1d23400LL),reale(4732860273LL,0xf9f6e14c7e54bLL),
5723  // C4[7], coeff of eps^22, polynomial in n of order 7
5724  -reale(467157,1100000847LL<<20),reale(258178,755278933LL<<21),
5725  -reale(91474,559664221LL<<20),reale(248285,171426119LL<<22),
5726  -reale(82821,231309675LL<<20),reale(44668,65972935LL<<21),
5727  -reale(71456,2669582201LL<<20),reale(18220,0x9846e079d4000LL),
5728  reale(4732860273LL,0xf9f6e14c7e54bLL),
5729  // C4[7], coeff of eps^21, polynomial in n of order 8
5730  -reale(10858183,1145150433LL<<21),reale(1155453,0xa514064740000LL),
5731  -reale(4408275,1110140307LL<<19),reale(4494002,0xa8330ec1c0000LL),
5732  -reale(693747,3759921697LL<<20),reale(2336198,8880970129LL<<18),
5733  -reale(1499288,4981657777LL<<19),-reale(18466,6402610053LL<<18),
5734  -reale(7818,0x6ee4879b83000LL),reale(61527183561LL,0xb18970e26a4cfLL),
5735  // C4[7], coeff of eps^20, polynomial in n of order 9
5736  -reale(7907170,4058896835LL<<20),reale(1601483,335338375LL<<23),
5737  -reale(11238504,3427529005LL<<20),reale(2745284,1787777405LL<<21),
5738  -reale(2325455,2252860775LL<<20),reale(4939939,712213223LL<<22),
5739  -reale(1021126,555773201LL<<20),reale(952760,1631005375LL<<21),
5740  -reale(1365312,965324491LL<<20),reale(299618,0x2f589c3f22000LL),
5741  reale(61527183561LL,0xb18970e26a4cfLL),
5742  // C4[7], coeff of eps^19, polynomial in n of order 10
5743  reale(5811147,7891888051LL<<19),reale(19155879,6260648859LL<<18),
5744  -reale(13234724,832589145LL<<21),-reale(473729,0xaccee67ac0000LL),
5745  -reale(9690431,2460044795LL<<19),reale(5218195,5282091375LL<<18),
5746  -reale(699193,3313511321LL<<20),reale(4032431,0xb01d955a40000LL),
5747  -reale(1901524,5999844905LL<<19),-reale(111197,715304509LL<<18),
5748  -reale(51622,0xdda253af9f000LL),reale(61527183561LL,0xb18970e26a4cfLL),
5749  // C4[7], coeff of eps^18, polynomial in n of order 11
5750  -reale(34477536,1085877825LL<<20),reale(44845230,817114545LL<<21),
5751  reale(4606432,1572161669LL<<20),reale(12496576,210421693LL<<23),
5752  -reale(18271471,1543698101LL<<20),-reale(128700,742574025LL<<21),
5753  -reale(6139017,689151983LL<<20),reale(7385046,100502461LL<<22),
5754  -reale(590509,2783893289LL<<20),reale(1800602,699157181LL<<21),
5755  -reale(2092277,3566080099LL<<20),reale(381025,0x99466ecd7c000LL),
5756  reale(61527183561LL,0xb18970e26a4cfLL),
5757  // C4[7], coeff of eps^17, polynomial in n of order 12
5758  -reale(152644671,981125379LL<<19),-reale(24136152,0xd3514f38e0000LL),
5759  -reale(16909786,8097141141LL<<18),reale(53988238,0xc115854860000LL),
5760  -reale(2192558,3293732289LL<<20),reale(3853073,2819007469LL<<17),
5761  -reale(20689919,5309095411LL<<18),reale(3514368,0xf1b4463ee0000LL),
5762  -reale(1814216,3975618817LL<<19),reale(7354899,0xbd88356420000LL),
5763  -reale(2207882,191252177LL<<18),-reale(269543,3717910997LL<<17),
5764  -reale(156646,0x7bcb3b3a6a800LL),reale(61527183561LL,0xb18970e26a4cfLL),
5765  // C4[7], coeff of eps^16, polynomial in n of order 13
5766  reale(52565396,753292423LL<<19),reale(252855342,568744119LL<<21),
5767  -reale(197183211,7281644191LL<<19),-reale(6678358,3552459447LL<<20),
5768  reale(4519131,7283469291LL<<19),reale(56648760,112164189LL<<22),
5769  -reale(15289276,2020707835LL<<19),-reale(3713103,1403767329LL<<20),
5770  -reale(17880720,7304289905LL<<19),reale(9494998,1497636157LL<<21),
5771  reale(492167,2907561065LL<<19),reale(3952538,4294903605LL<<20),
5772  -reale(3358139,5130468237LL<<19),reale(480004,0x1e727719e9000LL),
5773  reale(61527183561LL,0xb18970e26a4cfLL),
5774  // C4[7], coeff of eps^15, polynomial in n of order 14
5775  reale(279617399,0xd9972cba40000LL),-reale(353187715,0x687b832220000LL),
5776  reale(118965967,4456434973LL<<19),reale(220096359,3595022681LL<<17),
5777  -reale(240814657,8170991797LL<<18),reale(28075084,0xec7a345460000LL),
5778  reale(24758769,1818605983LL<<20),reale(48013974,0xb5345431a0000LL),
5779  -reale(32373431,0xc7bac8f4c0000LL),-reale(5075135,8642954025LL<<17),
5780  -reale(9094832,6469786017LL<<19),reale(13639028,3685620545LL<<17),
5781  -reale(1773068,1431802737LL<<18),-reale(460476,0x51ab5a8ea0000LL),
5782  -reale(423738,0x5d98934922800LL),reale(61527183561LL,0xb18970e26a4cfLL),
5783  // C4[7], coeff of eps^14, polynomial in n of order 15
5784  reale(16417106,2408387839LL<<20),-reale(93245803,1562234793LL<<21),
5785  reale(256985456,250552029LL<<20),-reale(365861944,857240429LL<<22),
5786  reale(190902238,1499270843LL<<20),reale(163412998,1423242741LL<<21),
5787  -reale(274443985,2668181351LL<<20),reale(82958237,163620913LL<<23),
5788  reale(33859016,1729347703LL<<20),reale(25275487,1495319443LL<<21),
5789  -reale(45844273,3794232747LL<<20),reale(4490176,231613489LL<<22),
5790  reale(1010900,690735667LL<<20),reale(10013483,1036831025LL<<21),
5791  -reale(5637707,2068106223LL<<20),reale(570308,0x8f0afe45ec000LL),
5792  reale(61527183561LL,0xb18970e26a4cfLL),
5793  // C4[7], coeff of eps^13, polynomial in n of order 16
5794  -reale(25657,393048869LL<<22),-reale(608651,0xacbc40d5c0000LL),
5795  reale(12764052,2144856077LL<<19),-reale(76823449,3121867141LL<<18),
5796  reale(228672619,4131243473LL<<20),-reale(367062288,0xf756dca4c0000LL),
5797  reale(263470997,8569317111LL<<19),reale(78573490,0xffb10f8fc0000LL),
5798  -reale(283548774,1794660389LL<<21),reale(154702622,9227087281LL<<18),
5799  reale(16937276,1939608161LL<<19),-reale(6432822,7897704317LL<<18),
5800  -reale(43016670,946798949LL<<20),reale(22087851,0xaa7600dd40000LL),
5801  reale(1665577,8523064651LL<<19),-reale(163221,0xe0acad2e40000LL),
5802  -reale(1189371,0x766c2260a3000LL),reale(61527183561LL,0xb18970e26a4cfLL),
5803  // C4[7], coeff of eps^12, polynomial in n of order 17
5804  -real(0x13bc5107d5fLL<<20),-real(506650109317LL<<24),
5805  -reale(17217,2185571073LL<<20),-reale(426469,557216187LL<<21),
5806  reale(9411503,1140836685LL<<20),-reale(60299258,66945391LL<<22),
5807  reale(194753933,1835852139LL<<20),-reale(352928157,2046106529LL<<21),
5808  reale(328231147,2405007161LL<<20),-reale(34561926,360605189LL<<23),
5809  -reale(248371006,3915897705LL<<20),reale(226668375,1401273273LL<<21),
5810  -reale(40114392,2920598683LL<<20),-reale(25898188,1028871717LL<<22),
5811  -reale(16043876,2538787453LL<<20),reale(28698456,1825641427LL<<21),
5812  -reale(9602688,2437057327LL<<20),reale(502063,0xa52218333a000LL),
5813  reale(61527183561LL,0xb18970e26a4cfLL),
5814  // C4[7], coeff of eps^11, polynomial in n of order 18
5815  -real(81880241733LL<<19),-real(651169421489LL<<18),
5816  -real(194261131981LL<<22),-real(0x4616f301f1bc0000LL),
5817  -reale(10659,7786635659LL<<19),-reale(276843,0xf150eaf340000LL),
5818  reale(6459374,425055961LL<<20),-reale(44283297,2370521611LL<<18),
5819  reale(156003403,8328479919LL<<19),-reale(319848045,0xab86b09a40000LL),
5820  reale(372382116,1407449139LL<<21),-reale(166870261,0xbaeb2e09c0000LL),
5821  -reale(148815577,7753476247LL<<19),reale(260443738,1330203003LL<<18),
5822  -reale(131653575,428167437LL<<20),reale(2775725,691412797LL<<18),
5823  reale(12306214,6299226531LL<<19),reale(5355345,9401097695LL<<18),
5824  -reale(3966302,0xcbc08bfb17000LL),reale(61527183561LL,0xb18970e26a4cfLL),
5825  // C4[7], coeff of eps^10, polynomial in n of order 19
5826  -real(1704454843LL<<20),-real(2722537665LL<<21),-real(19434970697LL<<20),
5827  -real(4989045369LL<<24),-real(394962411735LL<<20),
5828  -real(0x128b33efecfLL<<21),-reale(5903,789230693LL<<20),
5829  -reale(161527,569013611LL<<22),reale(4006338,1271698701LL<<20),
5830  -reale(29564239,1312346333LL<<21),reale(114267945,2347153791LL<<20),
5831  -reale(265827046,63320697LL<<23),reale(379233361,4202669809LL<<20),
5832  -reale(292689947,1148927723LL<<21),reale(19915451,3747715939LL<<20),
5833  reale(197711494,385979271LL<<22),-reale(197401730,911113003LL<<20),
5834  reale(83971818,387288839LL<<21),-reale(12852829,1345691321LL<<20),
5835  -reale(602476,0x5fc28370ac000LL),reale(61527183561LL,0xb18970e26a4cfLL),
5836  // C4[7], coeff of eps^9, polynomial in n of order 20
5837  -real(304621785LL<<18),-real(0xc9814e4b0000LL),-real(5069418237LL<<17),
5838  -real(0x7c4fe70d90000LL),-real(7691534469LL<<20),
5839  -real(0x7a02179d470000LL),-real(0x274586580a60000LL),
5840  -real(0x10907db87bd50000LL),-reale(2773,9732262223LL<<18),
5841  -reale(80424,78339267LL<<16),reale(2134032,0xd8c3d9bae0000LL),
5842  -reale(17066460,0x8709888510000LL),reale(72842964,6932239995LL<<19),
5843  -reale(192914141,0x448548ebf0000LL),reale(332328916,0xa61d5e5020000LL),
5844  -reale(364348462,0x260e7984d0000LL),reale(215166704,0xfd6630ec0000LL),
5845  reale(5301792,6304582341LL<<16),-reale(118567350,0x6a550b6aa0000LL),
5846  reale(89166503,0x5c73fd2370000LL),-reale(23960987,0x75c7f62663400LL),
5847  reale(61527183561LL,0xb18970e26a4cfLL),
5848  // C4[7], coeff of eps^8, polynomial in n of order 21
5849  -real(11869221LL<<18),-real(7450235LL<<20),-real(79397539LL<<18),
5850  -real(113271327LL<<19),-real(700448177LL<<18),-real(148973407LL<<22),
5851  -real(9118660335LL<<18),-real(20216702289LL<<19),
5852  -real(0xcadd965ff40000LL),-real(386512744317LL<<20),
5853  -real(0xf93c68aca7bLL<<18),-reale(30847,5279995331LL<<19),
5854  reale(882325,8584251383LL<<18),-reale(7706931,2116826591LL<<21),
5855  reale(36580048,2730390969LL<<18),-reale(110604386,3847062005LL<<19),
5856  reale(227103584,0x9e98f54ac0000LL),-reale(323034443,1752619391LL<<20),
5857  reale(314251676,0xb5ebcf2b40000LL),-reale(199218854,3061725287LL<<19),
5858  reale(73903768,9476063903LL<<18),-reale(12124837,0x72a953b85800LL),
5859  reale(61527183561LL,0xb18970e26a4cfLL),
5860  // C4[7], coeff of eps^7, polynomial in n of order 22
5861  -real(575575LL<<17),-real(2681133LL<<16),-real(1637545LL<<18),
5862  -real(16890107LL<<16),-real(23159565LL<<17),-real(0x8210e690000LL),
5863  -real(27276821LL<<20),-real(0x5bebf1b70000LL),-real(3075032387LL<<17),
5864  -real(0x6a5f183250000LL),-real(40477467135LL<<18),
5865  -real(0x11b5c31caf30000LL),-real(0xd14cd352ff20000LL),
5866  -reale(6969,0xb17d189610000LL),reale(216834,7757873387LL<<19),
5867  -reale(2087035,0xf153506af0000LL),reale(11091105,0x4b9d7f7a20000LL),
5868  -reale(38290720,0xa99fbe31d0000LL),reale(91897729,0x9718fbaac0000LL),
5869  -reale(156643857,0x418d7e6eb0000LL),reale(184759421,0x6102c9a360000LL),
5870  -reale(129331594,0xf71b8d2590000LL),reale(38395317,0x415c2de726c00LL),
5871  reale(61527183561LL,0xb18970e26a4cfLL),
5872  // C4[8], coeff of eps^29, polynomial in n of order 0
5873  real(7241<<16),real(0x112c657acf71bLL),
5874  // C4[8], coeff of eps^28, polynomial in n of order 1
5875  real(1165359LL<<20),real(3168035LL<<17),real(0x21ffb4a731cf423fLL),
5876  // C4[8], coeff of eps^27, polynomial in n of order 2
5877  real(41827383LL<<21),-real(137865429LL<<20),real(631109843LL<<16),
5878  reale(4837,0x68f14547adebLL),
5879  // C4[8], coeff of eps^26, polynomial in n of order 3
5880  real(54350489115LL<<22),-real(21656377197LL<<23),real(1080358617LL<<22),
5881  real(0x5c4a2579a0000LL),reale(3535865,0xba8f0d3ad9e09LL),
5882  // C4[8], coeff of eps^25, polynomial in n of order 4
5883  reale(4480,63845967LL<<22),-real(0x5f0bc8cec07LL<<20),
5884  real(0x198015cca1fLL<<21),-real(0x51d1e6f78cdLL<<20),
5885  real(0x14fb331d33f30000LL),reale(144970494,0xe0e91e6ce4f71LL),
5886  // C4[8], coeff of eps^24, polynomial in n of order 5
5887  reale(226427,7535956641LL<<17),-reale(36730,6647829291LL<<19),
5888  reale(116830,5936429895LL<<17),-reale(76966,613785099LL<<18),
5889  -real(0x2a948e8d73a60000LL),-real(0x116572b5168a4000LL),
5890  reale(5363908310LL,0x81b165bd17b55LL),
5891  // C4[8], coeff of eps^23, polynomial in n of order 6
5892  reale(151394,3866446399LL<<20),-reale(105723,1435687723LL<<19),
5893  reale(240417,2090106533LL<<21),-reale(54672,3991575693LL<<19),
5894  reale(46185,3230210197LL<<20),-reale(67790,4028416911LL<<19),
5895  reale(15270,0xa469197488000LL),reale(5363908310LL,0x81b165bd17b55LL),
5896  // C4[8], coeff of eps^22, polynomial in n of order 7
5897  -reale(105618,1394014919LL<<21),-reale(5351753,377020849LL<<22),
5898  reale(3446650,1690522763LL<<21),-reale(453181,286167171LL<<23),
5899  reale(2431204,1637447437LL<<21),-reale(1239333,63204475LL<<22),
5900  -reale(60030,1665832481LL<<21),-reale(26716,0x6a2a5d69d0000LL),
5901  reale(69730808036LL,0x96022a9a34351LL),
5902  // C4[8], coeff of eps^21, polynomial in n of order 8
5903  reale(4362900,465328075LL<<22),-reale(10560212,802403079LL<<19),
5904  reale(656010,2976408017LL<<20),-reale(3068612,8162681445LL<<19),
5905  reale(4482659,1990068235LL<<21),-reale(516359,5969201251LL<<19),
5906  reale(1022585,502576667LL<<20),-reale(1273161,3447687361LL<<19),
5907  reale(245310,0x45a78ad538000LL),reale(69730808036LL,0x96022a9a34351LL),
5908  // C4[8], coeff of eps^20, polynomial in n of order 9
5909  reale(23624906,1629010283LL<<19),-reale(5851601,324958949LL<<22),
5910  reale(255419,6850290885LL<<19),-reale(10559838,1365338319LL<<20),
5911  reale(3058631,5351542623LL<<19),-reale(782822,266312293LL<<21),
5912  reale(4071490,3032871865LL<<19),-reale(1457911,2387656005LL<<20),
5913  -reale(144540,929274797LL<<19),-reale(76349,0x2c1c25d590000LL),
5914  reale(69730808036LL,0x96022a9a34351LL),
5915  // C4[8], coeff of eps^19, polynomial in n of order 10
5916  reale(23056909,2395766741LL<<20),reale(8427619,3212023717LL<<19),
5917  reale(19522568,367619617LL<<22),-reale(12637641,5752438869LL<<19),
5918  -reale(1859539,2126155853LL<<20),-reale(7720368,2358643951LL<<19),
5919  reale(5969641,447801057LL<<21),-reale(4464,2860310889LL<<19),
5920  reale(1954609,2968726289LL<<20),-reale(1904959,7710818563LL<<19),
5921  reale(302310,0x7de136fc28000LL),reale(69730808036LL,0x96022a9a34351LL),
5922  // C4[8], coeff of eps^18, polynomial in n of order 11
5923  -reale(34760584,1377594673LL<<21),-reale(45089279,700199389LL<<22),
5924  reale(38964787,642296389LL<<21),reale(8377867,242649263LL<<24),
5925  reale(10805340,270655563LL<<21),-reale(18348308,77894251LL<<22),
5926  -reale(8504,712824639LL<<21),-reale(2874058,104939633LL<<23),
5927  reale(7002991,271121287LL<<21),-reale(1456031,497148985LL<<22),
5928  -reale(262921,1640850307LL<<21),-reale(186713,0x66184da2b0000LL),
5929  reale(69730808036LL,0x96022a9a34351LL),
5930  // C4[8], coeff of eps^17, polynomial in n of order 12
5931  reale(266733950,1060079417LL<<21),-reale(92315127,311764467LL<<19),
5932  -reale(39784767,2743383633LL<<20),-reale(24124714,5368290721LL<<19),
5933  reale(52035773,16490707LL<<22),-reale(214469,3779317103LL<<19),
5934  -reale(32744,3406796695LL<<20),-reale(19012957,4710528797LL<<19),
5935  reale(5897141,767669011LL<<21),reale(758445,547828629LL<<19),
5936  reale(4185368,186448291LL<<20),-reale(2955613,5547446041LL<<19),
5937  reale(363691,0xed908404b8000LL),reale(69730808036LL,0x96022a9a34351LL),
5938  // C4[8], coeff of eps^16, polynomial in n of order 13
5939  -reale(254507630,0xe2b8b6bb40000LL),-reale(58148124,1471923579LL<<20),
5940  reale(270522720,3187458133LL<<18),-reale(149985652,7726894061LL<<19),
5941  -reale(27328603,0x99e6e9ea40000LL),reale(4011861,407374679LL<<21),
5942  reale(54943982,0xaf3dd22640000LL),-reale(17478454,3922351195LL<<19),
5943  -reale(6848089,0x9bbe86d940000LL),-reale(11885922,3297252137LL<<20),
5944  reale(11706960,678889437LL<<18),-reale(595378,2432546249LL<<19),
5945  -reale(329167,0xe066968840000LL),-reale(450081,0x595d162958000LL),
5946  reale(69730808036LL,0x96022a9a34351LL),
5947  // C4[8], coeff of eps^15, polynomial in n of order 14
5948  -reale(166710239,3480741959LL<<20),reale(313421255,2329933911LL<<19),
5949  -reale(299209385,1287661491LL<<21),reale(24383199,5307535921LL<<19),
5950  reale(248029318,3243559867LL<<20),-reale(210032461,8189928917LL<<19),
5951  reale(10907073,960500783LL<<22),reale(29948106,2038678405LL<<19),
5952  reale(40306034,2725271357LL<<20),-reale(36745958,6196825729LL<<19),
5953  -reale(1934460,123839633LL<<21),-reale(492518,4761069735LL<<19),
5954  reale(9949315,1255380799LL<<20),-reale(4720329,388065197LL<<19),
5955  reale(398374,0x9081f25c18000LL),reale(69730808036LL,0x96022a9a34351LL),
5956  // C4[8], coeff of eps^14, polynomial in n of order 15
5957  -reale(5499415,942753073LL<<21),reale(38811064,349279653LL<<22),
5958  -reale(140017234,1709558915LL<<21),reale(290760665,163783697LL<<23),
5959  -reale(332595868,714890693LL<<21),reale(118902683,730607999LL<<22),
5960  reale(189429058,237701737LL<<21),-reale(256456610,243945477LL<<24),
5961  reale(78365400,1246868327LL<<21),reale(35514427,78282137LL<<22),
5962  reale(8045132,96899221LL<<21),-reale(42695880,422981029LL<<23),
5963  reale(15212575,506177875LL<<21),reale(2863173,903918451LL<<22),
5964  reale(284029,1922203905LL<<21),-reale(1161079,0x6c18f2ad70000LL),
5965  reale(69730808036LL,0x96022a9a34351LL),
5966  // C4[8], coeff of eps^13, polynomial in n of order 16
5967  reale(5407,439728533LL<<23),reale(151556,693836399LL<<19),
5968  -reale(3836797,3870271773LL<<20),reale(28742693,8016450573LL<<19),
5969  -reale(111747677,1508361473LL<<21),reale(256964119,236840267LL<<19),
5970  -reale(347691811,711701031LL<<20),reale(216072654,2622689769LL<<19),
5971  reale(88295276,790755477LL<<22),-reale(263658780,5516898905LL<<19),
5972  reale(163753678,37603151LL<<20),-reale(1803857,6339257275LL<<19),
5973  -reale(22560155,108468139LL<<21),-reale(21197875,3801517693LL<<19),
5974  reale(25658955,3111371333LL<<20),-reale(7416706,6937931487LL<<19),
5975  reale(268690,0x9ce0757848000LL),reale(69730808036LL,0x96022a9a34351LL),
5976  // C4[8], coeff of eps^12, polynomial in n of order 17
5977  real(369814360487LL<<19),real(159053188703LL<<23),
5978  reale(3152,1136779065LL<<19),reale(92558,2295771257LL<<20),
5979  -reale(2473330,1734833909LL<<19),reale(19757571,360351901LL<<21),
5980  -reale(83162616,6619531363LL<<19),reale(212413714,2066066043LL<<20),
5981  -reale(337117487,5524436113LL<<19),reale(299293348,697772127LL<<22),
5982  -reale(51076102,4535292671LL<<19),-reale(200831521,1217539203LL<<20),
5983  reale(227963885,2651839699LL<<19),-reale(87452614,163103009LL<<21),
5984  -reale(9664164,7186873499LL<<19),reale(9739937,3920029055LL<<20),
5985  reale(6101400,4999938359LL<<19),-reale(3588081,0x84422b3e50000LL),
5986  reale(69730808036LL,0x96022a9a34351LL),
5987  // C4[8], coeff of eps^11, polynomial in n of order 18
5988  real(3576016431LL<<20),real(32208729499LL<<19),real(10983028711LL<<23),
5989  real(0x9286be006280000LL),real(0x65e9f47db41LL<<20),
5990  reale(50386,4528870031LL<<19),-reale(1428014,1685009291LL<<21),
5991  reale(12227031,6176103481LL<<19),-reale(56007028,2392678701LL<<20),
5992  reale(159476659,5817614083LL<<19),-reale(295263705,809939737LL<<22),
5993  reale(344605761,6427356205LL<<19),-reale(202719833,951923227LL<<20),
5994  -reale(50658828,5629491977LL<<19),reale(201884255,1512264231LL<<21),
5995  -reale(166564947,5368120671LL<<19),reale(63259557,2614639991LL<<20),
5996  -reale(8140125,1990873493LL<<19),-reale(722971,0xa61c9dba68000LL),
5997  reale(69730808036LL,0x96022a9a34351LL),
5998  // C4[8], coeff of eps^10, polynomial in n of order 19
5999  real(45596577LL<<21),real(81531441LL<<22),real(656187675LL<<21),
6000  real(191463201LL<<25),real(17391213765LL<<21),real(65094511967LL<<22),
6001  real(0x16272ee843fLL<<21),reale(23168,382193603LL<<23),
6002  -reale(700305,441535191LL<<21),reale(6465118,134564813LL<<22),
6003  -reale(32414063,913166045LL<<21),reale(103314135,145041825LL<<24),
6004  -reale(222332965,1267927603LL<<21),reale(326070132,55789563LL<<22),
6005  -reale(309964302,1355885369LL<<21),reale(149975409,308317249LL<<23),
6006  reale(35633361,576916401LL<<21),-reale(113104897,1027785623LL<<22),
6007  reale(77116975,1889590315LL<<21),-reale(20082545,0xcd53c80110000LL),
6008  reale(69730808036LL,0x96022a9a34351LL),
6009  // C4[8], coeff of eps^9, polynomial in n of order 20
6010  real(1123785LL<<21),real(13838643LL<<19),real(23159565LL<<20),
6011  real(171251217LL<<19),real(44667189LL<<23),real(3472549135LL<<19),
6012  real(10302054723LL<<20),real(162001999341LL<<19),
6013  real(500351698399LL<<21),reale(8102,6578411627LL<<19),
6014  -reale(262912,1458939143LL<<20),reale(2634746,8016047177LL<<19),
6015  -reale(14551212,731365323LL<<22),reale(52133305,8561410375LL<<19),
6016  -reale(129964645,2819080401LL<<20),reale(232230181,2215647013LL<<19),
6017  -reale(298362920,1016411147LL<<21),reale(269480987,8039357859LL<<19),
6018  -reale(161945649,1493828379LL<<20),reale(57837731,7816254593LL<<19),
6019  -reale(9237971,9476063903LL<<15),reale(69730808036LL,0x96022a9a34351LL),
6020  // C4[8], coeff of eps^8, polynomial in n of order 21
6021  real(292383LL<<17),real(202215LL<<19),real(2386137LL<<17),
6022  real(3789747LL<<18),real(26247507LL<<17),real(6294651LL<<21),
6023  real(437764365LL<<17),real(1112245757LL<<18),real(0x67551030e0000LL),
6024  real(28804895217LL<<19),real(0x2c0f1d988820000LL),
6025  real(0x66a336663d1c0000LL),-reale(57641,8501165381LL<<17),
6026  reale(631918,3696102011LL<<20),-reale(3870503,720372107LL<<17),
6027  reale(15639991,0xcc8b836440000LL),-reale(44892569,0xd7d7de220000LL),
6028  reale(94682509,2360318459LL<<19),-reale(147486216,0x5ecdb08ae0000LL),
6029  reale(163873573,0xbeaba7b6c0000LL),-reale(110855652,0xd3ce78fba0000LL),
6030  reale(32332898,0xbdc6e34964000LL),reale(69730808036LL,0x96022a9a34351LL),
6031  // C4[9], coeff of eps^29, polynomial in n of order 0
6032  real(16847<<16),real(0x3d2e2985830503LL),
6033  // C4[9], coeff of eps^28, polynomial in n of order 1
6034  -real(207753LL<<23),real(1712087LL<<18),real(0x438da32e1600335LL),
6035  // C4[9], coeff of eps^27, polynomial in n of order 2
6036  -real(3127493161LL<<21),-real(38277317LL<<20),-real(0xe4960490000LL),
6037  reale(161925,0x30e683ffe0741LL),
6038  // C4[9], coeff of eps^26, polynomial in n of order 3
6039  -real(9299582409LL<<22),real(3656674463LL<<23),-real(10918261107LL<<22),
6040  real(80278491423LL<<17),reale(1317283,0x4f8aa089603a9LL),
6041  // C4[9], coeff of eps^25, polynomial in n of order 4
6042  -real(711479186953LL<<22),reale(3279,1361598081LL<<20),
6043  -real(0x3749d192179LL<<21),-real(309897952117LL<<20),
6044  -real(0x1f18264b9990000LL),reale(162025847,0x379b22013c233LL),
6045  // C4[9], coeff of eps^24, polynomial in n of order 5
6046  -reale(133856,15001023LL<<25),reale(223946,23087107LL<<27),
6047  -reale(32028,12079289LL<<25),reale(48931,2142027LL<<26),
6048  -reale(63933,112742755LL<<25),reale(12842,2153614949LL<<20),
6049  reale(5994956347LL,0x96bea2db115fLL),
6050  // C4[9], coeff of eps^23, polynomial in n of order 6
6051  -reale(5988742,4056322469LL<<20),reale(2349145,7648181561LL<<19),
6052  -reale(426462,344885543LL<<21),reale(2475174,940948911LL<<19),
6053  -reale(999559,3441325239LL<<20),-reale(83146,4971496059LL<<19),
6054  -reale(41198,0x4f02423cb8000LL),reale(77934432511LL,0x7a7ae451fe1d3LL),
6055  // C4[9], coeff of eps^22, polynomial in n of order 7
6056  -reale(8631189,1052889985LL<<21),-reale(629492,634245703LL<<22),
6057  -reale(3874477,505696163LL<<21),reale(3866974,513650043LL<<23),
6058  -reale(159710,1408881461LL<<21),reale(1100061,714281683LL<<22),
6059  -reale(1180171,586380503LL<<21),reale(201643,0x9fcf910730000LL),
6060  reale(77934432511LL,0x7a7ae451fe1d3LL),
6061  // C4[9], coeff of eps^21, polynomial in n of order 8
6062  reale(341632,721850923LL<<22),reale(2597220,4632100393LL<<19),
6063  -reale(10372056,1528523471LL<<20),reale(1205419,4719051179LL<<19),
6064  -reale(1145316,921601685LL<<21),reale(3990959,6117017869LL<<19),
6065  -reale(1073059,3486842565LL<<20),-reale(153111,7776387185LL<<19),
6066  -reale(94130,0x280827bb28000LL),reale(77934432511LL,0x7a7ae451fe1d3LL),
6067  // C4[9], coeff of eps^20, polynomial in n of order 9
6068  reale(3783713,134627971LL<<22),reale(23115315,66415493LL<<25),
6069  -reale(6392067,518305043LL<<22),-reale(1733013,275013225LL<<23),
6070  -reale(8816564,833972409LL<<22),reale(4468878,247379557LL<<24),
6071  reale(300534,553592433LL<<22),reale(2085027,317816093LL<<23),
6072  -reale(1725044,456624309LL<<22),reale(240877,0x8d28f00d60000LL),
6073  reale(77934432511LL,0x7a7ae451fe1d3LL),
6074  // C4[9], coeff of eps^19, polynomial in n of order 10
6075  -reale(58776429,1067354331LL<<20),reale(18829393,7579267909LL<<19),
6076  reale(10681211,592856305LL<<22),reale(16946593,1116323851LL<<19),
6077  -reale(14277877,2775669533LL<<20),-reale(2149268,8027942223LL<<19),
6078  -reale(4056423,828321103LL<<21),reale(6443828,4480734455LL<<19),
6079  -reale(857619,751312863LL<<20),-reale(227988,4599783267LL<<19),
6080  -reale(205805,0x3340b739f8000LL),reale(77934432511LL,0x7a7ae451fe1d3LL),
6081  // C4[9], coeff of eps^18, polynomial in n of order 11
6082  -reale(8326980,196156635LL<<21),-reale(34821146,552451591LL<<22),
6083  -reale(46791029,557069513LL<<21),reale(38334852,177025053LL<<24),
6084  reale(8937287,838991609LL<<21),reale(5317827,1033371567LL<<22),
6085  -reale(18378967,400717301LL<<21),reale(2844411,12754877LL<<23),
6086  reale(593018,1659418637LL<<21),reale(4310821,76308389LL<<22),
6087  -reale(2591282,1217948513LL<<21),reale(276451,0x9f1a0fb950000LL),
6088  reale(77934432511LL,0x7a7ae451fe1d3LL),
6089  // C4[9], coeff of eps^17, polynomial in n of order 12
6090  -reale(182057178,279202431LL<<21),reale(246730983,7282837989LL<<19),
6091  -reale(61609386,3656132889LL<<20),-reale(45340440,795982425LL<<19),
6092  -reale(20534253,134894613LL<<22),reale(51951312,243959241LL<<19),
6093  -reale(4823611,581671439LL<<20),-reale(5624597,8387045493LL<<19),
6094  -reale(13789372,989768405LL<<21),reale(9667615,6509295661LL<<19),
6095  reale(215496,1395596667LL<<20),-reale(184969,6596889361LL<<19),
6096  -reale(459826,0xaf07be5d28000LL),reale(77934432511LL,0x7a7ae451fe1d3LL),
6097  // C4[9], coeff of eps^16, polynomial in n of order 13
6098  reale(316814308,524172905LL<<23),-reale(186563878,63588247LL<<25),
6099  -reale(110274143,526845649LL<<23),reale(263023219,83035351LL<<24),
6100  -reale(130904637,509865531LL<<23),-reale(30397924,20206077LL<<26),
6101  reale(13683269,123318603LL<<23),reale(48158450,141529345LL<<24),
6102  -reale(26437768,420249375LL<<23),-reale(5662772,129791197LL<<25),
6103  -reale(2185901,350246489LL<<23),reale(9629298,177188459LL<<24),
6104  -reale(3949112,493038403LL<<23),reale(276643,3634960421LL<<18),
6105  reale(77934432511LL,0x7a7ae451fe1d3LL),
6106  // C4[9], coeff of eps^15, polynomial in n of order 14
6107  reale(78761274,365004673LL<<20),-reale(201515576,8484307809LL<<19),
6108  reale(313194006,1602645493LL<<21),-reale(252751914,5568714583LL<<19),
6109  -reale(13191170,2167441005LL<<20),reale(241719441,7606152787LL<<19),
6110  -reale(201822768,404840345LL<<22),reale(21302083,5136432093LL<<19),
6111  reale(37050656,1255073061LL<<20),reale(20598069,641077127LL<<19),
6112  -reale(39565379,1270355289LL<<21),reale(9630032,7047419793LL<<19),
6113  reale(3352897,1867330359LL<<20),reale(651457,7128437307LL<<19),
6114  -reale(1114108,0x7475455348000LL),reale(77934432511LL,0x7a7ae451fe1d3LL),
6115  // C4[9], coeff of eps^14, polynomial in n of order 15
6116  reale(1503684,1762694997LL<<21),-reale(12945810,457623793LL<<22),
6117  reale(59109631,1997027375LL<<21),-reale(165337541,436423661LL<<23),
6118  reale(292248408,1310925625LL<<21),-reale(302358268,80333091LL<<22),
6119  reale(101329883,1625451155LL<<21),reale(168206436,256940945LL<<24),
6120  -reale(245462494,1698275235LL<<21),reale(106772813,575322475LL<<22),
6121  reale(20184277,1515722423LL<<21),-reale(15841583,115367503LL<<23),
6122  -reale(24343366,297803839LL<<21),reale(22619454,642864953LL<<22),
6123  -reale(5751128,1751200357LL<<21),reale(119914,0x778fad9290000LL),
6124  reale(77934432511LL,0x7a7ae451fe1d3LL),
6125  // C4[9], coeff of eps^13, polynomial in n of order 16
6126  -real(494538685723LL<<23),-reale(30244,7532247025LL<<19),
6127  reale(913230,2357276371LL<<20),-reale(8356271,5886749331LL<<19),
6128  reale(41054740,50726383LL<<21),-reale(125953300,8377060373LL<<19),
6129  reale(252781900,3961145001LL<<20),-reale(323011393,7392450487LL<<19),
6130  reale(214671336,735258085LL<<22),reale(38642307,2838366023LL<<19),
6131  -reale(221064383,2701482241LL<<20),reale(190191489,7753766309LL<<19),
6132  -reale(54203341,2021364059LL<<21),-reale(15936650,4639479773LL<<19),
6133  reale(7069294,1728459477LL<<20),reale(6475976,7904740225LL<<19),
6134  -reale(3243677,0x65d7af1058000LL),reale(77934432511LL,0x7a7ae451fe1d3LL),
6135  // C4[9], coeff of eps^12, polynomial in n of order 17
6136  -real(4941153649LL<<22),-real(2434362319LL<<26),
6137  -real(480183190319LL<<22),-reale(15428,422153761LL<<23),
6138  reale(492912,506448323LL<<22),-reale(4815395,177795021LL<<24),
6139  reale(25573504,64498885LL<<22),-reale(86374812,63633203LL<<23),
6140  reale(196725482,856584503LL<<22),-reale(303474922,105041487LL<<25),
6141  reale(296000607,1045914233LL<<22),-reale(124541003,470657541LL<<23),
6142  -reale(96946363,592229397LL<<22),reale(194787320,217061649LL<<24),
6143  -reale(139624521,484247315LL<<22),reale(48044895,435975913LL<<23),
6144  -reale(5082038,276187937LL<<22),-reale(749748,0x6069872020000LL),
6145  reale(77934432511LL,0x7a7ae451fe1d3LL),
6146  // C4[9], coeff of eps^11, polynomial in n of order 18
6147  -real(231323121LL<<20),-real(2351460757LL<<19),-real(912558841LL<<23),
6148  -real(0xdfda7610580000LL),-real(777314384543LL<<20),
6149  -reale(6590,3852961377LL<<19),reale(223861,17176789LL<<21),
6150  -reale(2346980,3623268951LL<<19),reale(13542533,3871010099LL<<20),
6151  -reale(50565862,7643343277LL<<19),reale(130735502,766383623LL<<22),
6152  -reale(239800507,7719641123LL<<19),reale(308448660,3395101317LL<<20),
6153  -reale(258446712,3844536697LL<<19),reale(99709743,227483207LL<<21),
6154  reale(54337873,5199140497LL<<19),-reale(105984135,215955881LL<<20),
6155  reale(67263140,627338299LL<<19),-reale(17110329,0x5fa94e648000LL),
6156  reale(77934432511LL,0x7a7ae451fe1d3LL),
6157  // C4[9], coeff of eps^10, polynomial in n of order 19
6158  -real(538707LL<<21),-real(1075491LL<<22),-real(9728097LL<<21),
6159  -real(3213907LL<<25),-real(333357375LL<<21),-real(1438804621LL<<22),
6160  -real(39246385997LL<<21),-real(379094211993LL<<23),
6161  reale(25645,1674653973LL<<21),-reale(290249,472854199LL<<22),
6162  reale(1830100,1274307463LL<<21),-reale(7588281,99130323LL<<24),
6163  reale(22282256,82312105LL<<21),-reale(48025833,432719649LL<<22),
6164  reale(76964476,1304326427LL<<21),-reale(91125940,162742323LL<<23),
6165  reale(77471536,1478654845LL<<21),-reale(44556474,1023100235LL<<22),
6166  reale(15423395,377918063LL<<21),-reale(2409905,0x7f0a0dc2b0000LL),
6167  reale(25978144170LL,0x7e28f6c5ff5f1LL),
6168  // C4[9], coeff of eps^9, polynomial in n of order 20
6169  -real(16575LL<<21),-real(226005LL<<19),-real(421083LL<<20),
6170  -real(3487431LL<<19),-real(1025715LL<<23),-real(90604825LL<<19),
6171  -real(308056405LL<<20),-real(5606626571LL<<19),-real(20270111449LL<<21),
6172  -real(0x30ab7cf8dddLL<<19),reale(15220,1707177905LL<<20),
6173  -reale(187210,7636838095LL<<19),reale(1297995,534056013LL<<22),
6174  -reale(6003229,1506461473LL<<19),reale(20010763,3942424887LL<<20),
6175  -reale(50026909,6827222547LL<<19),reale(95435950,2132760845LL<<21),
6176  -reale(138382128,8075045605LL<<19),reale(146522254,737992253LL<<20),
6177  -reale(96396219,7300467927LL<<19),reale(27713913,0x34f39e3ee8000LL),
6178  reale(77934432511LL,0x7a7ae451fe1d3LL),
6179  // C4[10], coeff of eps^29, polynomial in n of order 0
6180  real(14059LL<<19),real(0x168a4531304537LL),
6181  // C4[10], coeff of eps^28, polynomial in n of order 1
6182  -real(1004279LL<<22),-real(3373361LL<<19),reale(3807,0xdf0925caacfb9LL),
6183  // C4[10], coeff of eps^27, polynomial in n of order 2
6184  real(78580619LL<<24),-real(212705597LL<<23),real(705875469LL<<19),
6185  reale(59656,0xa639fabc960fdLL),
6186  // C4[10], coeff of eps^26, polynomial in n of order 3
6187  real(927832218729LL<<21),-real(204500125453LL<<22),
6188  -real(29157611613LL<<21),-real(0x66c4e2e4040000LL),
6189  reale(23087123,0x49a60b16d9e77LL),
6190  // C4[10], coeff of eps^25, polynomial in n of order 4
6191  real(26024288967LL<<27),-real(7678900515LL<<25),real(13514191015LL<<26),
6192  -real(31097026337LL<<25),real(89826688809LL<<21),
6193  reale(25583028,0x820b055e82c23LL),
6194  // C4[10], coeff of eps^24, polynomial in n of order 5
6195  reale(1328855,126349401LL<<24),-reale(550962,13774891LL<<26),
6196  reale(2464835,125518543LL<<24),-reale(784466,25625323LL<<25),
6197  -reale(93184,68528187LL<<24),-reale(52198,1190112709LL<<21),
6198  reale(86138056986LL,0x5ef39e09c8055LL),
6199  // C4[10], coeff of eps^23, polynomial in n of order 6
6200  -reale(1114607,27405733LL<<26),-reale(4563722,53821803LL<<25),
6201  reale(3169393,348585LL<<27),reale(68182,92955763LL<<25),
6202  reale(1172595,45755337LL<<26),-reale(1088988,13585007LL<<25),
6203  reale(166307,46143431LL<<21),reale(86138056986LL,0x5ef39e09c8055LL),
6204  // C4[10], coeff of eps^22, polynomial in n of order 7
6205  reale(5480278,504127481LL<<20),-reale(9293162,155326547LL<<21),
6206  -reale(197247,3072475525LL<<20),-reale(1644302,932629169LL<<22),
6207  reale(3811061,3287215741LL<<20),-reale(747954,323686257LL<<21),
6208  -reale(145848,3935467265LL<<20),-reale(106662,0xb8d6e5aaa0000LL),
6209  reale(86138056986LL,0x5ef39e09c8055LL),
6210  // C4[10], coeff of eps^21, polynomial in n of order 8
6211  reale(22796753,23076841LL<<25),-reale(927290,180149865LL<<22),
6212  -reale(369606,74581989LL<<23),-reale(9303996,552920075LL<<22),
6213  reale(3036817,71115369LL<<24),reale(396000,898162707LL<<22),
6214  reale(2181010,484753161LL<<23),-reale(1556188,389640079LL<<22),
6215  reale(192540,3401040927LL<<18),reale(86138056986LL,0x5ef39e09c8055LL),
6216  // C4[10], coeff of eps^20, polynomial in n of order 9
6217  reale(862955,1266777839LL<<21),reale(7027949,96012647LL<<24),
6218  reale(20762590,1932890753LL<<21),-reale(9559408,1057130891LL<<22),
6219  -reale(3064719,1040728173LL<<21),-reale(5129237,23711641LL<<23),
6220  reale(5760893,1279205669LL<<21),-reale(394463,240514009LL<<22),
6221  -reale(178786,1942994377LL<<21),-reale(217080,8651652815LL<<18),
6222  reale(86138056986LL,0x5ef39e09c8055LL),
6223  // C4[10], coeff of eps^19, polynomial in n of order 10
6224  -reale(10913096,468931943LL<<23),-reale(57356320,139563275LL<<22),
6225  reale(21632622,17971173LL<<25),reale(12352870,1067519707LL<<22),
6226  reale(10546968,197307279LL<<23),-reale(16476123,321986815LL<<22),
6227  reale(466396,220388453LL<<24),reale(183297,876676071LL<<22),
6228  reale(4340035,31265157LL<<23),-reale(2266775,500956659LL<<22),
6229  reale(210337,0xe1ea7a84c0000LL),reale(86138056986LL,0x5ef39e09c8055LL),
6230  // C4[10], coeff of eps^18, polynomial in n of order 11
6231  reale(183220667,2590575043LL<<20),reale(3573393,1902991101LL<<21),
6232  -reale(38433982,657724943LL<<20),-reale(39892891,403988263LL<<23),
6233  reale(42677900,967722655LL<<20),reale(4292702,1711217099LL<<21),
6234  -reale(2792039,799969587LL<<20),-reale(14767346,746757159LL<<22),
6235  reale(7703673,1133060475LL<<20),reale(747527,637790873LL<<21),
6236  -reale(45502,3704918615LL<<20),-reale(458872,0xc21d355260000LL),
6237  reale(86138056986LL,0x5ef39e09c8055LL),
6238  // C4[10], coeff of eps^17, polynomial in n of order 12
6239  -reale(61780842,49135749LL<<25),-reale(196091506,391376453LL<<23),
6240  reale(232013693,187926637LL<<24),-reale(59475550,301219495LL<<23),
6241  -reale(46331600,62864215LL<<26),-reale(5439903,151048009LL<<23),
6242  reale(49627120,102515675LL<<24),-reale(16690048,509576107LL<<23),
6243  -reale(7354945,21733079LL<<25),-reale(3769052,366616397LL<<23),
6244  reale(9145462,214930505LL<<24),-reale(3305318,371590575LL<<23),
6245  reale(189374,6271289399LL<<19),reale(86138056986LL,0x5ef39e09c8055LL),
6246  // C4[10], coeff of eps^16, polynomial in n of order 13
6247  -reale(246951312,552772347LL<<22),reale(295555190,29721595LL<<24),
6248  -reale(151972143,664869293LL<<22),-reale(114414430,423169395LL<<23),
6249  reale(248915402,492058657LL<<22),-reale(140322148,99500631LL<<25),
6250  -reale(15757705,299151505LL<<22),reale(29401843,368167099LL<<23),
6251  reale(29725213,39057725LL<<22),-reale(34936824,2445655LL<<24),
6252  reale(5290998,483472011LL<<22),reale(3412892,270211305LL<<23),
6253  reale(939828,308185177LL<<22),-reale(1058440,2262901433LL<<19),
6254  reale(86138056986LL,0x5ef39e09c8055LL),
6255  // C4[10], coeff of eps^15, polynomial in n of order 14
6256  -reale(29237793,21929809LL<<24),reale(96597143,85827693LL<<23),
6257  -reale(210653294,75090197LL<<25),reale(297719766,264531499LL<<23),
6258  -reale(232859751,332419LL<<24),reale(779198,466262825LL<<23),
6259  reale(210565738,49075321LL<<26),-reale(210231291,35636249LL<<23),
6260  reale(60435795,147172683LL<<24),reale(30790678,95503589LL<<23),
6261  -reale(8341137,27440903LL<<25),-reale(25891285,147600733LL<<23),
6262  reale(19770912,119140889LL<<24),-reale(4475853,348372575LL<<23),
6263  reale(24304,4909664935LL<<19),reale(86138056986LL,0x5ef39e09c8055LL),
6264  // C4[10], coeff of eps^14, polynomial in n of order 15
6265  -reale(326980,1465789373LL<<20),reale(3379554,1566468779LL<<21),
6266  -reale(19029758,226591575LL<<20),reale(68313947,940737655LL<<22),
6267  -reale(165836985,3033756273LL<<20),reale(273579872,472941105LL<<21),
6268  -reale(286670501,2169744907LL<<20),reale(131674848,489609853LL<<23),
6269  reale(102478771,1504412891LL<<20),-reale(220713363,225877065LL<<21),
6270  reale(153302553,1201451329LL<<20),-reale(29968476,1046042243LL<<22),
6271  -reale(18498599,2914872793LL<<20),reale(4637884,270502717LL<<21),
6272  reale(6604171,2668065421LL<<20),-reale(2936921,0x8973648be0000LL),
6273  reale(86138056986LL,0x5ef39e09c8055LL),
6274  // C4[10], coeff of eps^13, polynomial in n of order 16
6275  real(8181919521LL<<26),reale(4651,463423847LL<<22),
6276  -reale(165627,528682553LL<<23),reale(1821092,755660373LL<<22),
6277  -reale(11021646,91392285LL<<24),reale(43145010,992272131LL<<22),
6278  -reale(116748177,310953403LL<<23),reale(223068773,47271409LL<<22),
6279  -reale(294932999,99296991LL<<25),reale(242263024,286305695LL<<22),
6280  -reale(60276785,30271037LL<<23),-reale(125363778,717272947LL<<22),
6281  reale(182026841,37372833LL<<24),-reale(116787755,417593029LL<<22),
6282  reale(36759949,346012225LL<<23),-reale(3061422,962217431LL<<22),
6283  -reale(731281,0xaaf6b13240000LL),reale(86138056986LL,0x5ef39e09c8055LL),
6284  // C4[10], coeff of eps^12, polynomial in n of order 17
6285  real(777809483LL<<21),real(436668683LL<<25),real(99139014933LL<<21),
6286  real(0x1cfc4bfd58dLL<<22),-reale(70023,1623299233LL<<21),
6287  reale(822756,446933025LL<<23),-reale(5376526,2111656919LL<<21),
6288  reale(23042396,297910775LL<<22),-reale(69630161,297782669LL<<21),
6289  reale(153266731,112309515LL<<24),-reale(247130955,1577554627LL<<21),
6290  reale(284460705,580739169LL<<22),-reale(212091093,1801700473LL<<21),
6291  reale(61297082,319619083LL<<23),reale(65462218,2096893009LL<<21),
6292  -reale(98426842,1047683893LL<<22),reale(59152561,1235484315LL<<21),
6293  -reale(14780753,0xb5d74354c0000LL),
6294  reale(86138056986LL,0x5ef39e09c8055LL),
6295  // C4[10], coeff of eps^11, polynomial in n of order 18
6296  real(1233981LL<<23),real(14104237LL<<22),real(6201077LL<<26),
6297  real(933195507LL<<22),real(6966040851LL<<23),real(592370721657LL<<22),
6298  -reale(22184,189431713LL<<24),reale(279989,474035391LL<<22),
6299  -reale(1985627,52832535LL<<23),reale(9357698,635528005LL<<22),
6300  -reale(31645438,92987147LL<<25),reale(79909927,996806539LL<<22),
6301  -reale(153562851,494252097LL<<23),reale(225351987,543734289LL<<22),
6302  -reale(249473559,252214923LL<<24),reale(201676475,478217047LL<<22),
6303  -reale(111804841,353712747LL<<23),reale(37701632,700509149LL<<22),
6304  -reale(5783773,3281237837LL<<18),reale(86138056986LL,0x5ef39e09c8055LL),
6305  // C4[10], coeff of eps^10, polynomial in n of order 19
6306  real(57057LL<<20),real(126819LL<<21),real(1284843LL<<20),
6307  real(478667LL<<24),real(56414325LL<<20),real(279062861LL<<21),
6308  real(8810413183LL<<20),real(99625441377LL<<22),
6309  -reale(3997,1800115191LL<<20),reale(54510,559965495LL<<21),
6310  -reale(421909,1796318189LL<<20),reale(2196607,410595787LL<<23),
6311  -reale(8328804,1896277603LL<<20),reale(24012916,1506461473LL<<21),
6312  -reale(53875133,2685050457LL<<20),reale(94820235,193579723LL<<22),
6313  -reale(129680615,3269639887LL<<20),reale(131955714,608596747LL<<21),
6314  -reale(84828673,2009615045LL<<20),reale(24099054,0xf664899ae0000LL),
6315  reale(86138056986LL,0x5ef39e09c8055LL),
6316  // C4[11], coeff of eps^29, polynomial in n of order 0
6317  -real(255169LL<<19),real(0xbdc79d6e266b55fLL),
6318  // C4[11], coeff of eps^28, polynomial in n of order 1
6319  -real(535829LL<<26),real(6461547LL<<20),real(0x56e2cdab4666fea1LL),
6320  // C4[11], coeff of eps^27, polynomial in n of order 2
6321  -real(54075943LL<<25),-real(11012147LL<<24),-real(184884229LL<<19),
6322  reale(65338,0x3c271ece8bf8fLL),
6323  // C4[11], coeff of eps^26, polynomial in n of order 3
6324  -real(29189823LL<<30),real(157366885LL<<32),-real(637753597LL<<30),
6325  real(13332470307LL<<23),reale(19666808,0xb9ff38da93b23LL),
6326  // C4[11], coeff of eps^25, polynomial in n of order 4
6327  -reale(768828,16543417LL<<28),reale(2405043,41201001LL<<26),
6328  -reale(595679,17511625LL<<27),-reale(94147,42169149LL<<26),
6329  -reale(60455,661597895LL<<21),reale(94341681461LL,0x436c57c191ed7LL),
6330  // C4[11], coeff of eps^24, polynomial in n of order 5
6331  -reale(5042070,2793567LL<<28),reale(2454743,3154771LL<<30),
6332  reale(191058,8757223LL<<28),reale(1233521,5992667LL<<29),
6333  -reale(1001395,9125891LL<<28),reale(137539,51052897LL<<22),
6334  reale(94341681461LL,0x436c57c191ed7LL),
6335  // C4[11], coeff of eps^23, polynomial in n of order 6
6336  -reale(7620321,6390387LL<<27),-reale(1118882,49853273LL<<26),
6337  -reale(2175696,13938625LL<<28),reale(3557797,45648113LL<<26),
6338  -reale(479218,13589073LL<<27),-reale(128928,23280229LL<<26),
6339  -reale(115227,1709406351LL<<21),reale(94341681461LL,0x436c57c191ed7LL),
6340  // C4[11], coeff of eps^22, polynomial in n of order 7
6341  reale(3030693,3978133LL<<30),reale(1618004,874507LL<<32),
6342  -reale(9217736,134985LL<<30),reale(1767041,97063LL<<33),
6343  reale(345531,3069873LL<<30),reale(2240563,263433LL<<32),
6344  -reale(1400217,895853LL<<30),reale(154222,296573467LL<<23),
6345  reale(94341681461LL,0x436c57c191ed7LL),
6346  // C4[11], coeff of eps^21, polynomial in n of order 8
6347  reale(304504,49998275LL<<26),reale(21950325,110791689LL<<23),
6348  -reale(5005332,65785063LL<<24),-reale(3038456,102319349LL<<23),
6349  -reale(5977063,34913149LL<<25),reale(5022754,485487661LL<<23),
6350  -reale(45293,7681997LL<<24),-reale(123970,179449809LL<<23),
6351  -reale(222792,7672407751LL<<18),reale(94341681461LL,0x436c57c191ed7LL),
6352  // C4[11], coeff of eps^20, polynomial in n of order 9
6353  -reale(56432361,120691497LL<<25),reale(6246807,9955417LL<<28),
6354  reale(11410351,83254233LL<<25),reale(14692579,49664915LL<<26),
6355  -reale(13833928,124401461LL<<25),-reale(1245123,9835207LL<<27),
6356  -reale(339985,114545011LL<<25),reale(4291293,22713457LL<<26),
6357  -reale(1980685,98627585LL<<25),reale(159775,7030690975LL<<19),
6358  reale(94341681461LL,0x436c57c191ed7LL),
6359  // C4[11], coeff of eps^19, polynomial in n of order 10
6360  reale(40826627,234278683LL<<24),-reale(19124677,161584861LL<<23),
6361  -reale(51024100,50981393LL<<26),reale(30646271,384869645LL<<23),
6362  reale(9815197,6859997LL<<24),reale(639236,244693975LL<<23),
6363  -reale(14951689,12090449LL<<25),reale(5916250,151054657LL<<23),
6364  reale(1073676,226322463LL<<24),reale(80953,380993803LL<<23),
6365  -reale(451111,0xff79096c0000LL),reale(94341681461LL,0x436c57c191ed7LL),
6366  // C4[11], coeff of eps^18, polynomial in n of order 11
6367  -reale(233788807,3535193LL<<28),reale(177892093,3762413LL<<30),
6368  -reale(5486729,8981851LL<<28),-reale(45008759,222901LL<<32),
6369  -reale(22295157,5977845LL<<28),reale(46499690,3347131LL<<30),
6370  -reale(8381947,991351LL<<28),-reale(7636513,1723229LL<<31),
6371  -reale(5108235,6476849LL<<28),reale(8568922,940153LL<<30),
6372  -reale(2769555,11314291LL<<28),reale(126172,1159668425LL<<21),
6373  reale(94341681461LL,0x436c57c191ed7LL),
6374  // C4[11], coeff of eps^17, polynomial in n of order 12
6375  reale(246666787,23370677LL<<26),-reale(50685638,204720607LL<<24),
6376  -reale(179803952,51059789LL<<25),reale(226753224,100010811LL<<24),
6377  -reale(83690537,703961LL<<27),-reale(36110826,15584139LL<<24),
6378  reale(17880019,26951173LL<<25),reale(35367319,73259919LL<<24),
6379  -reale(29730133,51577369LL<<26),reale(2029349,105583177LL<<24),
6380  reale(3224077,120316375LL<<25),reale(1158582,83501667LL<<24),
6381  -reale(999784,6146420159LL<<19),reale(94341681461LL,0x436c57c191ed7LL),
6382  // C4[11], coeff of eps^16, polynomial in n of order 13
6383  reale(135472555,2919565LL<<26),-reale(240891001,9823619LL<<28),
6384  reale(277187915,48314475LL<<26),-reale(153860890,22130685LL<<27),
6385  -reale(78071452,50966567LL<<26),reale(224257271,6520287LL<<29),
6386  -reale(168898235,23643785LL<<26),reale(25365615,30758325LL<<27),
6387  reale(33991594,22223845LL<<26),-reale(1325267,13358465LL<<28),
6388  -reale(26274549,1352253LL<<26),reale(17195323,12709799LL<<27),
6389  -reale(3493469,55138895LL<<26),-reale(37171,2996514251LL<<20),
6390  reale(94341681461LL,0x436c57c191ed7LL),
6391  // C4[11], coeff of eps^15, polynomial in n of order 14
6392  reale(8369149,65829073LL<<25),-reale(34468304,77612041LL<<24),
6393  reale(98238486,50466661LL<<26),-reale(197855127,257258223LL<<24),
6394  reale(275634083,126808451LL<<25),-reale(237329411,109823349LL<<24),
6395  reale(57709083,378039LL<<27),reale(144028485,10992165LL<<24),
6396  -reale(208082193,86131531LL<<25),reale(120116321,182851999LL<<24),
6397  -reale(12733337,27687817LL<<26),-reale(18886416,178008391LL<<24),
6398  reale(2557866,23705959LL<<25),reale(6572718,173475635LL<<24),
6399  -reale(2666354,4022017967LL<<19),reale(94341681461LL,0x436c57c191ed7LL),
6400  // C4[11], coeff of eps^14, polynomial in n of order 15
6401  reale(54399,8224347LL<<28),-reale(665621,1410497LL<<30),
6402  reale(4527846,10561865LL<<28),-reale(20181039,1593975LL<<31),
6403  reale(63299017,4532479LL<<28),-reale(144047710,3737571LL<<30),
6404  reale(238046961,3527085LL<<28),-reale(274611219,485845LL<<32),
6405  reale(189061064,3080067LL<<28),-reale(9459768,127989LL<<30),
6406  -reale(141083601,3627343LL<<28),reale(166868825,1278147LL<<31),
6407  -reale(97711641,16702617LL<<28),reale(28303864,4120681LL<<30),
6408  -reale(1707991,14300715LL<<28),-reale(691965,964491519LL<<21),
6409  reale(94341681461LL,0x436c57c191ed7LL),
6410  // C4[11], coeff of eps^13, polynomial in n of order 16
6411  -real(394848061LL<<27),-real(277855615551LL<<23),
6412  reale(21507,221049445LL<<24),-reale(280152,15918397LL<<23),
6413  reale(2046623,76965257LL<<25),-reale(9908745,30179611LL<<23),
6414  reale(34287090,9035647LL<<24),-reale(88042794,304571673LL<<23),
6415  reale(170266683,41403331LL<<26),-reale(246546803,514564215LL<<23),
6416  reale(257558635,22204697LL<<24),-reale(171596509,74164853LL<<23),
6417  reale(32098211,100286083LL<<25),reale(71621283,185724333LL<<23),
6418  -reale(91026815,208301517LL<<24),reale(52421624,501338287LL<<23),
6419  -reale(12919309,7987587551LL<<18),reale(94341681461LL,0x436c57c191ed7LL),
6420  // C4[11], coeff of eps^12, polynomial in n of order 17
6421  -real(2506701LL<<25),-real(1595211LL<<29),-real(414133331LL<<25),
6422  -real(9611154693LL<<26),reale(6318,129560535LL<<25),
6423  -reale(88018,7994433LL<<27),reale(693686,99032081LL<<25),
6424  -reale(3663195,37640223LL<<26),reale(14022738,83451835LL<<25),
6425  -reale(40598902,6803915LL<<28),reale(90961965,119128629LL<<25),
6426  -reale(159220781,788729LL<<26),reale(217217490,112380639LL<<25),
6427  -reale(227284915,26366059LL<<27),reale(176075660,9208089LL<<25),
6428  -reale(94610548,45670931LL<<26),reale(31201351,21556291LL<<25),
6429  -reale(4712704,700509149LL<<19),reale(94341681461LL,0x436c57c191ed7LL),
6430  // C4[11], coeff of eps^11, polynomial in n of order 18
6431  -real(13041LL<<24),-real(166957LL<<23),-real(82777LL<<27),
6432  -real(14154867LL<<23),-real(121102751LL<<24),-real(11919970777LL<<23),
6433  real(140288886837LL<<25),-reale(15649,252654239LL<<23),
6434  reale(133731,225409843LL<<24),-reale(773734,115698949LL<<23),
6435  reale(3285982,23309223LL<<26),-reale(10716783,181102411LL<<23),
6436  reale(27557442,232845957LL<<24),-reale(56645854,420384689LL<<23),
6437  reale(93299054,125728615LL<<25),-reale(121534295,132369527LL<<23),
6438  reale(119605179,120525655LL<<24),-reale(75403265,163638237LL<<23),
6439  reale(21207168,6304582341LL<<18),reale(94341681461LL,0x436c57c191ed7LL),
6440  // C4[12], coeff of eps^29, polynomial in n of order 0
6441  real(2113LL<<23),real(0x495846bc80a035LL),
6442  // C4[12], coeff of eps^28, polynomial in n of order 1
6443  -real(5059597LL<<25),-real(23775299LL<<22),
6444  reale(61953,0x75e619a89ce07LL),
6445  // C4[12], coeff of eps^27, polynomial in n of order 2
6446  real(30823201LL<<29),-real(55301563LL<<28),real(131431881LL<<24),
6447  reale(497138,0xbe8dd4238d2e7LL),
6448  // C4[12], coeff of eps^26, polynomial in n of order 3
6449  real(8059635627LL<<28),-real(757042391LL<<29),-real(311216327LL<<28),
6450  -real(7273579LL<<33),reale(21376966,0x1d2a1f8b6ccdLL),
6451  // C4[12], coeff of eps^25, polynomial in n of order 4
6452  reale(590308,751003LL<<30),reale(77521,16047653LL<<28),
6453  reale(426657,125003LL<<29),-reale(306166,5244457LL<<28),
6454  reale(37995,207060411LL<<24),reale(34181768645LL,0x62a1b07dc9473LL),
6455  // C4[12], coeff of eps^24, polynomial in n of order 5
6456  -reale(1599658,2394579LL<<27),-reale(2671318,5123391LL<<29),
6457  reale(3256460,16377243LL<<27),-reale(261261,3982303LL<<28),
6458  -reale(106562,1204279LL<<27),-reale(120793,1029973LL<<24),
6459  reale(102545305936LL,0x27e511795bd59LL),
6460  // C4[12], coeff of eps^23, polynomial in n of order 6
6461  reale(1248773,4542469LL<<29),-reale(2889741,9813249LL<<28),
6462  reale(234885,3135591LL<<30),reale(66922,9908313LL<<28),
6463  reale(755418,635863LL<<29),-reale(419245,13200621LL<<28),
6464  reale(41213,192739239LL<<24),reale(34181768645LL,0x62a1b07dc9473LL),
6465  // C4[12], coeff of eps^22, polynomial in n of order 7
6466  reale(20885911,4938503LL<<28),-reale(1107830,1234733LL<<29),
6467  -reale(2370377,3771643LL<<28),-reale(6561451,624527LL<<30),
6468  reale(4279851,10797315LL<<28),reale(210660,3761905LL<<29),
6469  -reale(68724,2033407LL<<28),-reale(224555,1152577LL<<29),
6470  reale(102545305936LL,0x27e511795bd59LL),
6471  // C4[12], coeff of eps^21, polynomial in n of order 8
6472  -reale(5562062,38325LL<<31),reale(7741765,4470897LL<<28),
6473  reale(17399328,6149297LL<<29),-reale(10890962,10744893LL<<28),
6474  -reale(2368414,446197LL<<30),-reale(891562,9146315LL<<28),
6475  reale(4183586,393403LL<<29),-reale(1730085,6072185LL<<28),
6476  reale(120797,18742483LL<<24),reale(102545305936LL,0x27e511795bd59LL),
6477  // C4[12], coeff of eps^20, polynomial in n of order 9
6478  reale(3332722,179104103LL<<24),-reale(54245156,21887465LL<<27),
6479  reale(18428910,34326153LL<<24),reale(12293411,106053413LL<<25),
6480  reale(4024929,78680811LL<<24),-reale(14528270,1262953LL<<26),
6481  reale(4350569,36952333LL<<24),reale(1251271,92345015LL<<25),
6482  reale(191236,5049199LL<<24),-reale(439124,1983321823LL<<21),
6483  reale(102545305936LL,0x27e511795bd59LL),
6484  // C4[12], coeff of eps^19, polynomial in n of order 10
6485  reale(117817828,9756529LL<<27),reale(29304818,21859033LL<<26),
6486  -reale(33857646,3348243LL<<29),-reale(34756825,30241097LL<<26),
6487  reale(40576649,11012471LL<<27),-reale(1809964,37385419LL<<26),
6488  -reale(7014724,9945043LL<<28),-reale(6163099,62399597LL<<26),
6489  reale(7950550,2557949LL<<27),-reale(2323999,3159279LL<<26),
6490  reale(80031,1030811061LL<<22),reale(102545305936LL,0x27e511795bd59LL),
6491  // C4[12], coeff of eps^18, polynomial in n of order 11
6492  reale(37677439,43610729LL<<26),-reale(212417438,31724009LL<<27),
6493  reale(188774384,60946099LL<<26),-reale(37276694,6182933LL<<29),
6494  -reale(44097735,31570179LL<<26),reale(5696664,10497345LL<<27),
6495  reale(38054298,7154503LL<<26),-reale(24525159,12952085LL<<28),
6496  -reale(350073,57822319LL<<26),reale(2901654,18012267LL<<27),
6497  reale(1319354,63457243LL<<26),-reale(941373,59576227LL<<26),
6498  reale(102545305936LL,0x27e511795bd59LL),
6499  // C4[12], coeff of eps^17, polynomial in n of order 12
6500  -reale(253394431,1462439LL<<28),reale(237669216,409221LL<<26),
6501  -reale(76296320,28335185LL<<27),-reale(133872864,17217849LL<<26),
6502  reale(218174046,2622387LL<<29),-reale(127998192,57914967LL<<26),
6503  reale(363472,30718057LL<<27),reale(32681168,4189163LL<<26),
6504  reale(4677048,16088179LL<<28),-reale(25857930,7142835LL<<26),
6505  reale(14914891,9312419LL<<27),-reale(2731797,52301425LL<<26),
6506  -reale(76352,726189181LL<<22),reale(102545305936LL,0x27e511795bd59LL),
6507  // C4[12], coeff of eps^16, polynomial in n of order 13
6508  -reale(53643409,97684423LL<<25),reale(127408278,3174879LL<<27),
6509  -reale(219370358,126672641LL<<25),reale(262176902,49024297LL<<26),
6510  -reale(182579118,132254331LL<<25),-reale(3956056,15289739LL<<28),
6511  reale(167880537,57011019LL<<25),-reale(188895775,46555265LL<<26),
6512  reale(91621970,25449425LL<<25),-reale(762367,26232331LL<<27),
6513  -reale(18049661,12932969LL<<25),reale(839158,10679509LL<<26),
6514  reale(6440415,29973277LL<<25),-reale(2428550,982597961LL<<22),
6515  reale(102545305936LL,0x27e511795bd59LL),
6516  // C4[12], coeff of eps^15, polynomial in n of order 14
6517  -reale(1786573,13634499LL<<27),reale(8939902,21088027LL<<26),
6518  -reale(31907799,6174271LL<<28),reale(84216248,4944333LL<<26),
6519  -reale(166330228,11364729LL<<27),reale(242706491,8863071LL<<26),
6520  -reale(246937724,7698133LL<<29),reale(139651898,50060433LL<<26),
6521  reale(29493809,19297617LL<<27),-reale(148014628,18656733LL<<26),
6522  reale(151165884,622571LL<<28),-reale(81883041,55488299LL<<26),
6523  reale(21903841,15379355LL<<27),-reale(792996,14574745LL<<26),
6524  -reale(644309,457907141LL<<22),reale(102545305936LL,0x27e511795bd59LL),
6525  // C4[12], coeff of eps^14, polynomial in n of order 15
6526  -reale(6504,28793619LL<<26),reale(93075,33271365LL<<27),
6527  -reale(752118,6462873LL<<26),reale(4061558,11832697LL<<28),
6528  -reale(15840997,35193887LL<<26),reale(46482714,19239327LL<<27),
6529  -reale(104709924,13039269LL<<26),reale(181860520,7828435LL<<29),
6530  -reale(240159499,36173099LL<<26),reale(229992094,10037497LL<<27),
6531  -reale(136854274,43911089LL<<26),reale(9990763,2550227LL<<28),
6532  reale(74520212,5689801LL<<26),-reale(84057599,709549LL<<27),
6533  reale(46786776,54603587LL<<26),-reale(11406945,39298831LL<<26),
6534  reale(102545305936LL,0x27e511795bd59LL),
6535  // C4[12], coeff of eps^13, polynomial in n of order 16
6536  real(1030055LL<<30),real(829418525LL<<26),-real(19924010015LL<<27),
6537  reale(9050,10804695LL<<26),-reale(78488,9283787LL<<28),
6538  reale(459151,22444081LL<<26),-reale(1962716,17985613LL<<27),
6539  reale(6408338,7820523LL<<26),-reale(16395176,1626457LL<<29),
6540  reale(33311385,35536325LL<<26),-reale(53946341,7054843LL<<27),
6541  reale(69201696,61410431LL<<26),-reale(69012103,3773337LL<<28),
6542  reale(51544754,7834329LL<<26),-reale(26961871,12889641LL<<27),
6543  reale(8722958,26104467LL<<26),-reale(1300056,320360129LL<<22),
6544  reale(34181768645LL,0x62a1b07dc9473LL),
6545  // C4[12], coeff of eps^12, polynomial in n of order 17
6546  real(127075LL<<24),real(91195LL<<28),real(26902525LL<<24),
6547  real(715607165LL<<25),-real(73094160425LL<<24),
6548  reale(4440,35913265LL<<26),-reale(41519,978831LL<<24),
6549  reale(264211,112928967LL<<25),-reale(1241795,175695285LL<<24),
6550  reale(4515620,18853435LL<<27),-reale(13069247,261014043LL<<24),
6551  reale(30619380,129358865LL<<25),-reale(58537051,226171969LL<<24),
6552  reale(91194564,65482939LL<<26),-reale(113993206,58979239LL<<24),
6553  reale(109036979,115740763LL<<25),-reale(67602927,138149837LL<<24),
6554  reale(18850816,700509149LL<<21),reale(102545305936LL,0x27e511795bd59LL),
6555  // C4[13], coeff of eps^29, polynomial in n of order 0
6556  -real(634219LL<<23),reale(3193,0x402148867236bLL),
6557  // C4[13], coeff of eps^28, polynomial in n of order 1
6558  -real(400561LL<<32),real(1739049LL<<27),reale(66909,0xbcc54ee94d445LL),
6559  // C4[13], coeff of eps^27, polynomial in n of order 2
6560  -real(6387996953LL<<29),-real(3461245957LL<<28),-real(49206438547LL<<24),
6561  reale(286172946,0xcc6f5fc7e64c9LL),
6562  // C4[13], coeff of eps^26, polynomial in n of order 3
6563  real(7296571113LL<<30),reale(10661,1488313LL<<31),
6564  -reale(6836,2507629LL<<30),real(103233906747LL<<25),
6565  reale(900397808,0x384bb07b32421LL),
6566  // C4[13], coeff of eps^25, polynomial in n of order 4
6567  -reale(1030602,1434287LL<<30),reale(976249,6303335LL<<28),
6568  -reale(29214,7243007LL<<29),-reale(27193,4360723LL<<28),
6569  -reale(41363,170006437LL<<24),reale(36916310137LL,0x41f43bb0c949LL),
6570  // C4[13], coeff of eps^24, polynomial in n of order 5
6571  -reale(2597630,109963LL<<31),-reale(46366,88065LL<<33),
6572  real(835763379LL<<31),reale(754229,667751LL<<32),
6573  -reale(376195,1000319LL<<31),reale(33027,62908623LL<<26),
6574  reale(36916310137LL,0x41f43bb0c949LL),
6575  // C4[13], coeff of eps^23, polynomial in n of order 6
6576  reale(1907767,7512493LL<<29),-reale(1322539,10099505LL<<28),
6577  -reale(6889396,2784065LL<<30),reale(3566231,12064393LL<<28),
6578  reale(392016,1668111LL<<29),-reale(16024,9677725LL<<28),
6579  -reale(223530,46890859LL<<24),reale(110748930411LL,0xc5dcb3125bdbLL),
6580  // C4[13], coeff of eps^22, polynomial in n of order 7
6581  reale(2768819,1533979LL<<30),reale(18682895,1051157LL<<31),
6582  -reale(7962826,2061455LL<<30),-reale(3008388,501585LL<<32),
6583  -reale(1419492,411945LL<<30),reale(4033867,1208903LL<<31),
6584  -reale(1511425,98131LL<<30),reale(90538,115806565LL<<25),
6585  reale(110748930411LL,0xc5dcb3125bdbLL),
6586  // C4[13], coeff of eps^21, polynomial in n of order 8
6587  -reale(51332124,214119LL<<31),reale(7579765,3153587LL<<28),
6588  reale(12475441,1655707LL<<29),reale(7005177,5256105LL<<28),
6589  -reale(13679833,119207LL<<30),reale(3016909,4530623LL<<28),
6590  reale(1323928,2024201LL<<29),reale(284896,6925237LL<<28),
6591  -reale(424636,138679005LL<<24),reale(110748930411LL,0xc5dcb3125bdbLL),
6592  // C4[13], coeff of eps^20, polynomial in n of order 9
6593  reale(47250711,14679LL<<32),-reale(18472981,62575LL<<35),
6594  -reale(42459575,893863LL<<32),reale(33307537,106651LL<<33),
6595  reale(3060800,842635LL<<32),-reale(5867540,102671LL<<34),
6596  -reale(6941741,849331LL<<32),reale(7324844,423881LL<<33),
6597  -reale(1953157,771073LL<<32),reale(46148,28524089LL<<27),
6598  reale(110748930411LL,0xc5dcb3125bdbLL),
6599  // C4[13], coeff of eps^19, polynomial in n of order 10
6600  -reale(218954922,27801141LL<<27),reale(144947317,36456347LL<<26),
6601  -reale(2491117,129025LL<<29),-reale(43746541,53566187LL<<26),
6602  -reale(5414513,33128531LL<<27),reale(38475112,39418671LL<<26),
6603  -reale(19653214,3660993LL<<28),-reale(2031714,8235735LL<<26),
6604  reale(2517568,31068687LL<<27),reale(1433299,8158787LL<<26),
6605  -reale(884985,911850811LL<<22),reale(110748930411LL,0xc5dcb3125bdbLL),
6606  // C4[13], coeff of eps^18, polynomial in n of order 11
6607  reale(186784429,10521821LL<<28),-reale(7066121,6171767LL<<29),
6608  -reale(168709085,159265LL<<28),reale(199772613,1997709LL<<31),
6609  -reale(91000398,5796399LL<<28),-reale(16385586,3500385LL<<29),
6610  reale(28845005,1198547LL<<28),reale(9523912,3994797LL<<30),
6611  -reale(24921512,7172347LL<<28),reale(12920997,2065141LL<<29),
6612  -reale(2137442,11262329LL<<28),-reale(100773,90157665LL<<23),
6613  reale(110748930411LL,0xc5dcb3125bdbLL),
6614  // C4[13], coeff of eps^17, polynomial in n of order 12
6615  reale(153014747,10291963LL<<28),-reale(229746959,27043849LL<<26),
6616  reale(237324258,14238909LL<<27),-reale(127910449,9268979LL<<26),
6617  -reale(52661288,2811671LL<<29),reale(178449477,48064707LL<<26),
6618  -reale(166899831,11458293LL<<27),reale(67870692,24951769LL<<26),
6619  reale(7326612,206249LL<<28),-reale(16569622,39442673LL<<26),
6620  -reale(550002,21806887LL<<27),reale(6246699,62490405LL<<26),
6621  -reale(2219585,747027389LL<<22),reale(110748930411LL,0xc5dcb3125bdbLL),
6622  // C4[13], coeff of eps^16, polynomial in n of order 13
6623  reale(15145062,3114639LL<<29),-reale(45473383,71569LL<<31),
6624  reale(104280194,4043033LL<<29),-reale(182691434,3191599LL<<30),
6625  reale(238813543,4302931LL<<29),-reale(215430056,686779LL<<32),
6626  reale(95643898,4170781LL<<29),reale(58502156,871831LL<<30),
6627  -reale(149008930,6169513LL<<29),reale(135928257,1117477LL<<31),
6628  -reale(68778720,227103LL<<29),reale(17013972,3743517LL<<30),
6629  -reale(171458,5381733LL<<29),-reale(594747,43724235LL<<24),
6630  reale(110748930411LL,0xc5dcb3125bdbLL),
6631  // C4[13], coeff of eps^15, polynomial in n of order 14
6632  reale(268265,12727175LL<<27),-reale(1599130,17232215LL<<26),
6633  reale(6942204,4883571LL<<28),-reale(22914299,20494129LL<<26),
6634  reale(58880733,8011269LL<<27),-reale(118985431,7979051LL<<26),
6635  reale(188592645,4054545LL<<29),-reale(229762161,35295621LL<<26),
6636  reale(203148724,31300867LL<<27),-reale(107385077,53637247LL<<26),
6637  -reale(6680614,2406191LL<<28),reale(75281884,8527271LL<<26),
6638  -reale(77627899,32310399LL<<27),reale(42028799,34263981LL<<26),
6639  -reale(10160264,35032709LL<<22),reale(110748930411LL,0xc5dcb3125bdbLL),
6640  // C4[13], coeff of eps^14, polynomial in n of order 15
6641  real(8350913025LL<<28),-reale(8241,2495877LL<<29),
6642  reale(78008,13111987LL<<28),-reale(500800,4045265LL<<30),
6643  reale(2364509,9424021LL<<28),-reale(8593646,4773407LL<<29),
6644  reale(24709323,11418567LL<<28),-reale(57114100,2066875LL<<31),
6645  reale(106928260,4889705LL<<28),-reale(162113251,5033977LL<<29),
6646  reale(197269922,8596123LL<<28),-reale(188736396,4070811LL<<30),
6647  reale(136566807,16720509LL<<28),-reale(69783667,938643LL<<29),
6648  reale(22203894,1359919LL<<28),-reale(3271109,212531129LL<<23),
6649  reale(110748930411LL,0xc5dcb3125bdbLL),
6650  // C4[13], coeff of eps^13, polynomial in n of order 16
6651  -real(94185LL<<30),-real(86179275LL<<26),real(2372802705LL<<27),
6652  -real(83726038305LL<<26),reale(12668,1555717LL<<28),
6653  -reale(87922,39994007LL<<26),reale(452934,19637187LL<<27),
6654  -reale(1815855,62281965LL<<26),reale(5835571,1574167LL<<29),
6655  -reale(15318374,24668899LL<<26),reale(33211265,14617205LL<<27),
6656  -reale(59722012,27257657LL<<26),reale(88729847,57943LL<<28),
6657  -reale(107054489,21433519LL<<26),reale(99917523,12239271LL<<27),
6658  -reale(61060708,48513541LL<<26),reale(16900731,943456205LL<<22),
6659  reale(110748930411LL,0xc5dcb3125bdbLL),
6660  // C4[14], coeff of eps^29, polynomial in n of order 0
6661  real(41LL<<28),real(0x3fbc634a12a6b1LL),
6662  // C4[14], coeff of eps^28, polynomial in n of order 1
6663  -real(6907093LL<<31),-real(59887787LL<<28),
6664  reale(5739014,0x909af11944e4bLL),
6665  // C4[14], coeff of eps^27, polynomial in n of order 2
6666  reale(3432,499601LL<<33),-real(2083199471LL<<32),real(3406572267LL<<28),
6667  reale(307370942,0xdb94118adae9fLL),
6668  // C4[14], coeff of eps^26, polynomial in n of order 3
6669  reale(287986,4314073LL<<29),reale(5344,3636147LL<<30),
6670  -reale(6205,2906637LL<<29),-reale(13964,12467885LL<<26),
6671  reale(13216950542LL,0xe1def252c54b5LL),
6672  // C4[14], coeff of eps^25, polynomial in n of order 4
6673  -reale(258061,515595LL<<33),-reale(74790,1657665LL<<31),
6674  reale(745027,493173LL<<32),-reale(337382,84843LL<<31),
6675  reale(26418,5099583LL<<27),reale(39650851628LL,0xa59cd6f84fe1fLL),
6676  // C4[14], coeff of eps^24, polynomial in n of order 5
6677  -reale(100052,3082133LL<<30),-reale(6991386,428305LL<<32),
6678  reale(2902871,3549453LL<<30),reale(514674,1320943LL<<31),
6679  reale(32543,4070319LL<<30),-reale(220557,2292103LL<<27),
6680  reale(118952554885LL,0xf0d684e8efa5dLL),
6681  // C4[14], coeff of eps^23, polynomial in n of order 6
6682  reale(6249633,975799LL<<32),-reale(1750517,1286063LL<<31),
6683  -reale(1090661,209219LL<<33),-reale(631632,1802089LL<<31),
6684  reale(1285387,761149LL<<32),-reale(440347,2020899LL<<31),
6685  reale(22303,14762615LL<<27),reale(39650851628LL,0xa59cd6f84fe1fLL),
6686  // C4[14], coeff of eps^22, polynomial in n of order 7
6687  -reale(1155507,7367607LL<<29),reale(11090657,3295693LL<<30),
6688  reale(9416360,3921899LL<<29),-reale(12562252,1614097LL<<31),
6689  reale(1905484,7990669LL<<29),reale(1324142,2135535LL<<30),
6690  reale(362851,6226223LL<<29),-reale(408795,45924241LL<<26),
6691  reale(118952554885LL,0xf0d684e8efa5dLL),
6692  // C4[14], coeff of eps^21, polynomial in n of order 8
6693  -reale(2556392,83451LL<<35),-reale(45924405,628445LL<<32),
6694  reale(25722566,76303LL<<33),reale(6427311,738073LL<<32),
6695  -reale(4460754,79355LL<<34),-reale(7474566,842481LL<<32),
6696  reale(6714086,421381LL<<33),-reale(1643964,835835LL<<32),
6697  reale(21175,2825543LL<<28),reale(118952554885LL,0xf0d684e8efa5dLL),
6698  // C4[14], coeff of eps^20, polynomial in n of order 9
6699  reale(101794762,1213867LL<<31),reale(21384252,53331LL<<34),
6700  -reale(38294895,814203LL<<31),-reale(14666563,397319LL<<32),
6701  reale(37283642,1395551LL<<31),-reale(15279397,125869LL<<33),
6702  -reale(3174330,433863LL<<31),reale(2115734,458067LL<<32),
6703  reale(1510128,1624339LL<<31),-reale(831539,10478291LL<<28),
6704  reale(118952554885LL,0xf0d684e8efa5dLL),
6705  // C4[14], coeff of eps^19, polynomial in n of order 10
6706  reale(50295468,469581LL<<33),-reale(186185623,531407LL<<32),
6707  reale(174713425,41641LL<<35),-reale(59412258,3489LL<<32),
6708  -reale(26728127,294149LL<<33),reale(23787374,31373LL<<32),
6709  reale(13262792,54953LL<<34),-reale(23669724,520005LL<<32),
6710  reale(11190603,172969LL<<33),-reale(1670792,243479LL<<32),
6711  -reale(115324,7271069LL<<28),reale(118952554885LL,0xf0d684e8efa5dLL),
6712  // C4[14], coeff of eps^18, polynomial in n of order 11
6713  -reale(229751836,26450113LL<<27),reale(205122059,12799441LL<<28),
6714  -reale(76881886,7573243LL<<27),-reale(89213757,3943587LL<<30),
6715  reale(179505441,31406283LL<<27),-reale(144430080,11541225LL<<28),
6716  reale(48475411,26026641LL<<27),reale(12591449,3614557LL<<29),
6717  -reale(14798010,26226089LL<<27),-reale(1654995,15989667LL<<28),
6718  reale(6017860,18394141LL<<27),-reale(2035659,55899187LL<<24),
6719  reale(118952554885LL,0xf0d684e8efa5dLL),
6720  // C4[14], coeff of eps^17, polynomial in n of order 12
6721  -reale(60003627,419631LL<<31),reale(122260158,890121LL<<29),
6722  -reale(193015194,2586489LL<<30),reale(228332901,6912147LL<<29),
6723  -reale(182676146,109669LL<<32),reale(57596630,2823965LL<<29),
6724  reale(79437172,3055697LL<<30),-reale(146103578,5035353LL<<29),
6725  reale(121669517,1691035LL<<31),-reale(57926620,1249999LL<<29),
6726  reale(13245099,2677787LL<<30),reale(250593,3348667LL<<29),
6727  -reale(546524,56364575LL<<25),reale(118952554885LL,0xf0d684e8efa5dLL),
6728  // C4[14], coeff of eps^16, polynomial in n of order 13
6729  -reale(2910026,15317989LL<<28),reale(10671028,169493LL<<30),
6730  -reale(30788418,3245427LL<<28),reale(70862414,261923LL<<29),
6731  -reale(130581700,1010945LL<<28),reale(191189814,642567LL<<31),
6732  -reale(216782974,13106831LL<<28),reale(177827671,7710997LL<<29),
6733  -reale(82572754,6587933LL<<28),-reale(19188450,2518521LL<<30),
6734  reale(74652545,11169877LL<<28),-reale(71762036,443641LL<<29),
6735  reale(37978089,1743047LL<<28),-reale(9119456,66783679LL<<25),
6736  reale(118952554885LL,0xf0d684e8efa5dLL),
6737  // C4[14], coeff of eps^15, polynomial in n of order 14
6738  -reale(25313,471763LL<<30),reale(176943,4508751LL<<29),
6739  -reale(914488,1483519LL<<31),reale(3661023,8037561LL<<29),
6740  -reale(11683077,3602217LL<<30),reale(30253421,7276067LL<<29),
6741  -reale(64215578,725077LL<<32),reale(112133608,2030221LL<<29),
6742  -reale(160624032,1744767LL<<30),reale(186713478,2165751LL<<29),
6743  -reale(172286017,2016853LL<<31),reale(121247637,6964321LL<<29),
6744  -reale(60696359,459733LL<<30),reale(19031909,1781195LL<<29),
6745  -reale(2775486,102023215LL<<25),reale(118952554885LL,0xf0d684e8efa5dLL),
6746  // C4[14], coeff of eps^14, polynomial in n of order 15
6747  -real(614557125LL<<27),real(5831464275LL<<28),
6748  -reale(3808,17097199LL<<27),reale(28626,5026047LL<<29),
6749  -reale(160361,32462873LL<<27),reale(702411,15495849LL<<28),
6750  -reale(2480054,13665347LL<<27),reale(7201343,703573LL<<30),
6751  -reale(17420896,11395693LL<<27),reale(35365729,6899711LL<<28),
6752  -reale(60346284,10497687LL<<27),reale(86059048,7827541LL<<29),
6753  -reale(100689087,8447169LL<<27),reale(91987561,3237205LL<<28),
6754  -reale(55509735,6799595LL<<27),reale(15265177,48513541LL<<24),
6755  reale(118952554885LL,0xf0d684e8efa5dLL),
6756  // C4[15], coeff of eps^29, polynomial in n of order 0
6757  -real(204761LL<<28),reale(20426,0xaa7b82b97d24fLL),
6758  // C4[15], coeff of eps^28, polynomial in n of order 1
6759  -real(34699LL<<42),real(26415501LL<<29),reale(6134808,0xac3bb24726559LL),
6760  // C4[15], coeff of eps^27, polynomial in n of order 2
6761  reale(16894,439LL<<40),-reale(3396,5539LL<<38),
6762  -reale(13997,7293149LL<<28),reale(14128464373LL,0x6d08ce11dbba7LL),
6763  // C4[15], coeff of eps^26, polynomial in n of order 3
6764  -reale(50643,63489LL<<36),reale(243167,8553LL<<37),
6765  -reale(100839,3467LL<<36),reale(7018,548741LL<<30),
6766  reale(14128464373LL,0x6d08ce11dbba7LL),
6767  // C4[15], coeff of eps^25, polynomial in n of order 4
6768  -reale(6907413,21379LL<<36),reale(2301071,198931LL<<34),
6769  reale(591806,32973LL<<35),reale(76262,38289LL<<34),
6770  -reale(216244,23833777LL<<27),reale(127156179360LL,0xd54f3ea0b98dfLL),
6771  // C4[15], coeff of eps^24, polynomial in n of order 5
6772  -reale(2869395,52521LL<<36),-reale(3255913,8819LL<<38),
6773  -reale(2304160,33823LL<<36),reale(3661540,28261LL<<37),
6774  -reale(1155441,18213LL<<36),reale(48366,13607837LL<<28),
6775  reale(127156179360LL,0xd54f3ea0b98dfLL),
6776  // C4[15], coeff of eps^23, polynomial in n of order 6
6777  reale(8754539,110435LL<<35),reale(11218727,249609LL<<34),
6778  -reale(11298141,31087LL<<36),reale(996220,194783LL<<34),
6779  reale(1275763,41633LL<<35),reale(426630,95573LL<<34),
6780  -reale(392368,19533817LL<<27),reale(127156179360LL,0xd54f3ea0b98dfLL),
6781  // C4[15], coeff of eps^22, polynomial in n of order 7
6782  -reale(46020147,1607LL<<36),reale(18483914,31121LL<<37),
6783  reale(8546239,40923LL<<36),-reale(2972379,4277LL<<38),
6784  -reale(7799822,49315LL<<36),reale(6131851,9051LL<<37),
6785  -reale(1385578,60289LL<<36),reale(2743,3362879LL<<30),
6786  reale(127156179360LL,0xd54f3ea0b98dfLL),
6787  // C4[15], coeff of eps^21, polynomial in n of order 8
6788  reale(36025526,1303LL<<40),-reale(30131090,26093LL<<37),
6789  -reale(21835156,15459LL<<38),reale(35026415,31673LL<<37),
6790  -reale(11464406,5705LL<<39),-reale(3907909,12145LL<<37),
6791  reale(1722090,1439LL<<38),reale(1557916,18869LL<<37),
6792  -reale(781446,6381283LL<<28),reale(127156179360LL,0xd54f3ea0b98dfLL),
6793  // C4[15], coeff of eps^20, polynomial in n of order 9
6794  -reale(190262221,2387LL<<40),reale(146996287,1227LL<<41),
6795  -reale(33573688,3541LL<<40),-reale(32294922,2067LL<<39),
6796  reale(18331180,2115LL<<40),reale(16022794,2331LL<<40),
6797  -reale(22246846,3383LL<<40),reale(9695242,4143LL<<39),
6798  -reale(1302304,2671LL<<40),-reale(123235,5577019LL<<29),
6799  reale(127156179360LL,0xd54f3ea0b98dfLL),
6800  // C4[15], coeff of eps^19, polynomial in n of order 10
6801  reale(169057636,9637LL<<37),-reale(31515275,17095LL<<36),
6802  -reale(115123722,7359LL<<39),reale(174060780,58071LL<<36),
6803  -reale(122862790,20125LL<<37),reale(32880337,12981LL<<36),
6804  reale(15824026,705LL<<38),-reale(12943852,57005LL<<36),
6805  -reale(2522257,22495LL<<37),reale(5771316,18225LL<<36),
6806  -reale(1873338,7714415LL<<28),reale(127156179360LL,0xd54f3ea0b98dfLL),
6807  // C4[15], coeff of eps^18, polynomial in n of order 11
6808  reale(137352006,26079LL<<36),-reale(197705648,26891LL<<37),
6809  reale(213128803,51077LL<<36),-reale(150461460,3135LL<<39),
6810  reale(25445949,34251LL<<36),reale(93962136,11667LL<<37),
6811  -reale(140732252,24207LL<<36),reale(108614245,6273LL<<38),
6812  -reale(48923563,62665LL<<36),reale(10316934,1969LL<<37),
6813  reale(535285,33757LL<<36),-reale(501186,3348667LL<<30),
6814  reale(127156179360LL,0xd54f3ea0b98dfLL),
6815  // C4[15], coeff of eps^17, polynomial in n of order 12
6816  reale(15155809,205049LL<<34),-reale(39104030,957115LL<<32),
6817  reale(81967212,139599LL<<33),-reale(139468172,993913LL<<32),
6818  reale(190415844,61587LL<<35),-reale(202311488,967447LL<<32),
6819  reale(154439958,403401LL<<33),-reale(61783996,889045LL<<32),
6820  -reale(28504911,66989LL<<34),reale(73132006,1030157LL<<32),
6821  -reale(66442314,293949LL<<33),reale(34502754,346959LL<<32),
6822  -reale(8240730,128798053LL<<25),reale(127156179360LL,0xd54f3ea0b98dfLL),
6823  // C4[15], coeff of eps^16, polynomial in n of order 13
6824  reale(114172,142577LL<<34),-reale(499141,33119LL<<36),
6825  reale(1750098,174183LL<<34),-reale(5016097,114721LL<<35),
6826  reale(11893006,66221LL<<34),-reale(23470909,19093LL<<37),
6827  reale(38591591,188131LL<<34),-reale(52613301,65223LL<<35),
6828  reale(58753809,139305LL<<34),-reale(52512562,23925LL<<36),
6829  reale(36059714,158111LL<<34),-reale(17726185,93229LL<<35),
6830  reale(5486676,138853LL<<34),-reale(792996,14574745LL<<26),
6831  reale(42385393120LL,0x471a6a35932f5LL),
6832  // C4[15], coeff of eps^15, polynomial in n of order 14
6833  real(592706205LL<<33),-reale(9147,839013LL<<32),
6834  reale(55355,240865LL<<34),-reale(262940,644275LL<<32),
6835  reale(1011310,29095LL<<33),-reale(3215965,1023905LL<<32),
6836  reale(8575909,35467LL<<35),-reale(19352216,329839LL<<32),
6837  reale(37124659,455473LL<<33),-reale(60529336,778589LL<<32),
6838  reale(83288367,93771LL<<34),-reale(94856196,165035LL<<32),
6839  reale(85043486,110139LL<<33),-reale(50751757,943257LL<<32),
6840  reale(13877433,107462891LL<<25),reale(127156179360LL,0xd54f3ea0b98dfLL),
6841  // C4[16], coeff of eps^29, polynomial in n of order 0
6842  real(553LL<<31),real(0x292ecb9a960d27d1LL),
6843  // C4[16], coeff of eps^28, polynomial in n of order 1
6844  -real(61453LL<<36),-real(4754645LL<<34),
6845  reale(19591808,0x57955a5f17535LL),
6846  // C4[16], coeff of eps^27, polynomial in n of order 2
6847  reale(33770,14237LL<<36),-reale(12917,115767LL<<35),
6848  real(1665987897LL<<31),reale(2148568314LL,0xda506166fe05fLL),
6849  // C4[16], coeff of eps^26, polynomial in n of order 3
6850  reale(1765351,9719LL<<36),reale(634098,16193LL<<37),
6851  reale(114937,5021LL<<36),-reale(211035,902511LL<<32),
6852  reale(135359803835LL,0xb9c7f85883761LL),
6853  // C4[16], coeff of eps^25, polynomial in n of order 4
6854  -reale(3041817,11535LL<<37),-reale(2643315,63657LL<<35),
6855  reale(3458443,225LL<<36),-reale(1011407,29251LL<<35),
6856  reale(33755,354965LL<<31),reale(135359803835LL,0xb9c7f85883761LL),
6857  // C4[16], coeff of eps^24, polynomial in n of order 5
6858  reale(12443946,111847LL<<35),-reale(9978547,23661LL<<37),
6859  reale(264818,24689LL<<35),reale(1196082,9587LL<<36),
6860  reale(477961,17339LL<<35),-reale(375862,243659LL<<32),
6861  reale(135359803835LL,0xb9c7f85883761LL),
6862  // C4[16], coeff of eps^23, polynomial in n of order 6
6863  reale(11971225,59849LL<<36),reale(9677599,56595LL<<35),
6864  -reale(1515717,2317LL<<37),-reale(7956047,112667LL<<35),
6865  reale(5585704,62147LL<<36),-reale(1169086,64041LL<<35),
6866  -reale(10840,1435009LL<<31),reale(135359803835LL,0xb9c7f85883761LL),
6867  // C4[16], coeff of eps^22, polynomial in n of order 7
6868  -reale(20905609,47207LL<<36),-reale(27003899,18815LL<<37),
6869  reale(32128586,62715LL<<36),-reale(8207156,6437LL<<38),
6870  -reale(4335741,20931LL<<36),reale(1351161,14763LL<<37),
6871  reale(1583200,44703LL<<36),-reale(734819,355141LL<<32),
6872  reale(135359803835LL,0xb9c7f85883761LL),
6873  // C4[16], coeff of eps^21, polynomial in n of order 8
6874  reale(119271221,13241LL<<38),-reale(13185134,117885LL<<35),
6875  -reale(34424757,12741LL<<36),reale(12971898,62105LL<<35),
6876  reale(17958221,23929LL<<37),-reale(20751983,45233LL<<35),
6877  reale(8405753,5609LL<<36),-reale(1009805,84123LL<<35),
6878  -reale(126669,998091LL<<31),reale(135359803835LL,0xb9c7f85883761LL),
6879  // C4[16], coeff of eps^20, polynomial in n of order 9
6880  reale(7281953,46177LL<<36),-reale(132136826,3687LL<<39),
6881  reale(164419146,28463LL<<36),-reale(102943145,13301LL<<37),
6882  reale(20499773,15997LL<<36),reale(17609391,14489LL<<38),
6883  -reale(11127728,9397LL<<36),-reale(3194109,31911LL<<37),
6884  reale(5518515,63129LL<<36),-reale(1729623,95963LL<<34),
6885  reale(135359803835LL,0xb9c7f85883761LL),
6886  // C4[16], coeff of eps^19, polynomial in n of order 10
6887  -reale(197461925,11965LL<<36),reale(194820269,1667LL<<35),
6888  -reale(119937281,937LL<<38),-reale(1213288,24915LL<<35),
6889  reale(103481944,52469LL<<36),-reale(133891976,7945LL<<35),
6890  reale(96822293,18071LL<<37),-reale(41434588,121951LL<<35),
6891  reale(8025452,27431LL<<36),reale(724406,126187LL<<35),
6892  -reale(459367,1295029LL<<31),reale(135359803835LL,0xb9c7f85883761LL),
6893  // C4[16], coeff of eps^18, polynomial in n of order 11
6894  -reale(47525285,62545LL<<36),reale(91887649,22453LL<<37),
6895  -reale(145781941,19979LL<<36),reale(186991182,8001LL<<39),
6896  -reale(187151585,35749LL<<36),reale(133148350,20179LL<<37),
6897  -reale(44425461,13151LL<<36),-reale(35371425,9983LL<<38),
6898  reale(71056997,38023LL<<36),-reale(61631567,21647LL<<37),
6899  reale(31499493,50637LL<<36),-reale(7491423,758351LL<<32),
6900  reale(135359803835LL,0xb9c7f85883761LL),
6901  // C4[16], coeff of eps^17, polynomial in n of order 12
6902  -reale(2259631,24697LL<<37),reale(7098981,78723LL<<35),
6903  -reale(18582556,8879LL<<36),reale(40852668,12369LL<<35),
6904  -reale(75692831,12691LL<<38),reale(118080654,84927LL<<35),
6905  -reale(154130872,52073LL<<36),reale(166118829,74381LL<<35),
6906  -reale(144327913,2259LL<<37),reale(96964720,98683LL<<35),
6907  -reale(46899246,18595LL<<36),reale(14349769,50505LL<<35),
6908  -reale(2057503,1465135LL<<31),reale(135359803835LL,0xb9c7f85883761LL),
6909  // C4[16], coeff of eps^16, polynomial in n of order 13
6910  -reale(18695,264305LL<<33),reale(95700,8265LL<<35),
6911  -reale(398136,419847LL<<33),reale(1375381,177071LL<<34),
6912  -reale(4004787,429789LL<<33),reale(9930000,13635LL<<36),
6913  -reale(21101250,231795LL<<33),reale(38532718,52073LL<<34),
6914  -reale(60367925,93257LL<<33),reale(80490566,118467LL<<35),
6915  -reale(89511061,246751LL<<33),reale(78923731,162339LL<<34),
6916  -reale(46636750,263349LL<<33),reale(12687939,1991833LL<<30),
6917  reale(135359803835LL,0xb9c7f85883761LL),
6918  // C4[17], coeff of eps^29, polynomial in n of order 0
6919  -real(280331LL<<31),reale(154847,0x4e6e7be138cdbLL),
6920  // C4[17], coeff of eps^28, polynomial in n of order 1
6921  -real(82431LL<<38),real(142069LL<<33),reale(989485,0x4511e2f2b39a3LL),
6922  // C4[17], coeff of eps^27, polynomial in n of order 2
6923  reale(30957,2723LL<<36),reale(7080,38071LL<<35),
6924  -reale(9773,1986585LL<<31),reale(6836353729LL,0x13b9f01928417LL),
6925  // C4[17], coeff of eps^26, polynomial in n of order 3
6926  -reale(138771,28785LL<<37),reale(154910,14439LL<<38),
6927  -reale(42193,29611LL<<37),real(1108797915LL<<32),
6928  reale(6836353729LL,0x13b9f01928417LL),
6929  // C4[17], coeff of eps^25, polynomial in n of order 4
6930  -reale(1238256,21701LL<<37),-reale(44811,81027LL<<35),
6931  reale(156785,14859LL<<36),reale(74079,77407LL<<35),
6932  -reale(51372,1082481LL<<31),reale(20509061187LL,0x3b2dd04b78c45LL),
6933  // C4[17], coeff of eps^24, polynomial in n of order 5
6934  reale(10057115,7495LL<<39),-reale(158283,1579LL<<41),
6935  -reale(7978477,2703LL<<39),reale(5079175,3021LL<<40),
6936  -reale(987192,2101LL<<39),-reale(20806,242401LL<<34),
6937  reale(143563428310LL,0x9e40b2104d5e3LL),
6938  // C4[17], coeff of eps^23, polynomial in n of order 6
6939  -reale(30405369,16203LL<<36),reale(28904813,10839LL<<35),
6940  -reale(5472666,28841LL<<37),-reale(4538327,21695LL<<35),
6941  reale(1010309,2151LL<<36),reale(1591197,61387LL<<35),
6942  -reale(691600,842821LL<<31),reale(143563428310LL,0x9e40b2104d5e3LL),
6943  // C4[17], coeff of eps^22, polynomial in n of order 7
6944  reale(2360974,20517LL<<37),-reale(34168343,7885LL<<38),
6945  reale(7988557,399LL<<37),reale(19220645,2761LL<<39),
6946  -reale(19251394,21847LL<<37),reale(7294617,7633LL<<38),
6947  -reale(776533,25709LL<<37),-reale(127091,628387LL<<32),
6948  reale(143563428310LL,0x9e40b2104d5e3LL),
6949  // C4[17], coeff of eps^21, polynomial in n of order 8
6950  -reale(141970389,5875LL<<38),reale(152285106,31LL<<35),
6951  -reale(85013706,54665LL<<36),reale(10784519,74157LL<<35),
6952  reale(18376223,22989LL<<37),-reale(9415616,123045LL<<35),
6953  -reale(3707065,39939LL<<36),reale(5266887,19945LL<<35),
6954  -reale(1601936,974407LL<<31),reale(143563428310LL,0x9e40b2104d5e3LL),
6955  // C4[17], coeff of eps^20, polynomial in n of order 9
6956  reale(174732199,7199LL<<38),-reale(91781661,1783LL<<41),
6957  -reale(22947906,1007LL<<38),reale(109147441,451LL<<39),
6958  -reale(126268040,11085LL<<38),reale(86262862,2409LL<<40),
6959  -reale(35185382,1435LL<<38),reale(6220582,7041LL<<39),
6960  reale(846498,391LL<<38),-reale(421214,84365LL<<33),
6961  reale(143563428310LL,0x9e40b2104d5e3LL),
6962  // C4[17], coeff of eps^19, polynomial in n of order 10
6963  reale(100447726,5039LL<<36),-reale(149758021,121873LL<<35),
6964  reale(181554380,1939LL<<38),-reale(171878757,123903LL<<35),
6965  reale(113962110,29289LL<<36),-reale(29967290,80205LL<<35),
6966  -reale(40353928,13613LL<<37),reale(68655180,86853LL<<35),
6967  -reale(57285125,57949LL<<36),reale(28886745,8439LL<<35),
6968  -reale(6846764,2025561LL<<31),reale(143563428310LL,0x9e40b2104d5e3LL),
6969  // C4[17], coeff of eps^18, polynomial in n of order 11
6970  reale(9163438,32371LL<<37),-reale(22188557,9937LL<<38),
6971  reale(45681407,15569LL<<37),-reale(80085759,21LL<<40),
6972  reale(119267529,32127LL<<37),-reale(149784698,12951LL<<38),
6973  reale(156408668,30941LL<<37),-reale(132494258,5045LL<<39),
6974  reale(87286969,10059LL<<37),-reale(41608633,10397LL<<38),
6975  reale(12599797,16681LL<<37),-reale(1793721,181577LL<<32),
6976  reale(143563428310LL,0x9e40b2104d5e3LL),
6977  // C4[17], coeff of eps^17, polynomial in n of order 12
6978  reale(152058,3531LL<<37),-reale(566838,109449LL<<35),
6979  reale(1788421,65069LL<<36),-reale(4828739,49907LL<<35),
6980  reale(11241509,10969LL<<38),-reale(22666304,107837LL<<35),
6981  reale(39633653,283LL<<36),-reale(59939783,113319LL<<35),
6982  reale(77715030,3737LL<<37),-reale(84609105,47985LL<<35),
6983  reale(73498818,52617LL<<36),-reale(43049308,20443LL<<35),
6984  reale(11659187,1311925LL<<31),reale(143563428310LL,0x9e40b2104d5e3LL),
6985  // C4[18], coeff of eps^29, polynomial in n of order 0
6986  real(35LL<<34),real(0x29845c2bcb5c10d7LL),
6987  // C4[18], coeff of eps^28, polynomial in n of order 1
6988  reale(3628,18373LL<<37),-reale(4063,232509LL<<34),
6989  reale(3097286791LL,0x8a812bfedbe75LL),
6990  // C4[18], coeff of eps^27, polynomial in n of order 2
6991  reale(435730,613LL<<39),-reale(110987,3811LL<<38),real(489021323LL<<34),
6992  reale(21681007540LL,0xc98833f803533LL),
6993  // C4[18], coeff of eps^26, polynomial in n of order 3
6994  -reale(762945,31179LL<<36),reale(988791,87LL<<37),
6995  reale(550009,38375LL<<36),-reale(343815,323189LL<<33),
6996  reale(151767052785LL,0x82b96bc817465LL),
6997  // C4[18], coeff of eps^25, polynomial in n of order 4
6998  reale(1063744,27LL<<41),-reale(7897635,7767LL<<39),
6999  reale(4613149,699LL<<40),-reale(833936,93LL<<39),
7000  -reale(28054,94387LL<<35),reale(151767052785LL,0x82b96bc817465LL),
7001  // C4[18], coeff of eps^24, polynomial in n of order 5
7002  reale(25578507,4379LL<<38),-reale(3209600,1553LL<<40),
7003  -reale(4577572,5923LL<<38),reale(702466,1583LL<<39),
7004  reale(1586031,287LL<<38),-reale(651636,122639LL<<35),
7005  reale(151767052785LL,0x82b96bc817465LL),
7006  // C4[18], coeff of eps^23, polynomial in n of order 6
7007  -reale(32324739,1815LL<<40),reale(3520775,1207LL<<39),
7008  reale(19946468,259LL<<41),-reale(17787966,4575LL<<39),
7009  reale(6336978,3235LL<<40),-reale(589727,5685LL<<39),
7010  -reale(125505,20667LL<<35),reale(151767052785LL,0x82b96bc817465LL),
7011  // C4[18], coeff of eps^22, polynomial in n of order 7
7012  reale(138884729,22203LL<<36),-reale(69168625,14473LL<<37),
7013  reale(3249237,4577LL<<36),reale(18436830,10301LL<<38),
7014  -reale(7840055,31609LL<<36),-reale(4091705,30595LL<<37),
7015  reale(5021146,27565LL<<36),-reale(1488082,115687LL<<33),
7016  reale(151767052785LL,0x82b96bc817465LL),
7017  // C4[18], coeff of eps^21, polynomial in n of order 8
7018  -reale(66334778,1299LL<<41),-reale(40377625,16285LL<<38),
7019  reale(111882749,4839LL<<39),-reale(118325119,4711LL<<38),
7020  reale(76858390,3693LL<<40),-reale(29952902,3569LL<<38),
7021  reale(4790818,4941LL<<39),reale(921311,4421LL<<38),
7022  -reale(386621,181821LL<<34),reale(151767052785LL,0x82b96bc817465LL),
7023  // C4[18], coeff of eps^20, polynomial in n of order 9
7024  -reale(151679112,16629LL<<37),reale(174648786,1667LL<<40),
7025  -reale(156892091,15835LL<<37),reale(96799837,4169LL<<38),
7026  -reale(17949188,6721LL<<37),-reale(43885384,7293LL<<39),
7027  reale(66080580,25305LL<<37),-reale(53357084,1853LL<<38),
7028  reale(26599572,17011LL<<37),-reale(6287689,169979LL<<34),
7029  reale(151767052785LL,0x82b96bc817465LL),
7030  // C4[18], coeff of eps^19, polynomial in n of order 10
7031  -reale(8594193,5169LL<<39),reale(16702080,5475LL<<38),
7032  -reale(27882498,1245LL<<41),reale(39843622,14413LL<<38),
7033  -reale(48340851,951LL<<39),reale(49066184,11639LL<<38),
7034  -reale(40627946,3165LL<<40),reale(26296855,15713LL<<38),
7035  -reale(12371894,1597LL<<39),reale(3711568,4235LL<<38),
7036  -reale(524991,147555LL<<34),reale(50589017595LL,0x2b9323ed5d177LL),
7037  // C4[18], coeff of eps^18, polynomial in n of order 11
7038  -reale(768539,29011LL<<36),reale(2243105,18035LL<<37),
7039  -reale(5671852,39713LL<<36),reale(12494515,7255LL<<39),
7040  -reale(24051943,5231LL<<36),reale(40468348,22085LL<<37),
7041  -reale(59307062,46653LL<<36),reale(74994737,5975LL<<38),
7042  -reale(80108014,59787LL<<36),reale(68664012,25623LL<<37),
7043  -reale(39899358,51033LL<<36),reale(10762327,20443LL<<33),
7044  reale(151767052785LL,0x82b96bc817465LL),
7045  // C4[19], coeff of eps^29, polynomial in n of order 0
7046  -real(69697LL<<34),reale(220556,0x6c98ea537e51fLL),
7047  // C4[19], coeff of eps^28, polynomial in n of order 1
7048  -real(1238839LL<<41),real(675087LL<<35),
7049  reale(141943813,0x222cc7846d81LL),
7050  // C4[19], coeff of eps^27, polynomial in n of order 2
7051  reale(876102,3999LL<<40),reale(573743,1451LL<<39),
7052  -reale(328615,14973LL<<34),reale(159970677260LL,0x6732257fe12e7LL),
7053  // C4[19], coeff of eps^26, polynomial in n of order 3
7054  -reale(7739083,17LL<<46),reale(4186838,53LL<<45),-reale(704448,1LL<<46),
7055  -reale(33249,11241LL<<37),reale(159970677260LL,0x6732257fe12e7LL),
7056  // C4[19], coeff of eps^25, polynomial in n of order 4
7057  -reale(1360864,133LL<<42),-reale(4500609,2667LL<<40),
7058  reale(427896,299LL<<41),reale(1570943,1191LL<<40),
7059  -reale(614728,45789LL<<35),reale(159970677260LL,0x6732257fe12e7LL),
7060  // C4[19], coeff of eps^24, polynomial in n of order 5
7061  -reale(379105,631LL<<42),reale(20252634,139LL<<44),
7062  -reale(16388211,705LL<<42),reale(5510947,339LL<<43),
7063  -reale(439601,699LL<<42),-reale(122601,56745LL<<36),
7064  reale(159970677260LL,0x6732257fe12e7LL),
7065  // C4[19], coeff of eps^23, polynomial in n of order 6
7066  -reale(55355388,567LL<<41),-reale(2520461,2117LL<<40),
7067  reale(18017708,147LL<<42),-reale(6413373,771LL<<40),
7068  -reale(4373212,61LL<<41),reale(4784182,2079LL<<40),
7069  -reale(1386197,54485LL<<35),reale(159970677260LL,0x6732257fe12e7LL),
7070  // C4[19], coeff of eps^22, polynomial in n of order 7
7071  -reale(54112477,29LL<<46),reale(112419812,35LL<<45),
7072  -reale(110372726,9LL<<46),reale(68510282,53LL<<46),
7073  -reale(25556330,19LL<<46),reale(3652507,1LL<<45),reale(962676,17LL<<46),
7074  -reale(355362,30093LL<<37),reale(159970677260LL,0x6732257fe12e7LL),
7075  // C4[19], coeff of eps^21, polynomial in n of order 8
7076  reale(166723371,209LL<<42),-reale(142457721,7469LL<<39),
7077  reale(81530379,2787LL<<40),-reale(7977897,3383LL<<39),
7078  -reale(46298043,1775LL<<41),reale(63437092,799LL<<39),
7079  -reale(49803454,3807LL<<40),reale(24585849,2581LL<<39),
7080  -reale(5799325,105875LL<<34),reale(159970677260LL,0x6732257fe12e7LL),
7081  // C4[19], coeff of eps^20, polynomial in n of order 9
7082  reale(54095236,1729LL<<41),-reale(86448328,33LL<<44),
7083  reale(119042325,527LL<<41),-reale(140012701,875LL<<42),
7084  reale(138519104,1133LL<<41),-reale(112357061,257LL<<43),
7085  reale(71568963,1275LL<<41),-reale(33272498,441LL<<42),
7086  reale(9897515,729LL<<41),-reale(1391838,12705LL<<35),
7087  reale(159970677260LL,0x6732257fe12e7LL),
7088  // C4[19], coeff of eps^19, polynomial in n of order 10
7089  reale(2731650,3225LL<<40),-reale(6520331,5423LL<<39),
7090  reale(13678206,885LL<<42),-reale(25266687,5569LL<<39),
7091  reale(41073925,3215LL<<40),-reale(58519302,7091LL<<39),
7092  reale(72351138,181LL<<41),-reale(75968694,8133LL<<39),
7093  reale(64333849,3333LL<<40),-reale(37115682,4791LL<<39),
7094  reale(9974839,182105LL<<34),reale(159970677260LL,0x6732257fe12e7LL),
7095  // C4[20], coeff of eps^29, polynomial in n of order 0
7096  real(1LL<<39),reale(386445,0x44b61aebc827LL),
7097  // C4[20], coeff of eps^28, polynomial in n of order 1
7098  reale(3670,3431LL<<40),-real(63923791LL<<37),
7099  reale(1044560880,0x57ec63f8653c9LL),
7100  // C4[20], coeff of eps^27, polynomial in n of order 2
7101  reale(165149,453LL<<43),-reale(25858,471LL<<42),-real(26276299LL<<38),
7102  reale(7311926162LL,0x6776bbcac4a7fLL),
7103  // C4[20], coeff of eps^26, polynomial in n of order 3
7104  -reale(4343033,595LL<<42),reale(185313,303LL<<43),
7105  reale(1548473,271LL<<42),-reale(580654,777LL<<40),
7106  reale(168174301735LL,0x4baadf37ab169LL),
7107  // C4[20], coeff of eps^25, polynomial in n of order 4
7108  reale(20236427,149LL<<44),-reale(15067334,133LL<<42),
7109  reale(4797544,165LL<<43),-reale(318599,375LL<<42),
7110  -reale(118861,3875LL<<38),reale(168174301735LL,0x4baadf37ab169LL),
7111  // C4[20], coeff of eps^24, polynomial in n of order 5
7112  -reale(6870833,1979LL<<41),reale(17282399,281LL<<43),
7113  -reale(5135975,189LL<<41),-reale(4572111,263LL<<42),
7114  reale(4557653,1537LL<<41),-reale(1294702,4061LL<<38),
7115  reale(168174301735LL,0x4baadf37ab169LL),
7116  // C4[20], coeff of eps^23, polynomial in n of order 6
7117  reale(111332564,131LL<<43),-reale(102611836,439LL<<42),
7118  reale(61113705,49LL<<44),-reale(21849131,865LL<<42),
7119  reale(2742318,257LL<<43),reale(980372,533LL<<42),
7120  -reale(327159,8391LL<<38),reale(168174301735LL,0x4baadf37ab169LL),
7121  // C4[20], coeff of eps^22, polynomial in n of order 7
7122  -reale(128743521,979LL<<42),reale(67998970,481LL<<43),
7123  reale(279122,855LL<<42),-reale(47847734,245LL<<44),
7124  reale(60794248,257LL<<42),-reale(46583621,181LL<<43),
7125  reale(22803394,43LL<<42),-reale(5369928,2229LL<<40),
7126  reale(168174301735LL,0x4baadf37ab169LL),
7127  // C4[20], coeff of eps^21, polynomial in n of order 8
7128  -reale(88564699,121LL<<45),reale(117949702,533LL<<42),
7129  -reale(134881895,27LL<<43),reale(130376590,239LL<<42),
7130  -reale(103788735,57LL<<44),reale(65154071,233LL<<42),
7131  -reale(29963298,393LL<<43),reale(8844588,195LL<<42),
7132  -reale(1237189,6873LL<<38),reale(168174301735LL,0x4baadf37ab169LL),
7133  // C4[20], coeff of eps^20, polynomial in n of order 9
7134  -reale(7362630,999LL<<40),reale(14785858,137LL<<43),
7135  -reale(26321377,9LL<<40),reale(41483460,1083LL<<41),
7136  -reale(57615917,1643LL<<40),reale(69797568,521LL<<42),
7137  -reale(72155594,1933LL<<40),reale(60438019,617LL<<41),
7138  -reale(34641303,3055LL<<40),reale(9278920,21175LL<<37),
7139  reale(168174301735LL,0x4baadf37ab169LL),
7140  // C4[21], coeff of eps^29, polynomial in n of order 0
7141  -real(2017699LL<<39),reale(144690669,0x92d5d14b2b5b9LL),
7142  // C4[21], coeff of eps^28, polynomial in n of order 1
7143  -reale(21806,31LL<<47),-real(1751493LL<<42),
7144  reale(7668605487LL,0x6644548ff9f4dLL),
7145  // C4[21], coeff of eps^27, polynomial in n of order 2
7146  -real(610053LL<<43),reale(66113,223LL<<42),-reale(23877,14131LL<<38),
7147  reale(7668605487LL,0x6644548ff9f4dLL),
7148  // C4[21], coeff of eps^26, polynomial in n of order 3
7149  -reale(601427,223LL<<44),reale(181759,65LL<<45),-reale(9602,5LL<<44),
7150  -reale(4983,2721LL<<39),reale(7668605487LL,0x6644548ff9f4dLL),
7151  // C4[21], coeff of eps^25, polynomial in n of order 4
7152  reale(16348405,227LL<<44),-reale(4001511,795LL<<42),
7153  -reale(4705038,397LL<<43),reale(4342393,855LL<<42),
7154  -reale(1212256,1051LL<<38),reale(176377926210LL,0x302398ef74febLL),
7155  // C4[21], coeff of eps^24, polynomial in n of order 5
7156  -reale(95167920,19LL<<45),reale(54565817,7LL<<47),
7157  -reale(18712410,5LL<<45),reale(2011897,15LL<<46),reale(981374,25LL<<45),
7158  -reale(301721,597LL<<40),reale(176377926210LL,0x302398ef74febLL),
7159  // C4[21], coeff of eps^23, polynomial in n of order 6
7160  reale(56043535,133LL<<43),reale(7101303,759LL<<42),
7161  -reale(48732132,249LL<<44),reale(58197907,161LL<<42),
7162  -reale(43660867,425LL<<43),reale(21217809,619LL<<42),
7163  -reale(4990122,11039LL<<38),reale(176377926210LL,0x302398ef74febLL),
7164  // C4[21], coeff of eps^22, polynomial in n of order 7
7165  reale(38792824,189LL<<44),-reale(43241527,125LL<<45),
7166  reale(40920531,151LL<<44),-reale(32022608,39LL<<46),
7167  reale(19836099,97LL<<44),-reale(9032168,63LL<<45),
7168  reale(2647359,187LL<<44),-reale(368524,4161LL<<39),
7169  reale(58792642070LL,0x100bdda526ff9LL),
7170  // C4[21], coeff of eps^21, polynomial in n of order 8
7171  reale(15813930,121LL<<45),-reale(27228018,205LL<<42),
7172  reale(41726053,443LL<<43),-reale(56628215,983LL<<42),
7173  reale(67341662,57LL<<44),-reale(68636694,193LL<<42),
7174  reale(56918234,105LL<<43),-reale(32430156,715LL<<42),
7175  reale(8660325,15343LL<<38),reale(176377926210LL,0x302398ef74febLL),
7176  // C4[22], coeff of eps^29, polynomial in n of order 0
7177  -real(229LL<<43),reale(2018939,0x935060fc493cdLL),
7178  // C4[22], coeff of eps^28, polynomial in n of order 1
7179  reale(64733,61LL<<46),-reale(22613,493LL<<43),
7180  reale(8025284812LL,0x6511ed552f41bLL),
7181  // C4[22], coeff of eps^27, polynomial in n of order 2
7182  reale(158513,3LL<<48),-reale(6162,29LL<<47),-reale(4786,487LL<<43),
7183  reale(8025284812LL,0x6511ed552f41bLL),
7184  // C4[22], coeff of eps^26, polynomial in n of order 3
7185  -reale(130438,301LL<<43),-reale(208062,47LL<<44),reale(179942,497LL<<43),
7186  -reale(49466,167LL<<40),reale(8025284812LL,0x6511ed552f41bLL),
7187  // C4[22], coeff of eps^25, polynomial in n of order 4
7188  reale(2120438,3LL<<47),-reale(697803,39LL<<45),reale(61914,3LL<<46),
7189  reale(42203,115LL<<45),-reale(12120,543LL<<41),
7190  reale(8025284812LL,0x6511ed552f41bLL),
7191  // C4[22], coeff of eps^24, polynomial in n of order 5
7192  reale(12722577,33LL<<44),-reale(49104495,51LL<<46),
7193  reale(55677556,71LL<<44),-reale(41002422,115LL<<45),
7194  reale(19800840,109LL<<44),-reale(4652345,837LL<<41),
7195  reale(184581550685LL,0x149c52a73ee6dLL),
7196  // C4[22], coeff of eps^23, polynomial in n of order 6
7197  -reale(124610244,57LL<<46),reale(115654934,113LL<<45),
7198  -reale(89096506,19LL<<47),reale(54518354,119LL<<45),
7199  -reale(24598996,19LL<<46),reale(7163443,125LL<<45),
7200  -reale(992759,1841LL<<41),reale(184581550685LL,0x149c52a73ee6dLL),
7201  // C4[22], coeff of eps^22, polynomial in n of order 7
7202  -reale(27999005,155LL<<43),reale(41827085,121LL<<44),
7203  -reale(55581037,1LL<<43),reale(64987058,83LL<<45),
7204  -reale(65383321,103LL<<43),reale(53725829,211LL<<44),
7205  -reale(30444636,461LL<<43),reale(8107539,715LL<<40),
7206  reale(184581550685LL,0x149c52a73ee6dLL),
7207  // C4[23], coeff of eps^29, polynomial in n of order 0
7208  -reale(4289,21LL<<43),reale(1676392827,0x7a5fe79ee0e95LL),
7209  // C4[23], coeff of eps^28, polynomial in n of order 1
7210  -real(1351LL<<51),-real(234789LL<<44),
7211  reale(1676392827,0x7a5fe79ee0e95LL),
7212  // C4[23], coeff of eps^27, polynomial in n of order 2
7213  -reale(209744,1LL<<50),reale(171585,3LL<<49),-reale(46526,469LL<<43),
7214  reale(8381964137LL,0x63df861a648e9LL),
7215  // C4[23], coeff of eps^26, polynomial in n of order 3
7216  -reale(599194,1LL<<51),reale(41297,0),reale(41388,1LL<<51),
7217  -reale(11218,97LL<<45),reale(8381964137LL,0x63df861a648e9LL),
7218  // C4[23], coeff of eps^25, polynomial in n of order 4
7219  -reale(2134087,7LL<<49),reale(2315275,31LL<<47),-reale(1677358,15LL<<48),
7220  reale(805613,21LL<<47),-reale(189149,1213LL<<41),
7221  reale(8381964137LL,0x63df861a648e9LL),
7222  // C4[23], coeff of eps^24, polynomial in n of order 5
7223  reale(4740508,1LL<<49),-reale(3599518,1LL<<51),reale(2177844,7LL<<49),
7224  -reale(974429,1LL<<50),reale(282071,5LL<<49),-reale(38931,779LL<<42),
7225  reale(8381964137LL,0x63df861a648e9LL),
7226  // C4[23], coeff of eps^23, polynomial in n of order 6
7227  reale(1817763,3LL<<48),-reale(2369306,23LL<<47),reale(2727592,1LL<<49),
7228  -reale(2711734,1LL<<47),reale(2209561,1LL<<48),-reale(1245816,11LL<<47),
7229  reale(330919,1979LL<<41),reale(8381964137LL,0x63df861a648e9LL),
7230  // C4[24], coeff of eps^29, polynomial in n of order 0
7231  -real(1439LL<<46),reale(44813556,0x37a4fd885dffdLL),
7232  // C4[24], coeff of eps^28, polynomial in n of order 1
7233  reale(32742,3LL<<50),-reale(8770,21LL<<47),
7234  reale(1747728692,0x7a229fc651f8bLL),
7235  // C4[24], coeff of eps^27, polynomial in n of order 2
7236  reale(4928,1LL<<51),reale(8067,1LL<<50),-reale(2080,43LL<<46),
7237  reale(1747728692,0x7a229fc651f8bLL),
7238  // C4[24], coeff of eps^26, polynomial in n of order 3
7239  reale(2214330,0),-reale(1581120,0),reale(755790,0),
7240  -reale(177363,7LL<<47),reale(8738643462LL,0x62ad1edf99db7LL),
7241  // C4[24], coeff of eps^25, polynomial in n of order 4
7242  -reale(1116955,0),reale(668788,3LL<<50),-reale(296917,1LL<<51),
7243  reale(85476,1LL<<50),-reale(11752,63LL<<46),
7244  reale(2912881154LL,0x20e45f9fddf3dLL),
7245  // C4[24], coeff of eps^24, polynomial in n of order 5
7246  -reale(2320992,3LL<<48),reale(2634056,1LL<<50),-reale(2590155,5LL<<48),
7247  reale(2094168,1LL<<49),-reale(1175298,7LL<<48),reale(311454,11LL<<45),
7248  reale(8738643462LL,0x62ad1edf99db7LL),
7249  // C4[25], coeff of eps^29, polynomial in n of order 0
7250  -real(3707LL<<46),reale(12720731,0x2bd144a4925efLL),
7251  // C4[25], coeff of eps^28, polynomial in n of order 1
7252  real(301LL<<53),-real(2379LL<<48),reale(139928042,0xe1fdf3124a145LL),
7253  // C4[25], coeff of eps^27, polynomial in n of order 2
7254  -reale(298603,1LL<<51),reale(142145,1LL<<50),-reale(33346,63LL<<46),
7255  reale(1819064557,0x79e557edc3081LL),
7256  // C4[25], coeff of eps^26, polynomial in n of order 3
7257  reale(370617,0),-reale(163358,0),reale(46787,0),-reale(6410,23LL<<47),
7258  reale(1819064557,0x79e557edc3081LL),
7259  // C4[25], coeff of eps^25, polynomial in n of order 4
7260  reale(508963,0),-reale(495426,3LL<<50),reale(397689,1LL<<51),
7261  -reale(222238,1LL<<50),reale(58764,59LL<<46),
7262  reale(1819064557,0x79e557edc3081LL),
7263  // C4[26], coeff of eps^29, polynomial in n of order 0
7264  -real(1LL<<49),reale(131359,0xe834f81ee20c1LL),
7265  // C4[26], coeff of eps^28, polynomial in n of order 1
7266  reale(10305,0),-reale(2417,1LL<<49),reale(145415417,0x1d0ced8b7a293LL),
7267  // C4[26], coeff of eps^27, polynomial in n of order 2
7268  -reale(11556,0),reale(3294,0),-real(3599LL<<49),
7269  reale(145415417,0x1d0ced8b7a293LL),
7270  // C4[26], coeff of eps^26, polynomial in n of order 3
7271  -reale(36490,1LL<<51),reale(29097,0),-reale(16195,1LL<<51),
7272  reale(4273,13LL<<48),reale(145415417,0x1d0ced8b7a293LL),
7273  // C4[27], coeff of eps^29, polynomial in n of order 0
7274  -real(2029LL<<49),reale(16766976,0xd0e6a80084b19LL),
7275  // C4[27], coeff of eps^28, polynomial in n of order 1
7276  real(7LL<<56),-real(61LL<<50),reale(5588992,0x45a238002c3b3LL),
7277  // C4[27], coeff of eps^27, polynomial in n of order 2
7278  reale(3080,0),-real(427LL<<54),real(3599LL<<49),
7279  reale(16766976,0xd0e6a80084b19LL),
7280  // C4[28], coeff of eps^29, polynomial in n of order 0
7281  -real(1LL<<53),reale(827461,0x318a62b8e0a5bLL),
7282  // C4[28], coeff of eps^28, polynomial in n of order 1
7283  -real(29LL<<55),real(61LL<<52),reale(2482383,0x949f282aa1f11LL),
7284  // C4[29], coeff of eps^29, polynomial in n of order 0
7285  real(1LL<<53),reale(88602,0xec373d36a45dfLL),
7286  }; // count = 5425
7287 #else
7288 #error "Bad value for GEOGRAPHICLIB_GEODESICEXACT_ORDER"
7289 #endif
7290  GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
7291  (nC4_ * (nC4_ + 1) * (nC4_ + 5)) / 6,
7292  "Coefficient array size mismatch in C4coeff");
7293  int o = 0, k = 0;
7294  for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
7295  for (int j = nC4_ - 1; j >= l; --j) { // coeff of eps^j
7296  int m = nC4_ - j - 1; // order of polynomial in n
7297  _C4x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
7298  o += m + 2;
7299  }
7300  }
7301  // Post condition: o == sizeof(coeff) / sizeof(real) && k == nC4x_
7302  if (!(o == sizeof(coeff) / sizeof(real) && k == nC4x_))
7303  throw GeographicErr("C4 misalignment");
7304  }
7305 
7306 } // namespace GeographicLib
GeographicLib
Namespace for GeographicLib.
Definition: JacobiConformal.hpp:15
real
float real
Definition: datatypes.h:10
GeographicLib::GeographicErr
Exception handling for GeographicLib.
Definition: Constants.hpp:389
GeographicLib::Math::polyval
static T polyval(int N, const T p[], T x)
Definition: Math.hpp:425
GeodesicExact.hpp
Header for GeographicLib::GeodesicExact class.
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
l
static const Line3 l(Rot3(), 1, 1)
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1
std
Definition: BFloat16.h:88
GeographicLib::GeodesicExact::C4coeff
void C4coeff()
Definition: GeodesicExactC4.cpp:36
real
Definition: main.h:100


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:22