$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/perception/tabletop_collision_map_processing/srv/TabletopCollisionMapProcessing.srv */ 00002 #ifndef TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H 00003 #define TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "tabletop_object_detector/TabletopDetectionResult.h" 00020 00021 00022 #include "object_manipulation_msgs/GraspableObject.h" 00023 00024 namespace tabletop_collision_map_processing 00025 { 00026 template <class ContainerAllocator> 00027 struct TabletopCollisionMapProcessingRequest_ { 00028 typedef TabletopCollisionMapProcessingRequest_<ContainerAllocator> Type; 00029 00030 TabletopCollisionMapProcessingRequest_() 00031 : detection_result() 00032 , reset_collision_models(false) 00033 , reset_attached_models(false) 00034 , desired_frame() 00035 { 00036 } 00037 00038 TabletopCollisionMapProcessingRequest_(const ContainerAllocator& _alloc) 00039 : detection_result(_alloc) 00040 , reset_collision_models(false) 00041 , reset_attached_models(false) 00042 , desired_frame(_alloc) 00043 { 00044 } 00045 00046 typedef ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> _detection_result_type; 00047 ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> detection_result; 00048 00049 typedef uint8_t _reset_collision_models_type; 00050 uint8_t reset_collision_models; 00051 00052 typedef uint8_t _reset_attached_models_type; 00053 uint8_t reset_attached_models; 00054 00055 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _desired_frame_type; 00056 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > desired_frame; 00057 00058 00059 private: 00060 static const char* __s_getDataType_() { return "tabletop_collision_map_processing/TabletopCollisionMapProcessingRequest"; } 00061 public: 00062 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00063 00064 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00065 00066 private: 00067 static const char* __s_getMD5Sum_() { return "fe986e22908c7a2936a0cdf9f240d4a3"; } 00068 public: 00069 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00070 00071 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00072 00073 private: 00074 static const char* __s_getServerMD5Sum_() { return "58e439dda25eed20079051e6af1b5eaa"; } 00075 public: 00076 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00077 00078 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00079 00080 private: 00081 static const char* __s_getMessageDefinition_() { return "\n\ 00082 \n\ 00083 \n\ 00084 \n\ 00085 \n\ 00086 \n\ 00087 \n\ 00088 tabletop_object_detector/TabletopDetectionResult detection_result\n\ 00089 \n\ 00090 \n\ 00091 bool reset_collision_models\n\ 00092 \n\ 00093 \n\ 00094 bool reset_attached_models\n\ 00095 \n\ 00096 \n\ 00097 \n\ 00098 string desired_frame\n\ 00099 \n\ 00100 \n\ 00101 ================================================================================\n\ 00102 MSG: tabletop_object_detector/TabletopDetectionResult\n\ 00103 # Contains all the information from one run of the tabletop detection node\n\ 00104 \n\ 00105 # The information for the plane that has been detected\n\ 00106 Table table\n\ 00107 \n\ 00108 # The raw clusters detected in the scan \n\ 00109 sensor_msgs/PointCloud[] clusters\n\ 00110 \n\ 00111 # The list of potential models that have been detected for each cluster\n\ 00112 # An empty list will be returned for a cluster that has no recognition results at all\n\ 00113 household_objects_database_msgs/DatabaseModelPoseList[] models\n\ 00114 \n\ 00115 # For each cluster, the index of the list of models that was fit to that cluster\n\ 00116 # keep in mind that multiple raw clusters can correspond to a single fit\n\ 00117 int32[] cluster_model_indices\n\ 00118 \n\ 00119 # Whether the detection has succeeded or failed\n\ 00120 int32 NO_CLOUD_RECEIVED = 1\n\ 00121 int32 NO_TABLE = 2\n\ 00122 int32 OTHER_ERROR = 3\n\ 00123 int32 SUCCESS = 4\n\ 00124 int32 result\n\ 00125 \n\ 00126 ================================================================================\n\ 00127 MSG: tabletop_object_detector/Table\n\ 00128 # Informs that a planar table has been detected at a given location\n\ 00129 \n\ 00130 # The pose gives you the transform that take you to the coordinate system\n\ 00131 # of the table, with the origin somewhere in the table plane and the \n\ 00132 # z axis normal to the plane\n\ 00133 geometry_msgs/PoseStamped pose\n\ 00134 \n\ 00135 # These values give you the observed extents of the table, along x and y,\n\ 00136 # in the table's own coordinate system (above)\n\ 00137 # there is no guarantee that the origin of the table coordinate system is\n\ 00138 # inside the boundary defined by these values. \n\ 00139 float32 x_min\n\ 00140 float32 x_max\n\ 00141 float32 y_min\n\ 00142 float32 y_max\n\ 00143 \n\ 00144 # There is no guarantee that the table does NOT extend further than these \n\ 00145 # values; this is just as far as we've observed it.\n\ 00146 \n\ 00147 \n\ 00148 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\ 00149 arm_navigation_msgs/Shape convex_hull\n\ 00150 \n\ 00151 ================================================================================\n\ 00152 MSG: geometry_msgs/PoseStamped\n\ 00153 # A Pose with reference coordinate frame and timestamp\n\ 00154 Header header\n\ 00155 Pose pose\n\ 00156 \n\ 00157 ================================================================================\n\ 00158 MSG: std_msgs/Header\n\ 00159 # Standard metadata for higher-level stamped data types.\n\ 00160 # This is generally used to communicate timestamped data \n\ 00161 # in a particular coordinate frame.\n\ 00162 # \n\ 00163 # sequence ID: consecutively increasing ID \n\ 00164 uint32 seq\n\ 00165 #Two-integer timestamp that is expressed as:\n\ 00166 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00167 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00168 # time-handling sugar is provided by the client library\n\ 00169 time stamp\n\ 00170 #Frame this data is associated with\n\ 00171 # 0: no frame\n\ 00172 # 1: global frame\n\ 00173 string frame_id\n\ 00174 \n\ 00175 ================================================================================\n\ 00176 MSG: geometry_msgs/Pose\n\ 00177 # A representation of pose in free space, composed of postion and orientation. \n\ 00178 Point position\n\ 00179 Quaternion orientation\n\ 00180 \n\ 00181 ================================================================================\n\ 00182 MSG: geometry_msgs/Point\n\ 00183 # This contains the position of a point in free space\n\ 00184 float64 x\n\ 00185 float64 y\n\ 00186 float64 z\n\ 00187 \n\ 00188 ================================================================================\n\ 00189 MSG: geometry_msgs/Quaternion\n\ 00190 # This represents an orientation in free space in quaternion form.\n\ 00191 \n\ 00192 float64 x\n\ 00193 float64 y\n\ 00194 float64 z\n\ 00195 float64 w\n\ 00196 \n\ 00197 ================================================================================\n\ 00198 MSG: arm_navigation_msgs/Shape\n\ 00199 byte SPHERE=0\n\ 00200 byte BOX=1\n\ 00201 byte CYLINDER=2\n\ 00202 byte MESH=3\n\ 00203 \n\ 00204 byte type\n\ 00205 \n\ 00206 \n\ 00207 #### define sphere, box, cylinder ####\n\ 00208 # the origin of each shape is considered at the shape's center\n\ 00209 \n\ 00210 # for sphere\n\ 00211 # radius := dimensions[0]\n\ 00212 \n\ 00213 # for cylinder\n\ 00214 # radius := dimensions[0]\n\ 00215 # length := dimensions[1]\n\ 00216 # the length is along the Z axis\n\ 00217 \n\ 00218 # for box\n\ 00219 # size_x := dimensions[0]\n\ 00220 # size_y := dimensions[1]\n\ 00221 # size_z := dimensions[2]\n\ 00222 float64[] dimensions\n\ 00223 \n\ 00224 \n\ 00225 #### define mesh ####\n\ 00226 \n\ 00227 # list of triangles; triangle k is defined by tre vertices located\n\ 00228 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00229 int32[] triangles\n\ 00230 geometry_msgs/Point[] vertices\n\ 00231 \n\ 00232 ================================================================================\n\ 00233 MSG: sensor_msgs/PointCloud\n\ 00234 # This message holds a collection of 3d points, plus optional additional\n\ 00235 # information about each point.\n\ 00236 \n\ 00237 # Time of sensor data acquisition, coordinate frame ID.\n\ 00238 Header header\n\ 00239 \n\ 00240 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00241 # in the frame given in the header.\n\ 00242 geometry_msgs/Point32[] points\n\ 00243 \n\ 00244 # Each channel should have the same number of elements as points array,\n\ 00245 # and the data in each channel should correspond 1:1 with each point.\n\ 00246 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00247 ChannelFloat32[] channels\n\ 00248 \n\ 00249 ================================================================================\n\ 00250 MSG: geometry_msgs/Point32\n\ 00251 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00252 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00253 # \n\ 00254 # This recommendation is to promote interoperability. \n\ 00255 #\n\ 00256 # This message is designed to take up less space when sending\n\ 00257 # lots of points at once, as in the case of a PointCloud. \n\ 00258 \n\ 00259 float32 x\n\ 00260 float32 y\n\ 00261 float32 z\n\ 00262 ================================================================================\n\ 00263 MSG: sensor_msgs/ChannelFloat32\n\ 00264 # This message is used by the PointCloud message to hold optional data\n\ 00265 # associated with each point in the cloud. The length of the values\n\ 00266 # array should be the same as the length of the points array in the\n\ 00267 # PointCloud, and each value should be associated with the corresponding\n\ 00268 # point.\n\ 00269 \n\ 00270 # Channel names in existing practice include:\n\ 00271 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00272 # This is opposite to usual conventions but remains for\n\ 00273 # historical reasons. The newer PointCloud2 message has no\n\ 00274 # such problem.\n\ 00275 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00276 # (R,G,B) values packed into the least significant 24 bits,\n\ 00277 # in order.\n\ 00278 # \"intensity\" - laser or pixel intensity.\n\ 00279 # \"distance\"\n\ 00280 \n\ 00281 # The channel name should give semantics of the channel (e.g.\n\ 00282 # \"intensity\" instead of \"value\").\n\ 00283 string name\n\ 00284 \n\ 00285 # The values array should be 1-1 with the elements of the associated\n\ 00286 # PointCloud.\n\ 00287 float32[] values\n\ 00288 \n\ 00289 ================================================================================\n\ 00290 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\ 00291 # stores a list of possible database models recognition results\n\ 00292 DatabaseModelPose[] model_list\n\ 00293 ================================================================================\n\ 00294 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00295 # Informs that a specific model from the Model Database has been \n\ 00296 # identified at a certain location\n\ 00297 \n\ 00298 # the database id of the model\n\ 00299 int32 model_id\n\ 00300 \n\ 00301 # the pose that it can be found in\n\ 00302 geometry_msgs/PoseStamped pose\n\ 00303 \n\ 00304 # a measure of the confidence level in this detection result\n\ 00305 float32 confidence\n\ 00306 \n\ 00307 # the name of the object detector that generated this detection result\n\ 00308 string detector_name\n\ 00309 \n\ 00310 "; } 00311 public: 00312 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00313 00314 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00315 00316 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00317 { 00318 ros::serialization::OStream stream(write_ptr, 1000000000); 00319 ros::serialization::serialize(stream, detection_result); 00320 ros::serialization::serialize(stream, reset_collision_models); 00321 ros::serialization::serialize(stream, reset_attached_models); 00322 ros::serialization::serialize(stream, desired_frame); 00323 return stream.getData(); 00324 } 00325 00326 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00327 { 00328 ros::serialization::IStream stream(read_ptr, 1000000000); 00329 ros::serialization::deserialize(stream, detection_result); 00330 ros::serialization::deserialize(stream, reset_collision_models); 00331 ros::serialization::deserialize(stream, reset_attached_models); 00332 ros::serialization::deserialize(stream, desired_frame); 00333 return stream.getData(); 00334 } 00335 00336 ROS_DEPRECATED virtual uint32_t serializationLength() const 00337 { 00338 uint32_t size = 0; 00339 size += ros::serialization::serializationLength(detection_result); 00340 size += ros::serialization::serializationLength(reset_collision_models); 00341 size += ros::serialization::serializationLength(reset_attached_models); 00342 size += ros::serialization::serializationLength(desired_frame); 00343 return size; 00344 } 00345 00346 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > Ptr; 00347 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> const> ConstPtr; 00348 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00349 }; // struct TabletopCollisionMapProcessingRequest 00350 typedef ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<std::allocator<void> > TabletopCollisionMapProcessingRequest; 00351 00352 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest> TabletopCollisionMapProcessingRequestPtr; 00353 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest const> TabletopCollisionMapProcessingRequestConstPtr; 00354 00355 00356 template <class ContainerAllocator> 00357 struct TabletopCollisionMapProcessingResponse_ { 00358 typedef TabletopCollisionMapProcessingResponse_<ContainerAllocator> Type; 00359 00360 TabletopCollisionMapProcessingResponse_() 00361 : graspable_objects() 00362 , collision_object_names() 00363 , collision_support_surface_name() 00364 { 00365 } 00366 00367 TabletopCollisionMapProcessingResponse_(const ContainerAllocator& _alloc) 00368 : graspable_objects(_alloc) 00369 , collision_object_names(_alloc) 00370 , collision_support_surface_name(_alloc) 00371 { 00372 } 00373 00374 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _graspable_objects_type; 00375 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > graspable_objects; 00376 00377 typedef std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > _collision_object_names_type; 00378 std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > collision_object_names; 00379 00380 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type; 00381 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name; 00382 00383 00384 ROS_DEPRECATED uint32_t get_graspable_objects_size() const { return (uint32_t)graspable_objects.size(); } 00385 ROS_DEPRECATED void set_graspable_objects_size(uint32_t size) { graspable_objects.resize((size_t)size); } 00386 ROS_DEPRECATED void get_graspable_objects_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->graspable_objects; } 00387 ROS_DEPRECATED void set_graspable_objects_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->graspable_objects = vec; } 00388 ROS_DEPRECATED uint32_t get_collision_object_names_size() const { return (uint32_t)collision_object_names.size(); } 00389 ROS_DEPRECATED void set_collision_object_names_size(uint32_t size) { collision_object_names.resize((size_t)size); } 00390 ROS_DEPRECATED void get_collision_object_names_vec(std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > & vec) const { vec = this->collision_object_names; } 00391 ROS_DEPRECATED void set_collision_object_names_vec(const std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other > & vec) { this->collision_object_names = vec; } 00392 private: 00393 static const char* __s_getDataType_() { return "tabletop_collision_map_processing/TabletopCollisionMapProcessingResponse"; } 00394 public: 00395 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00396 00397 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00398 00399 private: 00400 static const char* __s_getMD5Sum_() { return "684fb6e369cb671a9c4149f683c75e88"; } 00401 public: 00402 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00403 00404 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00405 00406 private: 00407 static const char* __s_getServerMD5Sum_() { return "58e439dda25eed20079051e6af1b5eaa"; } 00408 public: 00409 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00410 00411 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00412 00413 private: 00414 static const char* __s_getMessageDefinition_() { return "\n\ 00415 \n\ 00416 object_manipulation_msgs/GraspableObject[] graspable_objects\n\ 00417 \n\ 00418 \n\ 00419 \n\ 00420 string[] collision_object_names\n\ 00421 \n\ 00422 \n\ 00423 string collision_support_surface_name\n\ 00424 \n\ 00425 \n\ 00426 ================================================================================\n\ 00427 MSG: object_manipulation_msgs/GraspableObject\n\ 00428 # an object that the object_manipulator can work on\n\ 00429 \n\ 00430 # a graspable object can be represented in multiple ways. This message\n\ 00431 # can contain all of them. Which one is actually used is up to the receiver\n\ 00432 # of this message. When adding new representations, one must be careful that\n\ 00433 # they have reasonable lightweight defaults indicating that that particular\n\ 00434 # representation is not available.\n\ 00435 \n\ 00436 # the tf frame to be used as a reference frame when combining information from\n\ 00437 # the different representations below\n\ 00438 string reference_frame_id\n\ 00439 \n\ 00440 # potential recognition results from a database of models\n\ 00441 # all poses are relative to the object reference pose\n\ 00442 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00443 \n\ 00444 # the point cloud itself\n\ 00445 sensor_msgs/PointCloud cluster\n\ 00446 \n\ 00447 # a region of a PointCloud2 of interest\n\ 00448 object_manipulation_msgs/SceneRegion region\n\ 00449 \n\ 00450 # the name that this object has in the collision environment\n\ 00451 string collision_name\n\ 00452 ================================================================================\n\ 00453 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00454 # Informs that a specific model from the Model Database has been \n\ 00455 # identified at a certain location\n\ 00456 \n\ 00457 # the database id of the model\n\ 00458 int32 model_id\n\ 00459 \n\ 00460 # the pose that it can be found in\n\ 00461 geometry_msgs/PoseStamped pose\n\ 00462 \n\ 00463 # a measure of the confidence level in this detection result\n\ 00464 float32 confidence\n\ 00465 \n\ 00466 # the name of the object detector that generated this detection result\n\ 00467 string detector_name\n\ 00468 \n\ 00469 ================================================================================\n\ 00470 MSG: geometry_msgs/PoseStamped\n\ 00471 # A Pose with reference coordinate frame and timestamp\n\ 00472 Header header\n\ 00473 Pose pose\n\ 00474 \n\ 00475 ================================================================================\n\ 00476 MSG: std_msgs/Header\n\ 00477 # Standard metadata for higher-level stamped data types.\n\ 00478 # This is generally used to communicate timestamped data \n\ 00479 # in a particular coordinate frame.\n\ 00480 # \n\ 00481 # sequence ID: consecutively increasing ID \n\ 00482 uint32 seq\n\ 00483 #Two-integer timestamp that is expressed as:\n\ 00484 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00485 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00486 # time-handling sugar is provided by the client library\n\ 00487 time stamp\n\ 00488 #Frame this data is associated with\n\ 00489 # 0: no frame\n\ 00490 # 1: global frame\n\ 00491 string frame_id\n\ 00492 \n\ 00493 ================================================================================\n\ 00494 MSG: geometry_msgs/Pose\n\ 00495 # A representation of pose in free space, composed of postion and orientation. \n\ 00496 Point position\n\ 00497 Quaternion orientation\n\ 00498 \n\ 00499 ================================================================================\n\ 00500 MSG: geometry_msgs/Point\n\ 00501 # This contains the position of a point in free space\n\ 00502 float64 x\n\ 00503 float64 y\n\ 00504 float64 z\n\ 00505 \n\ 00506 ================================================================================\n\ 00507 MSG: geometry_msgs/Quaternion\n\ 00508 # This represents an orientation in free space in quaternion form.\n\ 00509 \n\ 00510 float64 x\n\ 00511 float64 y\n\ 00512 float64 z\n\ 00513 float64 w\n\ 00514 \n\ 00515 ================================================================================\n\ 00516 MSG: sensor_msgs/PointCloud\n\ 00517 # This message holds a collection of 3d points, plus optional additional\n\ 00518 # information about each point.\n\ 00519 \n\ 00520 # Time of sensor data acquisition, coordinate frame ID.\n\ 00521 Header header\n\ 00522 \n\ 00523 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00524 # in the frame given in the header.\n\ 00525 geometry_msgs/Point32[] points\n\ 00526 \n\ 00527 # Each channel should have the same number of elements as points array,\n\ 00528 # and the data in each channel should correspond 1:1 with each point.\n\ 00529 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00530 ChannelFloat32[] channels\n\ 00531 \n\ 00532 ================================================================================\n\ 00533 MSG: geometry_msgs/Point32\n\ 00534 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00535 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00536 # \n\ 00537 # This recommendation is to promote interoperability. \n\ 00538 #\n\ 00539 # This message is designed to take up less space when sending\n\ 00540 # lots of points at once, as in the case of a PointCloud. \n\ 00541 \n\ 00542 float32 x\n\ 00543 float32 y\n\ 00544 float32 z\n\ 00545 ================================================================================\n\ 00546 MSG: sensor_msgs/ChannelFloat32\n\ 00547 # This message is used by the PointCloud message to hold optional data\n\ 00548 # associated with each point in the cloud. The length of the values\n\ 00549 # array should be the same as the length of the points array in the\n\ 00550 # PointCloud, and each value should be associated with the corresponding\n\ 00551 # point.\n\ 00552 \n\ 00553 # Channel names in existing practice include:\n\ 00554 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00555 # This is opposite to usual conventions but remains for\n\ 00556 # historical reasons. The newer PointCloud2 message has no\n\ 00557 # such problem.\n\ 00558 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00559 # (R,G,B) values packed into the least significant 24 bits,\n\ 00560 # in order.\n\ 00561 # \"intensity\" - laser or pixel intensity.\n\ 00562 # \"distance\"\n\ 00563 \n\ 00564 # The channel name should give semantics of the channel (e.g.\n\ 00565 # \"intensity\" instead of \"value\").\n\ 00566 string name\n\ 00567 \n\ 00568 # The values array should be 1-1 with the elements of the associated\n\ 00569 # PointCloud.\n\ 00570 float32[] values\n\ 00571 \n\ 00572 ================================================================================\n\ 00573 MSG: object_manipulation_msgs/SceneRegion\n\ 00574 # Point cloud\n\ 00575 sensor_msgs/PointCloud2 cloud\n\ 00576 \n\ 00577 # Indices for the region of interest\n\ 00578 int32[] mask\n\ 00579 \n\ 00580 # One of the corresponding 2D images, if applicable\n\ 00581 sensor_msgs/Image image\n\ 00582 \n\ 00583 # The disparity image, if applicable\n\ 00584 sensor_msgs/Image disparity_image\n\ 00585 \n\ 00586 # Camera info for the camera that took the image\n\ 00587 sensor_msgs/CameraInfo cam_info\n\ 00588 \n\ 00589 # a 3D region of interest for grasp planning\n\ 00590 geometry_msgs/PoseStamped roi_box_pose\n\ 00591 geometry_msgs/Vector3 roi_box_dims\n\ 00592 \n\ 00593 ================================================================================\n\ 00594 MSG: sensor_msgs/PointCloud2\n\ 00595 # This message holds a collection of N-dimensional points, which may\n\ 00596 # contain additional information such as normals, intensity, etc. The\n\ 00597 # point data is stored as a binary blob, its layout described by the\n\ 00598 # contents of the \"fields\" array.\n\ 00599 \n\ 00600 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00601 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00602 # camera depth sensors such as stereo or time-of-flight.\n\ 00603 \n\ 00604 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00605 # points).\n\ 00606 Header header\n\ 00607 \n\ 00608 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00609 # 1 and width is the length of the point cloud.\n\ 00610 uint32 height\n\ 00611 uint32 width\n\ 00612 \n\ 00613 # Describes the channels and their layout in the binary data blob.\n\ 00614 PointField[] fields\n\ 00615 \n\ 00616 bool is_bigendian # Is this data bigendian?\n\ 00617 uint32 point_step # Length of a point in bytes\n\ 00618 uint32 row_step # Length of a row in bytes\n\ 00619 uint8[] data # Actual point data, size is (row_step*height)\n\ 00620 \n\ 00621 bool is_dense # True if there are no invalid points\n\ 00622 \n\ 00623 ================================================================================\n\ 00624 MSG: sensor_msgs/PointField\n\ 00625 # This message holds the description of one point entry in the\n\ 00626 # PointCloud2 message format.\n\ 00627 uint8 INT8 = 1\n\ 00628 uint8 UINT8 = 2\n\ 00629 uint8 INT16 = 3\n\ 00630 uint8 UINT16 = 4\n\ 00631 uint8 INT32 = 5\n\ 00632 uint8 UINT32 = 6\n\ 00633 uint8 FLOAT32 = 7\n\ 00634 uint8 FLOAT64 = 8\n\ 00635 \n\ 00636 string name # Name of field\n\ 00637 uint32 offset # Offset from start of point struct\n\ 00638 uint8 datatype # Datatype enumeration, see above\n\ 00639 uint32 count # How many elements in the field\n\ 00640 \n\ 00641 ================================================================================\n\ 00642 MSG: sensor_msgs/Image\n\ 00643 # This message contains an uncompressed image\n\ 00644 # (0, 0) is at top-left corner of image\n\ 00645 #\n\ 00646 \n\ 00647 Header header # Header timestamp should be acquisition time of image\n\ 00648 # Header frame_id should be optical frame of camera\n\ 00649 # origin of frame should be optical center of cameara\n\ 00650 # +x should point to the right in the image\n\ 00651 # +y should point down in the image\n\ 00652 # +z should point into to plane of the image\n\ 00653 # If the frame_id here and the frame_id of the CameraInfo\n\ 00654 # message associated with the image conflict\n\ 00655 # the behavior is undefined\n\ 00656 \n\ 00657 uint32 height # image height, that is, number of rows\n\ 00658 uint32 width # image width, that is, number of columns\n\ 00659 \n\ 00660 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00661 # If you want to standardize a new string format, join\n\ 00662 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00663 \n\ 00664 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00665 # taken from the list of strings in src/image_encodings.cpp\n\ 00666 \n\ 00667 uint8 is_bigendian # is this data bigendian?\n\ 00668 uint32 step # Full row length in bytes\n\ 00669 uint8[] data # actual matrix data, size is (step * rows)\n\ 00670 \n\ 00671 ================================================================================\n\ 00672 MSG: sensor_msgs/CameraInfo\n\ 00673 # This message defines meta information for a camera. It should be in a\n\ 00674 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00675 # image topics named:\n\ 00676 #\n\ 00677 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00678 # image - monochrome, distorted\n\ 00679 # image_color - color, distorted\n\ 00680 # image_rect - monochrome, rectified\n\ 00681 # image_rect_color - color, rectified\n\ 00682 #\n\ 00683 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00684 # for producing the four processed image topics from image_raw and\n\ 00685 # camera_info. The meaning of the camera parameters are described in\n\ 00686 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00687 #\n\ 00688 # The image_geometry package provides a user-friendly interface to\n\ 00689 # common operations using this meta information. If you want to, e.g.,\n\ 00690 # project a 3d point into image coordinates, we strongly recommend\n\ 00691 # using image_geometry.\n\ 00692 #\n\ 00693 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00694 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00695 # indicates an uncalibrated camera.\n\ 00696 \n\ 00697 #######################################################################\n\ 00698 # Image acquisition info #\n\ 00699 #######################################################################\n\ 00700 \n\ 00701 # Time of image acquisition, camera coordinate frame ID\n\ 00702 Header header # Header timestamp should be acquisition time of image\n\ 00703 # Header frame_id should be optical frame of camera\n\ 00704 # origin of frame should be optical center of camera\n\ 00705 # +x should point to the right in the image\n\ 00706 # +y should point down in the image\n\ 00707 # +z should point into the plane of the image\n\ 00708 \n\ 00709 \n\ 00710 #######################################################################\n\ 00711 # Calibration Parameters #\n\ 00712 #######################################################################\n\ 00713 # These are fixed during camera calibration. Their values will be the #\n\ 00714 # same in all messages until the camera is recalibrated. Note that #\n\ 00715 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00716 # #\n\ 00717 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00718 # to: #\n\ 00719 # 1. An undistorted image (requires D and K) #\n\ 00720 # 2. A rectified image (requires D, K, R) #\n\ 00721 # The projection matrix P projects 3D points into the rectified image.#\n\ 00722 #######################################################################\n\ 00723 \n\ 00724 # The image dimensions with which the camera was calibrated. Normally\n\ 00725 # this will be the full camera resolution in pixels.\n\ 00726 uint32 height\n\ 00727 uint32 width\n\ 00728 \n\ 00729 # The distortion model used. Supported models are listed in\n\ 00730 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00731 # simple model of radial and tangential distortion - is sufficent.\n\ 00732 string distortion_model\n\ 00733 \n\ 00734 # The distortion parameters, size depending on the distortion model.\n\ 00735 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00736 float64[] D\n\ 00737 \n\ 00738 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00739 # [fx 0 cx]\n\ 00740 # K = [ 0 fy cy]\n\ 00741 # [ 0 0 1]\n\ 00742 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00743 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00744 # (cx, cy).\n\ 00745 float64[9] K # 3x3 row-major matrix\n\ 00746 \n\ 00747 # Rectification matrix (stereo cameras only)\n\ 00748 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00749 # stereo image plane so that epipolar lines in both stereo images are\n\ 00750 # parallel.\n\ 00751 float64[9] R # 3x3 row-major matrix\n\ 00752 \n\ 00753 # Projection/camera matrix\n\ 00754 # [fx' 0 cx' Tx]\n\ 00755 # P = [ 0 fy' cy' Ty]\n\ 00756 # [ 0 0 1 0]\n\ 00757 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00758 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00759 # is the normal camera intrinsic matrix for the rectified image.\n\ 00760 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00761 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00762 # (cx', cy') - these may differ from the values in K.\n\ 00763 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00764 # also have R = the identity and P[1:3,1:3] = K.\n\ 00765 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00766 # position of the optical center of the second camera in the first\n\ 00767 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00768 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00769 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00770 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00771 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00772 # the rectified image is given by:\n\ 00773 # [u v w]' = P * [X Y Z 1]'\n\ 00774 # x = u / w\n\ 00775 # y = v / w\n\ 00776 # This holds for both images of a stereo pair.\n\ 00777 float64[12] P # 3x4 row-major matrix\n\ 00778 \n\ 00779 \n\ 00780 #######################################################################\n\ 00781 # Operational Parameters #\n\ 00782 #######################################################################\n\ 00783 # These define the image region actually captured by the camera #\n\ 00784 # driver. Although they affect the geometry of the output image, they #\n\ 00785 # may be changed freely without recalibrating the camera. #\n\ 00786 #######################################################################\n\ 00787 \n\ 00788 # Binning refers here to any camera setting which combines rectangular\n\ 00789 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00790 # resolution of the output image to\n\ 00791 # (width / binning_x) x (height / binning_y).\n\ 00792 # The default values binning_x = binning_y = 0 is considered the same\n\ 00793 # as binning_x = binning_y = 1 (no subsampling).\n\ 00794 uint32 binning_x\n\ 00795 uint32 binning_y\n\ 00796 \n\ 00797 # Region of interest (subwindow of full camera resolution), given in\n\ 00798 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00799 # always denotes the same window of pixels on the camera sensor,\n\ 00800 # regardless of binning settings.\n\ 00801 # The default setting of roi (all values 0) is considered the same as\n\ 00802 # full resolution (roi.width = width, roi.height = height).\n\ 00803 RegionOfInterest roi\n\ 00804 \n\ 00805 ================================================================================\n\ 00806 MSG: sensor_msgs/RegionOfInterest\n\ 00807 # This message is used to specify a region of interest within an image.\n\ 00808 #\n\ 00809 # When used to specify the ROI setting of the camera when the image was\n\ 00810 # taken, the height and width fields should either match the height and\n\ 00811 # width fields for the associated image; or height = width = 0\n\ 00812 # indicates that the full resolution image was captured.\n\ 00813 \n\ 00814 uint32 x_offset # Leftmost pixel of the ROI\n\ 00815 # (0 if the ROI includes the left edge of the image)\n\ 00816 uint32 y_offset # Topmost pixel of the ROI\n\ 00817 # (0 if the ROI includes the top edge of the image)\n\ 00818 uint32 height # Height of ROI\n\ 00819 uint32 width # Width of ROI\n\ 00820 \n\ 00821 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00822 # ROI in this message. Typically this should be False if the full image\n\ 00823 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00824 # used).\n\ 00825 bool do_rectify\n\ 00826 \n\ 00827 ================================================================================\n\ 00828 MSG: geometry_msgs/Vector3\n\ 00829 # This represents a vector in free space. \n\ 00830 \n\ 00831 float64 x\n\ 00832 float64 y\n\ 00833 float64 z\n\ 00834 "; } 00835 public: 00836 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00837 00838 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00839 00840 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00841 { 00842 ros::serialization::OStream stream(write_ptr, 1000000000); 00843 ros::serialization::serialize(stream, graspable_objects); 00844 ros::serialization::serialize(stream, collision_object_names); 00845 ros::serialization::serialize(stream, collision_support_surface_name); 00846 return stream.getData(); 00847 } 00848 00849 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00850 { 00851 ros::serialization::IStream stream(read_ptr, 1000000000); 00852 ros::serialization::deserialize(stream, graspable_objects); 00853 ros::serialization::deserialize(stream, collision_object_names); 00854 ros::serialization::deserialize(stream, collision_support_surface_name); 00855 return stream.getData(); 00856 } 00857 00858 ROS_DEPRECATED virtual uint32_t serializationLength() const 00859 { 00860 uint32_t size = 0; 00861 size += ros::serialization::serializationLength(graspable_objects); 00862 size += ros::serialization::serializationLength(collision_object_names); 00863 size += ros::serialization::serializationLength(collision_support_surface_name); 00864 return size; 00865 } 00866 00867 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > Ptr; 00868 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> const> ConstPtr; 00869 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00870 }; // struct TabletopCollisionMapProcessingResponse 00871 typedef ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<std::allocator<void> > TabletopCollisionMapProcessingResponse; 00872 00873 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse> TabletopCollisionMapProcessingResponsePtr; 00874 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse const> TabletopCollisionMapProcessingResponseConstPtr; 00875 00876 struct TabletopCollisionMapProcessing 00877 { 00878 00879 typedef TabletopCollisionMapProcessingRequest Request; 00880 typedef TabletopCollisionMapProcessingResponse Response; 00881 Request request; 00882 Response response; 00883 00884 typedef Request RequestType; 00885 typedef Response ResponseType; 00886 }; // struct TabletopCollisionMapProcessing 00887 } // namespace tabletop_collision_map_processing 00888 00889 namespace ros 00890 { 00891 namespace message_traits 00892 { 00893 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > : public TrueType {}; 00894 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> const> : public TrueType {}; 00895 template<class ContainerAllocator> 00896 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > { 00897 static const char* value() 00898 { 00899 return "fe986e22908c7a2936a0cdf9f240d4a3"; 00900 } 00901 00902 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 00903 static const uint64_t static_value1 = 0xfe986e22908c7a29ULL; 00904 static const uint64_t static_value2 = 0x36a0cdf9f240d4a3ULL; 00905 }; 00906 00907 template<class ContainerAllocator> 00908 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > { 00909 static const char* value() 00910 { 00911 return "tabletop_collision_map_processing/TabletopCollisionMapProcessingRequest"; 00912 } 00913 00914 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 00915 }; 00916 00917 template<class ContainerAllocator> 00918 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > { 00919 static const char* value() 00920 { 00921 return "\n\ 00922 \n\ 00923 \n\ 00924 \n\ 00925 \n\ 00926 \n\ 00927 \n\ 00928 tabletop_object_detector/TabletopDetectionResult detection_result\n\ 00929 \n\ 00930 \n\ 00931 bool reset_collision_models\n\ 00932 \n\ 00933 \n\ 00934 bool reset_attached_models\n\ 00935 \n\ 00936 \n\ 00937 \n\ 00938 string desired_frame\n\ 00939 \n\ 00940 \n\ 00941 ================================================================================\n\ 00942 MSG: tabletop_object_detector/TabletopDetectionResult\n\ 00943 # Contains all the information from one run of the tabletop detection node\n\ 00944 \n\ 00945 # The information for the plane that has been detected\n\ 00946 Table table\n\ 00947 \n\ 00948 # The raw clusters detected in the scan \n\ 00949 sensor_msgs/PointCloud[] clusters\n\ 00950 \n\ 00951 # The list of potential models that have been detected for each cluster\n\ 00952 # An empty list will be returned for a cluster that has no recognition results at all\n\ 00953 household_objects_database_msgs/DatabaseModelPoseList[] models\n\ 00954 \n\ 00955 # For each cluster, the index of the list of models that was fit to that cluster\n\ 00956 # keep in mind that multiple raw clusters can correspond to a single fit\n\ 00957 int32[] cluster_model_indices\n\ 00958 \n\ 00959 # Whether the detection has succeeded or failed\n\ 00960 int32 NO_CLOUD_RECEIVED = 1\n\ 00961 int32 NO_TABLE = 2\n\ 00962 int32 OTHER_ERROR = 3\n\ 00963 int32 SUCCESS = 4\n\ 00964 int32 result\n\ 00965 \n\ 00966 ================================================================================\n\ 00967 MSG: tabletop_object_detector/Table\n\ 00968 # Informs that a planar table has been detected at a given location\n\ 00969 \n\ 00970 # The pose gives you the transform that take you to the coordinate system\n\ 00971 # of the table, with the origin somewhere in the table plane and the \n\ 00972 # z axis normal to the plane\n\ 00973 geometry_msgs/PoseStamped pose\n\ 00974 \n\ 00975 # These values give you the observed extents of the table, along x and y,\n\ 00976 # in the table's own coordinate system (above)\n\ 00977 # there is no guarantee that the origin of the table coordinate system is\n\ 00978 # inside the boundary defined by these values. \n\ 00979 float32 x_min\n\ 00980 float32 x_max\n\ 00981 float32 y_min\n\ 00982 float32 y_max\n\ 00983 \n\ 00984 # There is no guarantee that the table does NOT extend further than these \n\ 00985 # values; this is just as far as we've observed it.\n\ 00986 \n\ 00987 \n\ 00988 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\ 00989 arm_navigation_msgs/Shape convex_hull\n\ 00990 \n\ 00991 ================================================================================\n\ 00992 MSG: geometry_msgs/PoseStamped\n\ 00993 # A Pose with reference coordinate frame and timestamp\n\ 00994 Header header\n\ 00995 Pose pose\n\ 00996 \n\ 00997 ================================================================================\n\ 00998 MSG: std_msgs/Header\n\ 00999 # Standard metadata for higher-level stamped data types.\n\ 01000 # This is generally used to communicate timestamped data \n\ 01001 # in a particular coordinate frame.\n\ 01002 # \n\ 01003 # sequence ID: consecutively increasing ID \n\ 01004 uint32 seq\n\ 01005 #Two-integer timestamp that is expressed as:\n\ 01006 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 01007 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 01008 # time-handling sugar is provided by the client library\n\ 01009 time stamp\n\ 01010 #Frame this data is associated with\n\ 01011 # 0: no frame\n\ 01012 # 1: global frame\n\ 01013 string frame_id\n\ 01014 \n\ 01015 ================================================================================\n\ 01016 MSG: geometry_msgs/Pose\n\ 01017 # A representation of pose in free space, composed of postion and orientation. \n\ 01018 Point position\n\ 01019 Quaternion orientation\n\ 01020 \n\ 01021 ================================================================================\n\ 01022 MSG: geometry_msgs/Point\n\ 01023 # This contains the position of a point in free space\n\ 01024 float64 x\n\ 01025 float64 y\n\ 01026 float64 z\n\ 01027 \n\ 01028 ================================================================================\n\ 01029 MSG: geometry_msgs/Quaternion\n\ 01030 # This represents an orientation in free space in quaternion form.\n\ 01031 \n\ 01032 float64 x\n\ 01033 float64 y\n\ 01034 float64 z\n\ 01035 float64 w\n\ 01036 \n\ 01037 ================================================================================\n\ 01038 MSG: arm_navigation_msgs/Shape\n\ 01039 byte SPHERE=0\n\ 01040 byte BOX=1\n\ 01041 byte CYLINDER=2\n\ 01042 byte MESH=3\n\ 01043 \n\ 01044 byte type\n\ 01045 \n\ 01046 \n\ 01047 #### define sphere, box, cylinder ####\n\ 01048 # the origin of each shape is considered at the shape's center\n\ 01049 \n\ 01050 # for sphere\n\ 01051 # radius := dimensions[0]\n\ 01052 \n\ 01053 # for cylinder\n\ 01054 # radius := dimensions[0]\n\ 01055 # length := dimensions[1]\n\ 01056 # the length is along the Z axis\n\ 01057 \n\ 01058 # for box\n\ 01059 # size_x := dimensions[0]\n\ 01060 # size_y := dimensions[1]\n\ 01061 # size_z := dimensions[2]\n\ 01062 float64[] dimensions\n\ 01063 \n\ 01064 \n\ 01065 #### define mesh ####\n\ 01066 \n\ 01067 # list of triangles; triangle k is defined by tre vertices located\n\ 01068 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01069 int32[] triangles\n\ 01070 geometry_msgs/Point[] vertices\n\ 01071 \n\ 01072 ================================================================================\n\ 01073 MSG: sensor_msgs/PointCloud\n\ 01074 # This message holds a collection of 3d points, plus optional additional\n\ 01075 # information about each point.\n\ 01076 \n\ 01077 # Time of sensor data acquisition, coordinate frame ID.\n\ 01078 Header header\n\ 01079 \n\ 01080 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01081 # in the frame given in the header.\n\ 01082 geometry_msgs/Point32[] points\n\ 01083 \n\ 01084 # Each channel should have the same number of elements as points array,\n\ 01085 # and the data in each channel should correspond 1:1 with each point.\n\ 01086 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01087 ChannelFloat32[] channels\n\ 01088 \n\ 01089 ================================================================================\n\ 01090 MSG: geometry_msgs/Point32\n\ 01091 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01092 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01093 # \n\ 01094 # This recommendation is to promote interoperability. \n\ 01095 #\n\ 01096 # This message is designed to take up less space when sending\n\ 01097 # lots of points at once, as in the case of a PointCloud. \n\ 01098 \n\ 01099 float32 x\n\ 01100 float32 y\n\ 01101 float32 z\n\ 01102 ================================================================================\n\ 01103 MSG: sensor_msgs/ChannelFloat32\n\ 01104 # This message is used by the PointCloud message to hold optional data\n\ 01105 # associated with each point in the cloud. The length of the values\n\ 01106 # array should be the same as the length of the points array in the\n\ 01107 # PointCloud, and each value should be associated with the corresponding\n\ 01108 # point.\n\ 01109 \n\ 01110 # Channel names in existing practice include:\n\ 01111 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01112 # This is opposite to usual conventions but remains for\n\ 01113 # historical reasons. The newer PointCloud2 message has no\n\ 01114 # such problem.\n\ 01115 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01116 # (R,G,B) values packed into the least significant 24 bits,\n\ 01117 # in order.\n\ 01118 # \"intensity\" - laser or pixel intensity.\n\ 01119 # \"distance\"\n\ 01120 \n\ 01121 # The channel name should give semantics of the channel (e.g.\n\ 01122 # \"intensity\" instead of \"value\").\n\ 01123 string name\n\ 01124 \n\ 01125 # The values array should be 1-1 with the elements of the associated\n\ 01126 # PointCloud.\n\ 01127 float32[] values\n\ 01128 \n\ 01129 ================================================================================\n\ 01130 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\ 01131 # stores a list of possible database models recognition results\n\ 01132 DatabaseModelPose[] model_list\n\ 01133 ================================================================================\n\ 01134 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01135 # Informs that a specific model from the Model Database has been \n\ 01136 # identified at a certain location\n\ 01137 \n\ 01138 # the database id of the model\n\ 01139 int32 model_id\n\ 01140 \n\ 01141 # the pose that it can be found in\n\ 01142 geometry_msgs/PoseStamped pose\n\ 01143 \n\ 01144 # a measure of the confidence level in this detection result\n\ 01145 float32 confidence\n\ 01146 \n\ 01147 # the name of the object detector that generated this detection result\n\ 01148 string detector_name\n\ 01149 \n\ 01150 "; 01151 } 01152 01153 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 01154 }; 01155 01156 } // namespace message_traits 01157 } // namespace ros 01158 01159 01160 namespace ros 01161 { 01162 namespace message_traits 01163 { 01164 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > : public TrueType {}; 01165 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> const> : public TrueType {}; 01166 template<class ContainerAllocator> 01167 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > { 01168 static const char* value() 01169 { 01170 return "684fb6e369cb671a9c4149f683c75e88"; 01171 } 01172 01173 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 01174 static const uint64_t static_value1 = 0x684fb6e369cb671aULL; 01175 static const uint64_t static_value2 = 0x9c4149f683c75e88ULL; 01176 }; 01177 01178 template<class ContainerAllocator> 01179 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > { 01180 static const char* value() 01181 { 01182 return "tabletop_collision_map_processing/TabletopCollisionMapProcessingResponse"; 01183 } 01184 01185 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 01186 }; 01187 01188 template<class ContainerAllocator> 01189 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > { 01190 static const char* value() 01191 { 01192 return "\n\ 01193 \n\ 01194 object_manipulation_msgs/GraspableObject[] graspable_objects\n\ 01195 \n\ 01196 \n\ 01197 \n\ 01198 string[] collision_object_names\n\ 01199 \n\ 01200 \n\ 01201 string collision_support_surface_name\n\ 01202 \n\ 01203 \n\ 01204 ================================================================================\n\ 01205 MSG: object_manipulation_msgs/GraspableObject\n\ 01206 # an object that the object_manipulator can work on\n\ 01207 \n\ 01208 # a graspable object can be represented in multiple ways. This message\n\ 01209 # can contain all of them. Which one is actually used is up to the receiver\n\ 01210 # of this message. When adding new representations, one must be careful that\n\ 01211 # they have reasonable lightweight defaults indicating that that particular\n\ 01212 # representation is not available.\n\ 01213 \n\ 01214 # the tf frame to be used as a reference frame when combining information from\n\ 01215 # the different representations below\n\ 01216 string reference_frame_id\n\ 01217 \n\ 01218 # potential recognition results from a database of models\n\ 01219 # all poses are relative to the object reference pose\n\ 01220 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 01221 \n\ 01222 # the point cloud itself\n\ 01223 sensor_msgs/PointCloud cluster\n\ 01224 \n\ 01225 # a region of a PointCloud2 of interest\n\ 01226 object_manipulation_msgs/SceneRegion region\n\ 01227 \n\ 01228 # the name that this object has in the collision environment\n\ 01229 string collision_name\n\ 01230 ================================================================================\n\ 01231 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01232 # Informs that a specific model from the Model Database has been \n\ 01233 # identified at a certain location\n\ 01234 \n\ 01235 # the database id of the model\n\ 01236 int32 model_id\n\ 01237 \n\ 01238 # the pose that it can be found in\n\ 01239 geometry_msgs/PoseStamped pose\n\ 01240 \n\ 01241 # a measure of the confidence level in this detection result\n\ 01242 float32 confidence\n\ 01243 \n\ 01244 # the name of the object detector that generated this detection result\n\ 01245 string detector_name\n\ 01246 \n\ 01247 ================================================================================\n\ 01248 MSG: geometry_msgs/PoseStamped\n\ 01249 # A Pose with reference coordinate frame and timestamp\n\ 01250 Header header\n\ 01251 Pose pose\n\ 01252 \n\ 01253 ================================================================================\n\ 01254 MSG: std_msgs/Header\n\ 01255 # Standard metadata for higher-level stamped data types.\n\ 01256 # This is generally used to communicate timestamped data \n\ 01257 # in a particular coordinate frame.\n\ 01258 # \n\ 01259 # sequence ID: consecutively increasing ID \n\ 01260 uint32 seq\n\ 01261 #Two-integer timestamp that is expressed as:\n\ 01262 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 01263 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 01264 # time-handling sugar is provided by the client library\n\ 01265 time stamp\n\ 01266 #Frame this data is associated with\n\ 01267 # 0: no frame\n\ 01268 # 1: global frame\n\ 01269 string frame_id\n\ 01270 \n\ 01271 ================================================================================\n\ 01272 MSG: geometry_msgs/Pose\n\ 01273 # A representation of pose in free space, composed of postion and orientation. \n\ 01274 Point position\n\ 01275 Quaternion orientation\n\ 01276 \n\ 01277 ================================================================================\n\ 01278 MSG: geometry_msgs/Point\n\ 01279 # This contains the position of a point in free space\n\ 01280 float64 x\n\ 01281 float64 y\n\ 01282 float64 z\n\ 01283 \n\ 01284 ================================================================================\n\ 01285 MSG: geometry_msgs/Quaternion\n\ 01286 # This represents an orientation in free space in quaternion form.\n\ 01287 \n\ 01288 float64 x\n\ 01289 float64 y\n\ 01290 float64 z\n\ 01291 float64 w\n\ 01292 \n\ 01293 ================================================================================\n\ 01294 MSG: sensor_msgs/PointCloud\n\ 01295 # This message holds a collection of 3d points, plus optional additional\n\ 01296 # information about each point.\n\ 01297 \n\ 01298 # Time of sensor data acquisition, coordinate frame ID.\n\ 01299 Header header\n\ 01300 \n\ 01301 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01302 # in the frame given in the header.\n\ 01303 geometry_msgs/Point32[] points\n\ 01304 \n\ 01305 # Each channel should have the same number of elements as points array,\n\ 01306 # and the data in each channel should correspond 1:1 with each point.\n\ 01307 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01308 ChannelFloat32[] channels\n\ 01309 \n\ 01310 ================================================================================\n\ 01311 MSG: geometry_msgs/Point32\n\ 01312 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01313 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01314 # \n\ 01315 # This recommendation is to promote interoperability. \n\ 01316 #\n\ 01317 # This message is designed to take up less space when sending\n\ 01318 # lots of points at once, as in the case of a PointCloud. \n\ 01319 \n\ 01320 float32 x\n\ 01321 float32 y\n\ 01322 float32 z\n\ 01323 ================================================================================\n\ 01324 MSG: sensor_msgs/ChannelFloat32\n\ 01325 # This message is used by the PointCloud message to hold optional data\n\ 01326 # associated with each point in the cloud. The length of the values\n\ 01327 # array should be the same as the length of the points array in the\n\ 01328 # PointCloud, and each value should be associated with the corresponding\n\ 01329 # point.\n\ 01330 \n\ 01331 # Channel names in existing practice include:\n\ 01332 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01333 # This is opposite to usual conventions but remains for\n\ 01334 # historical reasons. The newer PointCloud2 message has no\n\ 01335 # such problem.\n\ 01336 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01337 # (R,G,B) values packed into the least significant 24 bits,\n\ 01338 # in order.\n\ 01339 # \"intensity\" - laser or pixel intensity.\n\ 01340 # \"distance\"\n\ 01341 \n\ 01342 # The channel name should give semantics of the channel (e.g.\n\ 01343 # \"intensity\" instead of \"value\").\n\ 01344 string name\n\ 01345 \n\ 01346 # The values array should be 1-1 with the elements of the associated\n\ 01347 # PointCloud.\n\ 01348 float32[] values\n\ 01349 \n\ 01350 ================================================================================\n\ 01351 MSG: object_manipulation_msgs/SceneRegion\n\ 01352 # Point cloud\n\ 01353 sensor_msgs/PointCloud2 cloud\n\ 01354 \n\ 01355 # Indices for the region of interest\n\ 01356 int32[] mask\n\ 01357 \n\ 01358 # One of the corresponding 2D images, if applicable\n\ 01359 sensor_msgs/Image image\n\ 01360 \n\ 01361 # The disparity image, if applicable\n\ 01362 sensor_msgs/Image disparity_image\n\ 01363 \n\ 01364 # Camera info for the camera that took the image\n\ 01365 sensor_msgs/CameraInfo cam_info\n\ 01366 \n\ 01367 # a 3D region of interest for grasp planning\n\ 01368 geometry_msgs/PoseStamped roi_box_pose\n\ 01369 geometry_msgs/Vector3 roi_box_dims\n\ 01370 \n\ 01371 ================================================================================\n\ 01372 MSG: sensor_msgs/PointCloud2\n\ 01373 # This message holds a collection of N-dimensional points, which may\n\ 01374 # contain additional information such as normals, intensity, etc. The\n\ 01375 # point data is stored as a binary blob, its layout described by the\n\ 01376 # contents of the \"fields\" array.\n\ 01377 \n\ 01378 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01379 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01380 # camera depth sensors such as stereo or time-of-flight.\n\ 01381 \n\ 01382 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01383 # points).\n\ 01384 Header header\n\ 01385 \n\ 01386 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01387 # 1 and width is the length of the point cloud.\n\ 01388 uint32 height\n\ 01389 uint32 width\n\ 01390 \n\ 01391 # Describes the channels and their layout in the binary data blob.\n\ 01392 PointField[] fields\n\ 01393 \n\ 01394 bool is_bigendian # Is this data bigendian?\n\ 01395 uint32 point_step # Length of a point in bytes\n\ 01396 uint32 row_step # Length of a row in bytes\n\ 01397 uint8[] data # Actual point data, size is (row_step*height)\n\ 01398 \n\ 01399 bool is_dense # True if there are no invalid points\n\ 01400 \n\ 01401 ================================================================================\n\ 01402 MSG: sensor_msgs/PointField\n\ 01403 # This message holds the description of one point entry in the\n\ 01404 # PointCloud2 message format.\n\ 01405 uint8 INT8 = 1\n\ 01406 uint8 UINT8 = 2\n\ 01407 uint8 INT16 = 3\n\ 01408 uint8 UINT16 = 4\n\ 01409 uint8 INT32 = 5\n\ 01410 uint8 UINT32 = 6\n\ 01411 uint8 FLOAT32 = 7\n\ 01412 uint8 FLOAT64 = 8\n\ 01413 \n\ 01414 string name # Name of field\n\ 01415 uint32 offset # Offset from start of point struct\n\ 01416 uint8 datatype # Datatype enumeration, see above\n\ 01417 uint32 count # How many elements in the field\n\ 01418 \n\ 01419 ================================================================================\n\ 01420 MSG: sensor_msgs/Image\n\ 01421 # This message contains an uncompressed image\n\ 01422 # (0, 0) is at top-left corner of image\n\ 01423 #\n\ 01424 \n\ 01425 Header header # Header timestamp should be acquisition time of image\n\ 01426 # Header frame_id should be optical frame of camera\n\ 01427 # origin of frame should be optical center of cameara\n\ 01428 # +x should point to the right in the image\n\ 01429 # +y should point down in the image\n\ 01430 # +z should point into to plane of the image\n\ 01431 # If the frame_id here and the frame_id of the CameraInfo\n\ 01432 # message associated with the image conflict\n\ 01433 # the behavior is undefined\n\ 01434 \n\ 01435 uint32 height # image height, that is, number of rows\n\ 01436 uint32 width # image width, that is, number of columns\n\ 01437 \n\ 01438 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01439 # If you want to standardize a new string format, join\n\ 01440 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01441 \n\ 01442 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01443 # taken from the list of strings in src/image_encodings.cpp\n\ 01444 \n\ 01445 uint8 is_bigendian # is this data bigendian?\n\ 01446 uint32 step # Full row length in bytes\n\ 01447 uint8[] data # actual matrix data, size is (step * rows)\n\ 01448 \n\ 01449 ================================================================================\n\ 01450 MSG: sensor_msgs/CameraInfo\n\ 01451 # This message defines meta information for a camera. It should be in a\n\ 01452 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01453 # image topics named:\n\ 01454 #\n\ 01455 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01456 # image - monochrome, distorted\n\ 01457 # image_color - color, distorted\n\ 01458 # image_rect - monochrome, rectified\n\ 01459 # image_rect_color - color, rectified\n\ 01460 #\n\ 01461 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01462 # for producing the four processed image topics from image_raw and\n\ 01463 # camera_info. The meaning of the camera parameters are described in\n\ 01464 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01465 #\n\ 01466 # The image_geometry package provides a user-friendly interface to\n\ 01467 # common operations using this meta information. If you want to, e.g.,\n\ 01468 # project a 3d point into image coordinates, we strongly recommend\n\ 01469 # using image_geometry.\n\ 01470 #\n\ 01471 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01472 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01473 # indicates an uncalibrated camera.\n\ 01474 \n\ 01475 #######################################################################\n\ 01476 # Image acquisition info #\n\ 01477 #######################################################################\n\ 01478 \n\ 01479 # Time of image acquisition, camera coordinate frame ID\n\ 01480 Header header # Header timestamp should be acquisition time of image\n\ 01481 # Header frame_id should be optical frame of camera\n\ 01482 # origin of frame should be optical center of camera\n\ 01483 # +x should point to the right in the image\n\ 01484 # +y should point down in the image\n\ 01485 # +z should point into the plane of the image\n\ 01486 \n\ 01487 \n\ 01488 #######################################################################\n\ 01489 # Calibration Parameters #\n\ 01490 #######################################################################\n\ 01491 # These are fixed during camera calibration. Their values will be the #\n\ 01492 # same in all messages until the camera is recalibrated. Note that #\n\ 01493 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01494 # #\n\ 01495 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01496 # to: #\n\ 01497 # 1. An undistorted image (requires D and K) #\n\ 01498 # 2. A rectified image (requires D, K, R) #\n\ 01499 # The projection matrix P projects 3D points into the rectified image.#\n\ 01500 #######################################################################\n\ 01501 \n\ 01502 # The image dimensions with which the camera was calibrated. Normally\n\ 01503 # this will be the full camera resolution in pixels.\n\ 01504 uint32 height\n\ 01505 uint32 width\n\ 01506 \n\ 01507 # The distortion model used. Supported models are listed in\n\ 01508 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01509 # simple model of radial and tangential distortion - is sufficent.\n\ 01510 string distortion_model\n\ 01511 \n\ 01512 # The distortion parameters, size depending on the distortion model.\n\ 01513 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01514 float64[] D\n\ 01515 \n\ 01516 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01517 # [fx 0 cx]\n\ 01518 # K = [ 0 fy cy]\n\ 01519 # [ 0 0 1]\n\ 01520 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01521 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01522 # (cx, cy).\n\ 01523 float64[9] K # 3x3 row-major matrix\n\ 01524 \n\ 01525 # Rectification matrix (stereo cameras only)\n\ 01526 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01527 # stereo image plane so that epipolar lines in both stereo images are\n\ 01528 # parallel.\n\ 01529 float64[9] R # 3x3 row-major matrix\n\ 01530 \n\ 01531 # Projection/camera matrix\n\ 01532 # [fx' 0 cx' Tx]\n\ 01533 # P = [ 0 fy' cy' Ty]\n\ 01534 # [ 0 0 1 0]\n\ 01535 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01536 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01537 # is the normal camera intrinsic matrix for the rectified image.\n\ 01538 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01539 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01540 # (cx', cy') - these may differ from the values in K.\n\ 01541 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01542 # also have R = the identity and P[1:3,1:3] = K.\n\ 01543 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01544 # position of the optical center of the second camera in the first\n\ 01545 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01546 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01547 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01548 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01549 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01550 # the rectified image is given by:\n\ 01551 # [u v w]' = P * [X Y Z 1]'\n\ 01552 # x = u / w\n\ 01553 # y = v / w\n\ 01554 # This holds for both images of a stereo pair.\n\ 01555 float64[12] P # 3x4 row-major matrix\n\ 01556 \n\ 01557 \n\ 01558 #######################################################################\n\ 01559 # Operational Parameters #\n\ 01560 #######################################################################\n\ 01561 # These define the image region actually captured by the camera #\n\ 01562 # driver. Although they affect the geometry of the output image, they #\n\ 01563 # may be changed freely without recalibrating the camera. #\n\ 01564 #######################################################################\n\ 01565 \n\ 01566 # Binning refers here to any camera setting which combines rectangular\n\ 01567 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01568 # resolution of the output image to\n\ 01569 # (width / binning_x) x (height / binning_y).\n\ 01570 # The default values binning_x = binning_y = 0 is considered the same\n\ 01571 # as binning_x = binning_y = 1 (no subsampling).\n\ 01572 uint32 binning_x\n\ 01573 uint32 binning_y\n\ 01574 \n\ 01575 # Region of interest (subwindow of full camera resolution), given in\n\ 01576 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01577 # always denotes the same window of pixels on the camera sensor,\n\ 01578 # regardless of binning settings.\n\ 01579 # The default setting of roi (all values 0) is considered the same as\n\ 01580 # full resolution (roi.width = width, roi.height = height).\n\ 01581 RegionOfInterest roi\n\ 01582 \n\ 01583 ================================================================================\n\ 01584 MSG: sensor_msgs/RegionOfInterest\n\ 01585 # This message is used to specify a region of interest within an image.\n\ 01586 #\n\ 01587 # When used to specify the ROI setting of the camera when the image was\n\ 01588 # taken, the height and width fields should either match the height and\n\ 01589 # width fields for the associated image; or height = width = 0\n\ 01590 # indicates that the full resolution image was captured.\n\ 01591 \n\ 01592 uint32 x_offset # Leftmost pixel of the ROI\n\ 01593 # (0 if the ROI includes the left edge of the image)\n\ 01594 uint32 y_offset # Topmost pixel of the ROI\n\ 01595 # (0 if the ROI includes the top edge of the image)\n\ 01596 uint32 height # Height of ROI\n\ 01597 uint32 width # Width of ROI\n\ 01598 \n\ 01599 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01600 # ROI in this message. Typically this should be False if the full image\n\ 01601 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01602 # used).\n\ 01603 bool do_rectify\n\ 01604 \n\ 01605 ================================================================================\n\ 01606 MSG: geometry_msgs/Vector3\n\ 01607 # This represents a vector in free space. \n\ 01608 \n\ 01609 float64 x\n\ 01610 float64 y\n\ 01611 float64 z\n\ 01612 "; 01613 } 01614 01615 static const char* value(const ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 01616 }; 01617 01618 } // namespace message_traits 01619 } // namespace ros 01620 01621 namespace ros 01622 { 01623 namespace serialization 01624 { 01625 01626 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > 01627 { 01628 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01629 { 01630 stream.next(m.detection_result); 01631 stream.next(m.reset_collision_models); 01632 stream.next(m.reset_attached_models); 01633 stream.next(m.desired_frame); 01634 } 01635 01636 ROS_DECLARE_ALLINONE_SERIALIZER; 01637 }; // struct TabletopCollisionMapProcessingRequest_ 01638 } // namespace serialization 01639 } // namespace ros 01640 01641 01642 namespace ros 01643 { 01644 namespace serialization 01645 { 01646 01647 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > 01648 { 01649 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01650 { 01651 stream.next(m.graspable_objects); 01652 stream.next(m.collision_object_names); 01653 stream.next(m.collision_support_surface_name); 01654 } 01655 01656 ROS_DECLARE_ALLINONE_SERIALIZER; 01657 }; // struct TabletopCollisionMapProcessingResponse_ 01658 } // namespace serialization 01659 } // namespace ros 01660 01661 namespace ros 01662 { 01663 namespace service_traits 01664 { 01665 template<> 01666 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessing> { 01667 static const char* value() 01668 { 01669 return "58e439dda25eed20079051e6af1b5eaa"; 01670 } 01671 01672 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); } 01673 }; 01674 01675 template<> 01676 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessing> { 01677 static const char* value() 01678 { 01679 return "tabletop_collision_map_processing/TabletopCollisionMapProcessing"; 01680 } 01681 01682 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); } 01683 }; 01684 01685 template<class ContainerAllocator> 01686 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > { 01687 static const char* value() 01688 { 01689 return "58e439dda25eed20079051e6af1b5eaa"; 01690 } 01691 01692 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 01693 }; 01694 01695 template<class ContainerAllocator> 01696 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > { 01697 static const char* value() 01698 { 01699 return "tabletop_collision_map_processing/TabletopCollisionMapProcessing"; 01700 } 01701 01702 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 01703 }; 01704 01705 template<class ContainerAllocator> 01706 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > { 01707 static const char* value() 01708 { 01709 return "58e439dda25eed20079051e6af1b5eaa"; 01710 } 01711 01712 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 01713 }; 01714 01715 template<class ContainerAllocator> 01716 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > { 01717 static const char* value() 01718 { 01719 return "tabletop_collision_map_processing/TabletopCollisionMapProcessing"; 01720 } 01721 01722 static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 01723 }; 01724 01725 } // namespace service_traits 01726 } // namespace ros 01727 01728 #endif // TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H 01729