$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/ReactiveLiftGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspableObject.h" 00018 #include "object_manipulation_msgs/GripperTranslation.h" 00019 #include "trajectory_msgs/JointTrajectory.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct ReactiveLiftGoal_ { 00025 typedef ReactiveLiftGoal_<ContainerAllocator> Type; 00026 00027 ReactiveLiftGoal_() 00028 : arm_name() 00029 , target() 00030 , lift() 00031 , trajectory() 00032 , collision_support_surface_name() 00033 { 00034 } 00035 00036 ReactiveLiftGoal_(const ContainerAllocator& _alloc) 00037 : arm_name(_alloc) 00038 , target(_alloc) 00039 , lift(_alloc) 00040 , trajectory(_alloc) 00041 , collision_support_surface_name(_alloc) 00042 { 00043 } 00044 00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type; 00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name; 00047 00048 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type; 00049 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target; 00050 00051 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type; 00052 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift; 00053 00054 typedef ::trajectory_msgs::JointTrajectory_<ContainerAllocator> _trajectory_type; 00055 ::trajectory_msgs::JointTrajectory_<ContainerAllocator> trajectory; 00056 00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type; 00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name; 00059 00060 00061 private: 00062 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftGoal"; } 00063 public: 00064 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00065 00066 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00067 00068 private: 00069 static const char* __s_getMD5Sum_() { return "ccf1b7602acb55923fcdaeb7ef4ae5e8"; } 00070 public: 00071 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00072 00073 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00074 00075 private: 00076 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00077 \n\ 00078 # the name of the arm being used\n\ 00079 string arm_name\n\ 00080 \n\ 00081 # the object to be grasped\n\ 00082 GraspableObject target\n\ 00083 \n\ 00084 # How the object should be lifted \n\ 00085 GripperTranslation lift\n\ 00086 \n\ 00087 # the joint trajectory to use for the approach (if available)\n\ 00088 # this trajectory is expected to start at the current pose of the gripper\n\ 00089 # and end at the desired grasp pose\n\ 00090 trajectory_msgs/JointTrajectory trajectory\n\ 00091 \n\ 00092 # the name of the support surface in the collision environment, if any\n\ 00093 string collision_support_surface_name\n\ 00094 \n\ 00095 \n\ 00096 ================================================================================\n\ 00097 MSG: object_manipulation_msgs/GraspableObject\n\ 00098 # an object that the object_manipulator can work on\n\ 00099 \n\ 00100 # a graspable object can be represented in multiple ways. This message\n\ 00101 # can contain all of them. Which one is actually used is up to the receiver\n\ 00102 # of this message. When adding new representations, one must be careful that\n\ 00103 # they have reasonable lightweight defaults indicating that that particular\n\ 00104 # representation is not available.\n\ 00105 \n\ 00106 # the tf frame to be used as a reference frame when combining information from\n\ 00107 # the different representations below\n\ 00108 string reference_frame_id\n\ 00109 \n\ 00110 # potential recognition results from a database of models\n\ 00111 # all poses are relative to the object reference pose\n\ 00112 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00113 \n\ 00114 # the point cloud itself\n\ 00115 sensor_msgs/PointCloud cluster\n\ 00116 \n\ 00117 # a region of a PointCloud2 of interest\n\ 00118 object_manipulation_msgs/SceneRegion region\n\ 00119 \n\ 00120 # the name that this object has in the collision environment\n\ 00121 string collision_name\n\ 00122 ================================================================================\n\ 00123 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00124 # Informs that a specific model from the Model Database has been \n\ 00125 # identified at a certain location\n\ 00126 \n\ 00127 # the database id of the model\n\ 00128 int32 model_id\n\ 00129 \n\ 00130 # the pose that it can be found in\n\ 00131 geometry_msgs/PoseStamped pose\n\ 00132 \n\ 00133 # a measure of the confidence level in this detection result\n\ 00134 float32 confidence\n\ 00135 \n\ 00136 # the name of the object detector that generated this detection result\n\ 00137 string detector_name\n\ 00138 \n\ 00139 ================================================================================\n\ 00140 MSG: geometry_msgs/PoseStamped\n\ 00141 # A Pose with reference coordinate frame and timestamp\n\ 00142 Header header\n\ 00143 Pose pose\n\ 00144 \n\ 00145 ================================================================================\n\ 00146 MSG: std_msgs/Header\n\ 00147 # Standard metadata for higher-level stamped data types.\n\ 00148 # This is generally used to communicate timestamped data \n\ 00149 # in a particular coordinate frame.\n\ 00150 # \n\ 00151 # sequence ID: consecutively increasing ID \n\ 00152 uint32 seq\n\ 00153 #Two-integer timestamp that is expressed as:\n\ 00154 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00155 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00156 # time-handling sugar is provided by the client library\n\ 00157 time stamp\n\ 00158 #Frame this data is associated with\n\ 00159 # 0: no frame\n\ 00160 # 1: global frame\n\ 00161 string frame_id\n\ 00162 \n\ 00163 ================================================================================\n\ 00164 MSG: geometry_msgs/Pose\n\ 00165 # A representation of pose in free space, composed of postion and orientation. \n\ 00166 Point position\n\ 00167 Quaternion orientation\n\ 00168 \n\ 00169 ================================================================================\n\ 00170 MSG: geometry_msgs/Point\n\ 00171 # This contains the position of a point in free space\n\ 00172 float64 x\n\ 00173 float64 y\n\ 00174 float64 z\n\ 00175 \n\ 00176 ================================================================================\n\ 00177 MSG: geometry_msgs/Quaternion\n\ 00178 # This represents an orientation in free space in quaternion form.\n\ 00179 \n\ 00180 float64 x\n\ 00181 float64 y\n\ 00182 float64 z\n\ 00183 float64 w\n\ 00184 \n\ 00185 ================================================================================\n\ 00186 MSG: sensor_msgs/PointCloud\n\ 00187 # This message holds a collection of 3d points, plus optional additional\n\ 00188 # information about each point.\n\ 00189 \n\ 00190 # Time of sensor data acquisition, coordinate frame ID.\n\ 00191 Header header\n\ 00192 \n\ 00193 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00194 # in the frame given in the header.\n\ 00195 geometry_msgs/Point32[] points\n\ 00196 \n\ 00197 # Each channel should have the same number of elements as points array,\n\ 00198 # and the data in each channel should correspond 1:1 with each point.\n\ 00199 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00200 ChannelFloat32[] channels\n\ 00201 \n\ 00202 ================================================================================\n\ 00203 MSG: geometry_msgs/Point32\n\ 00204 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00205 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00206 # \n\ 00207 # This recommendation is to promote interoperability. \n\ 00208 #\n\ 00209 # This message is designed to take up less space when sending\n\ 00210 # lots of points at once, as in the case of a PointCloud. \n\ 00211 \n\ 00212 float32 x\n\ 00213 float32 y\n\ 00214 float32 z\n\ 00215 ================================================================================\n\ 00216 MSG: sensor_msgs/ChannelFloat32\n\ 00217 # This message is used by the PointCloud message to hold optional data\n\ 00218 # associated with each point in the cloud. The length of the values\n\ 00219 # array should be the same as the length of the points array in the\n\ 00220 # PointCloud, and each value should be associated with the corresponding\n\ 00221 # point.\n\ 00222 \n\ 00223 # Channel names in existing practice include:\n\ 00224 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00225 # This is opposite to usual conventions but remains for\n\ 00226 # historical reasons. The newer PointCloud2 message has no\n\ 00227 # such problem.\n\ 00228 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00229 # (R,G,B) values packed into the least significant 24 bits,\n\ 00230 # in order.\n\ 00231 # \"intensity\" - laser or pixel intensity.\n\ 00232 # \"distance\"\n\ 00233 \n\ 00234 # The channel name should give semantics of the channel (e.g.\n\ 00235 # \"intensity\" instead of \"value\").\n\ 00236 string name\n\ 00237 \n\ 00238 # The values array should be 1-1 with the elements of the associated\n\ 00239 # PointCloud.\n\ 00240 float32[] values\n\ 00241 \n\ 00242 ================================================================================\n\ 00243 MSG: object_manipulation_msgs/SceneRegion\n\ 00244 # Point cloud\n\ 00245 sensor_msgs/PointCloud2 cloud\n\ 00246 \n\ 00247 # Indices for the region of interest\n\ 00248 int32[] mask\n\ 00249 \n\ 00250 # One of the corresponding 2D images, if applicable\n\ 00251 sensor_msgs/Image image\n\ 00252 \n\ 00253 # The disparity image, if applicable\n\ 00254 sensor_msgs/Image disparity_image\n\ 00255 \n\ 00256 # Camera info for the camera that took the image\n\ 00257 sensor_msgs/CameraInfo cam_info\n\ 00258 \n\ 00259 # a 3D region of interest for grasp planning\n\ 00260 geometry_msgs/PoseStamped roi_box_pose\n\ 00261 geometry_msgs/Vector3 roi_box_dims\n\ 00262 \n\ 00263 ================================================================================\n\ 00264 MSG: sensor_msgs/PointCloud2\n\ 00265 # This message holds a collection of N-dimensional points, which may\n\ 00266 # contain additional information such as normals, intensity, etc. The\n\ 00267 # point data is stored as a binary blob, its layout described by the\n\ 00268 # contents of the \"fields\" array.\n\ 00269 \n\ 00270 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00271 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00272 # camera depth sensors such as stereo or time-of-flight.\n\ 00273 \n\ 00274 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00275 # points).\n\ 00276 Header header\n\ 00277 \n\ 00278 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00279 # 1 and width is the length of the point cloud.\n\ 00280 uint32 height\n\ 00281 uint32 width\n\ 00282 \n\ 00283 # Describes the channels and their layout in the binary data blob.\n\ 00284 PointField[] fields\n\ 00285 \n\ 00286 bool is_bigendian # Is this data bigendian?\n\ 00287 uint32 point_step # Length of a point in bytes\n\ 00288 uint32 row_step # Length of a row in bytes\n\ 00289 uint8[] data # Actual point data, size is (row_step*height)\n\ 00290 \n\ 00291 bool is_dense # True if there are no invalid points\n\ 00292 \n\ 00293 ================================================================================\n\ 00294 MSG: sensor_msgs/PointField\n\ 00295 # This message holds the description of one point entry in the\n\ 00296 # PointCloud2 message format.\n\ 00297 uint8 INT8 = 1\n\ 00298 uint8 UINT8 = 2\n\ 00299 uint8 INT16 = 3\n\ 00300 uint8 UINT16 = 4\n\ 00301 uint8 INT32 = 5\n\ 00302 uint8 UINT32 = 6\n\ 00303 uint8 FLOAT32 = 7\n\ 00304 uint8 FLOAT64 = 8\n\ 00305 \n\ 00306 string name # Name of field\n\ 00307 uint32 offset # Offset from start of point struct\n\ 00308 uint8 datatype # Datatype enumeration, see above\n\ 00309 uint32 count # How many elements in the field\n\ 00310 \n\ 00311 ================================================================================\n\ 00312 MSG: sensor_msgs/Image\n\ 00313 # This message contains an uncompressed image\n\ 00314 # (0, 0) is at top-left corner of image\n\ 00315 #\n\ 00316 \n\ 00317 Header header # Header timestamp should be acquisition time of image\n\ 00318 # Header frame_id should be optical frame of camera\n\ 00319 # origin of frame should be optical center of cameara\n\ 00320 # +x should point to the right in the image\n\ 00321 # +y should point down in the image\n\ 00322 # +z should point into to plane of the image\n\ 00323 # If the frame_id here and the frame_id of the CameraInfo\n\ 00324 # message associated with the image conflict\n\ 00325 # the behavior is undefined\n\ 00326 \n\ 00327 uint32 height # image height, that is, number of rows\n\ 00328 uint32 width # image width, that is, number of columns\n\ 00329 \n\ 00330 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00331 # If you want to standardize a new string format, join\n\ 00332 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00333 \n\ 00334 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00335 # taken from the list of strings in src/image_encodings.cpp\n\ 00336 \n\ 00337 uint8 is_bigendian # is this data bigendian?\n\ 00338 uint32 step # Full row length in bytes\n\ 00339 uint8[] data # actual matrix data, size is (step * rows)\n\ 00340 \n\ 00341 ================================================================================\n\ 00342 MSG: sensor_msgs/CameraInfo\n\ 00343 # This message defines meta information for a camera. It should be in a\n\ 00344 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00345 # image topics named:\n\ 00346 #\n\ 00347 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00348 # image - monochrome, distorted\n\ 00349 # image_color - color, distorted\n\ 00350 # image_rect - monochrome, rectified\n\ 00351 # image_rect_color - color, rectified\n\ 00352 #\n\ 00353 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00354 # for producing the four processed image topics from image_raw and\n\ 00355 # camera_info. The meaning of the camera parameters are described in\n\ 00356 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00357 #\n\ 00358 # The image_geometry package provides a user-friendly interface to\n\ 00359 # common operations using this meta information. If you want to, e.g.,\n\ 00360 # project a 3d point into image coordinates, we strongly recommend\n\ 00361 # using image_geometry.\n\ 00362 #\n\ 00363 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00364 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00365 # indicates an uncalibrated camera.\n\ 00366 \n\ 00367 #######################################################################\n\ 00368 # Image acquisition info #\n\ 00369 #######################################################################\n\ 00370 \n\ 00371 # Time of image acquisition, camera coordinate frame ID\n\ 00372 Header header # Header timestamp should be acquisition time of image\n\ 00373 # Header frame_id should be optical frame of camera\n\ 00374 # origin of frame should be optical center of camera\n\ 00375 # +x should point to the right in the image\n\ 00376 # +y should point down in the image\n\ 00377 # +z should point into the plane of the image\n\ 00378 \n\ 00379 \n\ 00380 #######################################################################\n\ 00381 # Calibration Parameters #\n\ 00382 #######################################################################\n\ 00383 # These are fixed during camera calibration. Their values will be the #\n\ 00384 # same in all messages until the camera is recalibrated. Note that #\n\ 00385 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00386 # #\n\ 00387 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00388 # to: #\n\ 00389 # 1. An undistorted image (requires D and K) #\n\ 00390 # 2. A rectified image (requires D, K, R) #\n\ 00391 # The projection matrix P projects 3D points into the rectified image.#\n\ 00392 #######################################################################\n\ 00393 \n\ 00394 # The image dimensions with which the camera was calibrated. Normally\n\ 00395 # this will be the full camera resolution in pixels.\n\ 00396 uint32 height\n\ 00397 uint32 width\n\ 00398 \n\ 00399 # The distortion model used. Supported models are listed in\n\ 00400 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00401 # simple model of radial and tangential distortion - is sufficent.\n\ 00402 string distortion_model\n\ 00403 \n\ 00404 # The distortion parameters, size depending on the distortion model.\n\ 00405 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00406 float64[] D\n\ 00407 \n\ 00408 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00409 # [fx 0 cx]\n\ 00410 # K = [ 0 fy cy]\n\ 00411 # [ 0 0 1]\n\ 00412 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00413 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00414 # (cx, cy).\n\ 00415 float64[9] K # 3x3 row-major matrix\n\ 00416 \n\ 00417 # Rectification matrix (stereo cameras only)\n\ 00418 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00419 # stereo image plane so that epipolar lines in both stereo images are\n\ 00420 # parallel.\n\ 00421 float64[9] R # 3x3 row-major matrix\n\ 00422 \n\ 00423 # Projection/camera matrix\n\ 00424 # [fx' 0 cx' Tx]\n\ 00425 # P = [ 0 fy' cy' Ty]\n\ 00426 # [ 0 0 1 0]\n\ 00427 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00428 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00429 # is the normal camera intrinsic matrix for the rectified image.\n\ 00430 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00431 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00432 # (cx', cy') - these may differ from the values in K.\n\ 00433 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00434 # also have R = the identity and P[1:3,1:3] = K.\n\ 00435 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00436 # position of the optical center of the second camera in the first\n\ 00437 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00438 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00439 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00440 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00441 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00442 # the rectified image is given by:\n\ 00443 # [u v w]' = P * [X Y Z 1]'\n\ 00444 # x = u / w\n\ 00445 # y = v / w\n\ 00446 # This holds for both images of a stereo pair.\n\ 00447 float64[12] P # 3x4 row-major matrix\n\ 00448 \n\ 00449 \n\ 00450 #######################################################################\n\ 00451 # Operational Parameters #\n\ 00452 #######################################################################\n\ 00453 # These define the image region actually captured by the camera #\n\ 00454 # driver. Although they affect the geometry of the output image, they #\n\ 00455 # may be changed freely without recalibrating the camera. #\n\ 00456 #######################################################################\n\ 00457 \n\ 00458 # Binning refers here to any camera setting which combines rectangular\n\ 00459 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00460 # resolution of the output image to\n\ 00461 # (width / binning_x) x (height / binning_y).\n\ 00462 # The default values binning_x = binning_y = 0 is considered the same\n\ 00463 # as binning_x = binning_y = 1 (no subsampling).\n\ 00464 uint32 binning_x\n\ 00465 uint32 binning_y\n\ 00466 \n\ 00467 # Region of interest (subwindow of full camera resolution), given in\n\ 00468 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00469 # always denotes the same window of pixels on the camera sensor,\n\ 00470 # regardless of binning settings.\n\ 00471 # The default setting of roi (all values 0) is considered the same as\n\ 00472 # full resolution (roi.width = width, roi.height = height).\n\ 00473 RegionOfInterest roi\n\ 00474 \n\ 00475 ================================================================================\n\ 00476 MSG: sensor_msgs/RegionOfInterest\n\ 00477 # This message is used to specify a region of interest within an image.\n\ 00478 #\n\ 00479 # When used to specify the ROI setting of the camera when the image was\n\ 00480 # taken, the height and width fields should either match the height and\n\ 00481 # width fields for the associated image; or height = width = 0\n\ 00482 # indicates that the full resolution image was captured.\n\ 00483 \n\ 00484 uint32 x_offset # Leftmost pixel of the ROI\n\ 00485 # (0 if the ROI includes the left edge of the image)\n\ 00486 uint32 y_offset # Topmost pixel of the ROI\n\ 00487 # (0 if the ROI includes the top edge of the image)\n\ 00488 uint32 height # Height of ROI\n\ 00489 uint32 width # Width of ROI\n\ 00490 \n\ 00491 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00492 # ROI in this message. Typically this should be False if the full image\n\ 00493 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00494 # used).\n\ 00495 bool do_rectify\n\ 00496 \n\ 00497 ================================================================================\n\ 00498 MSG: geometry_msgs/Vector3\n\ 00499 # This represents a vector in free space. \n\ 00500 \n\ 00501 float64 x\n\ 00502 float64 y\n\ 00503 float64 z\n\ 00504 ================================================================================\n\ 00505 MSG: object_manipulation_msgs/GripperTranslation\n\ 00506 # defines a translation for the gripper, used in pickup or place tasks\n\ 00507 # for example for lifting an object off a table or approaching the table for placing\n\ 00508 \n\ 00509 # the direction of the translation\n\ 00510 geometry_msgs/Vector3Stamped direction\n\ 00511 \n\ 00512 # the desired translation distance\n\ 00513 float32 desired_distance\n\ 00514 \n\ 00515 # the min distance that must be considered feasible before the\n\ 00516 # grasp is even attempted\n\ 00517 float32 min_distance\n\ 00518 ================================================================================\n\ 00519 MSG: geometry_msgs/Vector3Stamped\n\ 00520 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00521 Header header\n\ 00522 Vector3 vector\n\ 00523 \n\ 00524 ================================================================================\n\ 00525 MSG: trajectory_msgs/JointTrajectory\n\ 00526 Header header\n\ 00527 string[] joint_names\n\ 00528 JointTrajectoryPoint[] points\n\ 00529 ================================================================================\n\ 00530 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 00531 float64[] positions\n\ 00532 float64[] velocities\n\ 00533 float64[] accelerations\n\ 00534 duration time_from_start\n\ 00535 "; } 00536 public: 00537 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00538 00539 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00540 00541 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00542 { 00543 ros::serialization::OStream stream(write_ptr, 1000000000); 00544 ros::serialization::serialize(stream, arm_name); 00545 ros::serialization::serialize(stream, target); 00546 ros::serialization::serialize(stream, lift); 00547 ros::serialization::serialize(stream, trajectory); 00548 ros::serialization::serialize(stream, collision_support_surface_name); 00549 return stream.getData(); 00550 } 00551 00552 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00553 { 00554 ros::serialization::IStream stream(read_ptr, 1000000000); 00555 ros::serialization::deserialize(stream, arm_name); 00556 ros::serialization::deserialize(stream, target); 00557 ros::serialization::deserialize(stream, lift); 00558 ros::serialization::deserialize(stream, trajectory); 00559 ros::serialization::deserialize(stream, collision_support_surface_name); 00560 return stream.getData(); 00561 } 00562 00563 ROS_DEPRECATED virtual uint32_t serializationLength() const 00564 { 00565 uint32_t size = 0; 00566 size += ros::serialization::serializationLength(arm_name); 00567 size += ros::serialization::serializationLength(target); 00568 size += ros::serialization::serializationLength(lift); 00569 size += ros::serialization::serializationLength(trajectory); 00570 size += ros::serialization::serializationLength(collision_support_surface_name); 00571 return size; 00572 } 00573 00574 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > Ptr; 00575 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> const> ConstPtr; 00576 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00577 }; // struct ReactiveLiftGoal 00578 typedef ::object_manipulation_msgs::ReactiveLiftGoal_<std::allocator<void> > ReactiveLiftGoal; 00579 00580 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal> ReactiveLiftGoalPtr; 00581 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal const> ReactiveLiftGoalConstPtr; 00582 00583 00584 template<typename ContainerAllocator> 00585 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v) 00586 { 00587 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, "", v); 00588 return s;} 00589 00590 } // namespace object_manipulation_msgs 00591 00592 namespace ros 00593 { 00594 namespace message_traits 00595 { 00596 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > : public TrueType {}; 00597 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> const> : public TrueType {}; 00598 template<class ContainerAllocator> 00599 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > { 00600 static const char* value() 00601 { 00602 return "ccf1b7602acb55923fcdaeb7ef4ae5e8"; 00603 } 00604 00605 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); } 00606 static const uint64_t static_value1 = 0xccf1b7602acb5592ULL; 00607 static const uint64_t static_value2 = 0x3fcdaeb7ef4ae5e8ULL; 00608 }; 00609 00610 template<class ContainerAllocator> 00611 struct DataType< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > { 00612 static const char* value() 00613 { 00614 return "object_manipulation_msgs/ReactiveLiftGoal"; 00615 } 00616 00617 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); } 00618 }; 00619 00620 template<class ContainerAllocator> 00621 struct Definition< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > { 00622 static const char* value() 00623 { 00624 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00625 \n\ 00626 # the name of the arm being used\n\ 00627 string arm_name\n\ 00628 \n\ 00629 # the object to be grasped\n\ 00630 GraspableObject target\n\ 00631 \n\ 00632 # How the object should be lifted \n\ 00633 GripperTranslation lift\n\ 00634 \n\ 00635 # the joint trajectory to use for the approach (if available)\n\ 00636 # this trajectory is expected to start at the current pose of the gripper\n\ 00637 # and end at the desired grasp pose\n\ 00638 trajectory_msgs/JointTrajectory trajectory\n\ 00639 \n\ 00640 # the name of the support surface in the collision environment, if any\n\ 00641 string collision_support_surface_name\n\ 00642 \n\ 00643 \n\ 00644 ================================================================================\n\ 00645 MSG: object_manipulation_msgs/GraspableObject\n\ 00646 # an object that the object_manipulator can work on\n\ 00647 \n\ 00648 # a graspable object can be represented in multiple ways. This message\n\ 00649 # can contain all of them. Which one is actually used is up to the receiver\n\ 00650 # of this message. When adding new representations, one must be careful that\n\ 00651 # they have reasonable lightweight defaults indicating that that particular\n\ 00652 # representation is not available.\n\ 00653 \n\ 00654 # the tf frame to be used as a reference frame when combining information from\n\ 00655 # the different representations below\n\ 00656 string reference_frame_id\n\ 00657 \n\ 00658 # potential recognition results from a database of models\n\ 00659 # all poses are relative to the object reference pose\n\ 00660 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00661 \n\ 00662 # the point cloud itself\n\ 00663 sensor_msgs/PointCloud cluster\n\ 00664 \n\ 00665 # a region of a PointCloud2 of interest\n\ 00666 object_manipulation_msgs/SceneRegion region\n\ 00667 \n\ 00668 # the name that this object has in the collision environment\n\ 00669 string collision_name\n\ 00670 ================================================================================\n\ 00671 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00672 # Informs that a specific model from the Model Database has been \n\ 00673 # identified at a certain location\n\ 00674 \n\ 00675 # the database id of the model\n\ 00676 int32 model_id\n\ 00677 \n\ 00678 # the pose that it can be found in\n\ 00679 geometry_msgs/PoseStamped pose\n\ 00680 \n\ 00681 # a measure of the confidence level in this detection result\n\ 00682 float32 confidence\n\ 00683 \n\ 00684 # the name of the object detector that generated this detection result\n\ 00685 string detector_name\n\ 00686 \n\ 00687 ================================================================================\n\ 00688 MSG: geometry_msgs/PoseStamped\n\ 00689 # A Pose with reference coordinate frame and timestamp\n\ 00690 Header header\n\ 00691 Pose pose\n\ 00692 \n\ 00693 ================================================================================\n\ 00694 MSG: std_msgs/Header\n\ 00695 # Standard metadata for higher-level stamped data types.\n\ 00696 # This is generally used to communicate timestamped data \n\ 00697 # in a particular coordinate frame.\n\ 00698 # \n\ 00699 # sequence ID: consecutively increasing ID \n\ 00700 uint32 seq\n\ 00701 #Two-integer timestamp that is expressed as:\n\ 00702 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00703 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00704 # time-handling sugar is provided by the client library\n\ 00705 time stamp\n\ 00706 #Frame this data is associated with\n\ 00707 # 0: no frame\n\ 00708 # 1: global frame\n\ 00709 string frame_id\n\ 00710 \n\ 00711 ================================================================================\n\ 00712 MSG: geometry_msgs/Pose\n\ 00713 # A representation of pose in free space, composed of postion and orientation. \n\ 00714 Point position\n\ 00715 Quaternion orientation\n\ 00716 \n\ 00717 ================================================================================\n\ 00718 MSG: geometry_msgs/Point\n\ 00719 # This contains the position of a point in free space\n\ 00720 float64 x\n\ 00721 float64 y\n\ 00722 float64 z\n\ 00723 \n\ 00724 ================================================================================\n\ 00725 MSG: geometry_msgs/Quaternion\n\ 00726 # This represents an orientation in free space in quaternion form.\n\ 00727 \n\ 00728 float64 x\n\ 00729 float64 y\n\ 00730 float64 z\n\ 00731 float64 w\n\ 00732 \n\ 00733 ================================================================================\n\ 00734 MSG: sensor_msgs/PointCloud\n\ 00735 # This message holds a collection of 3d points, plus optional additional\n\ 00736 # information about each point.\n\ 00737 \n\ 00738 # Time of sensor data acquisition, coordinate frame ID.\n\ 00739 Header header\n\ 00740 \n\ 00741 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00742 # in the frame given in the header.\n\ 00743 geometry_msgs/Point32[] points\n\ 00744 \n\ 00745 # Each channel should have the same number of elements as points array,\n\ 00746 # and the data in each channel should correspond 1:1 with each point.\n\ 00747 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00748 ChannelFloat32[] channels\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: geometry_msgs/Point32\n\ 00752 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00753 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00754 # \n\ 00755 # This recommendation is to promote interoperability. \n\ 00756 #\n\ 00757 # This message is designed to take up less space when sending\n\ 00758 # lots of points at once, as in the case of a PointCloud. \n\ 00759 \n\ 00760 float32 x\n\ 00761 float32 y\n\ 00762 float32 z\n\ 00763 ================================================================================\n\ 00764 MSG: sensor_msgs/ChannelFloat32\n\ 00765 # This message is used by the PointCloud message to hold optional data\n\ 00766 # associated with each point in the cloud. The length of the values\n\ 00767 # array should be the same as the length of the points array in the\n\ 00768 # PointCloud, and each value should be associated with the corresponding\n\ 00769 # point.\n\ 00770 \n\ 00771 # Channel names in existing practice include:\n\ 00772 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00773 # This is opposite to usual conventions but remains for\n\ 00774 # historical reasons. The newer PointCloud2 message has no\n\ 00775 # such problem.\n\ 00776 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00777 # (R,G,B) values packed into the least significant 24 bits,\n\ 00778 # in order.\n\ 00779 # \"intensity\" - laser or pixel intensity.\n\ 00780 # \"distance\"\n\ 00781 \n\ 00782 # The channel name should give semantics of the channel (e.g.\n\ 00783 # \"intensity\" instead of \"value\").\n\ 00784 string name\n\ 00785 \n\ 00786 # The values array should be 1-1 with the elements of the associated\n\ 00787 # PointCloud.\n\ 00788 float32[] values\n\ 00789 \n\ 00790 ================================================================================\n\ 00791 MSG: object_manipulation_msgs/SceneRegion\n\ 00792 # Point cloud\n\ 00793 sensor_msgs/PointCloud2 cloud\n\ 00794 \n\ 00795 # Indices for the region of interest\n\ 00796 int32[] mask\n\ 00797 \n\ 00798 # One of the corresponding 2D images, if applicable\n\ 00799 sensor_msgs/Image image\n\ 00800 \n\ 00801 # The disparity image, if applicable\n\ 00802 sensor_msgs/Image disparity_image\n\ 00803 \n\ 00804 # Camera info for the camera that took the image\n\ 00805 sensor_msgs/CameraInfo cam_info\n\ 00806 \n\ 00807 # a 3D region of interest for grasp planning\n\ 00808 geometry_msgs/PoseStamped roi_box_pose\n\ 00809 geometry_msgs/Vector3 roi_box_dims\n\ 00810 \n\ 00811 ================================================================================\n\ 00812 MSG: sensor_msgs/PointCloud2\n\ 00813 # This message holds a collection of N-dimensional points, which may\n\ 00814 # contain additional information such as normals, intensity, etc. The\n\ 00815 # point data is stored as a binary blob, its layout described by the\n\ 00816 # contents of the \"fields\" array.\n\ 00817 \n\ 00818 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00819 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00820 # camera depth sensors such as stereo or time-of-flight.\n\ 00821 \n\ 00822 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00823 # points).\n\ 00824 Header header\n\ 00825 \n\ 00826 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00827 # 1 and width is the length of the point cloud.\n\ 00828 uint32 height\n\ 00829 uint32 width\n\ 00830 \n\ 00831 # Describes the channels and their layout in the binary data blob.\n\ 00832 PointField[] fields\n\ 00833 \n\ 00834 bool is_bigendian # Is this data bigendian?\n\ 00835 uint32 point_step # Length of a point in bytes\n\ 00836 uint32 row_step # Length of a row in bytes\n\ 00837 uint8[] data # Actual point data, size is (row_step*height)\n\ 00838 \n\ 00839 bool is_dense # True if there are no invalid points\n\ 00840 \n\ 00841 ================================================================================\n\ 00842 MSG: sensor_msgs/PointField\n\ 00843 # This message holds the description of one point entry in the\n\ 00844 # PointCloud2 message format.\n\ 00845 uint8 INT8 = 1\n\ 00846 uint8 UINT8 = 2\n\ 00847 uint8 INT16 = 3\n\ 00848 uint8 UINT16 = 4\n\ 00849 uint8 INT32 = 5\n\ 00850 uint8 UINT32 = 6\n\ 00851 uint8 FLOAT32 = 7\n\ 00852 uint8 FLOAT64 = 8\n\ 00853 \n\ 00854 string name # Name of field\n\ 00855 uint32 offset # Offset from start of point struct\n\ 00856 uint8 datatype # Datatype enumeration, see above\n\ 00857 uint32 count # How many elements in the field\n\ 00858 \n\ 00859 ================================================================================\n\ 00860 MSG: sensor_msgs/Image\n\ 00861 # This message contains an uncompressed image\n\ 00862 # (0, 0) is at top-left corner of image\n\ 00863 #\n\ 00864 \n\ 00865 Header header # Header timestamp should be acquisition time of image\n\ 00866 # Header frame_id should be optical frame of camera\n\ 00867 # origin of frame should be optical center of cameara\n\ 00868 # +x should point to the right in the image\n\ 00869 # +y should point down in the image\n\ 00870 # +z should point into to plane of the image\n\ 00871 # If the frame_id here and the frame_id of the CameraInfo\n\ 00872 # message associated with the image conflict\n\ 00873 # the behavior is undefined\n\ 00874 \n\ 00875 uint32 height # image height, that is, number of rows\n\ 00876 uint32 width # image width, that is, number of columns\n\ 00877 \n\ 00878 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00879 # If you want to standardize a new string format, join\n\ 00880 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00881 \n\ 00882 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00883 # taken from the list of strings in src/image_encodings.cpp\n\ 00884 \n\ 00885 uint8 is_bigendian # is this data bigendian?\n\ 00886 uint32 step # Full row length in bytes\n\ 00887 uint8[] data # actual matrix data, size is (step * rows)\n\ 00888 \n\ 00889 ================================================================================\n\ 00890 MSG: sensor_msgs/CameraInfo\n\ 00891 # This message defines meta information for a camera. It should be in a\n\ 00892 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00893 # image topics named:\n\ 00894 #\n\ 00895 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00896 # image - monochrome, distorted\n\ 00897 # image_color - color, distorted\n\ 00898 # image_rect - monochrome, rectified\n\ 00899 # image_rect_color - color, rectified\n\ 00900 #\n\ 00901 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00902 # for producing the four processed image topics from image_raw and\n\ 00903 # camera_info. The meaning of the camera parameters are described in\n\ 00904 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00905 #\n\ 00906 # The image_geometry package provides a user-friendly interface to\n\ 00907 # common operations using this meta information. If you want to, e.g.,\n\ 00908 # project a 3d point into image coordinates, we strongly recommend\n\ 00909 # using image_geometry.\n\ 00910 #\n\ 00911 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00912 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00913 # indicates an uncalibrated camera.\n\ 00914 \n\ 00915 #######################################################################\n\ 00916 # Image acquisition info #\n\ 00917 #######################################################################\n\ 00918 \n\ 00919 # Time of image acquisition, camera coordinate frame ID\n\ 00920 Header header # Header timestamp should be acquisition time of image\n\ 00921 # Header frame_id should be optical frame of camera\n\ 00922 # origin of frame should be optical center of camera\n\ 00923 # +x should point to the right in the image\n\ 00924 # +y should point down in the image\n\ 00925 # +z should point into the plane of the image\n\ 00926 \n\ 00927 \n\ 00928 #######################################################################\n\ 00929 # Calibration Parameters #\n\ 00930 #######################################################################\n\ 00931 # These are fixed during camera calibration. Their values will be the #\n\ 00932 # same in all messages until the camera is recalibrated. Note that #\n\ 00933 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00934 # #\n\ 00935 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00936 # to: #\n\ 00937 # 1. An undistorted image (requires D and K) #\n\ 00938 # 2. A rectified image (requires D, K, R) #\n\ 00939 # The projection matrix P projects 3D points into the rectified image.#\n\ 00940 #######################################################################\n\ 00941 \n\ 00942 # The image dimensions with which the camera was calibrated. Normally\n\ 00943 # this will be the full camera resolution in pixels.\n\ 00944 uint32 height\n\ 00945 uint32 width\n\ 00946 \n\ 00947 # The distortion model used. Supported models are listed in\n\ 00948 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00949 # simple model of radial and tangential distortion - is sufficent.\n\ 00950 string distortion_model\n\ 00951 \n\ 00952 # The distortion parameters, size depending on the distortion model.\n\ 00953 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00954 float64[] D\n\ 00955 \n\ 00956 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00957 # [fx 0 cx]\n\ 00958 # K = [ 0 fy cy]\n\ 00959 # [ 0 0 1]\n\ 00960 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00961 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00962 # (cx, cy).\n\ 00963 float64[9] K # 3x3 row-major matrix\n\ 00964 \n\ 00965 # Rectification matrix (stereo cameras only)\n\ 00966 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00967 # stereo image plane so that epipolar lines in both stereo images are\n\ 00968 # parallel.\n\ 00969 float64[9] R # 3x3 row-major matrix\n\ 00970 \n\ 00971 # Projection/camera matrix\n\ 00972 # [fx' 0 cx' Tx]\n\ 00973 # P = [ 0 fy' cy' Ty]\n\ 00974 # [ 0 0 1 0]\n\ 00975 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00976 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00977 # is the normal camera intrinsic matrix for the rectified image.\n\ 00978 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00979 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00980 # (cx', cy') - these may differ from the values in K.\n\ 00981 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00982 # also have R = the identity and P[1:3,1:3] = K.\n\ 00983 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00984 # position of the optical center of the second camera in the first\n\ 00985 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00986 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00987 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00988 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00989 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00990 # the rectified image is given by:\n\ 00991 # [u v w]' = P * [X Y Z 1]'\n\ 00992 # x = u / w\n\ 00993 # y = v / w\n\ 00994 # This holds for both images of a stereo pair.\n\ 00995 float64[12] P # 3x4 row-major matrix\n\ 00996 \n\ 00997 \n\ 00998 #######################################################################\n\ 00999 # Operational Parameters #\n\ 01000 #######################################################################\n\ 01001 # These define the image region actually captured by the camera #\n\ 01002 # driver. Although they affect the geometry of the output image, they #\n\ 01003 # may be changed freely without recalibrating the camera. #\n\ 01004 #######################################################################\n\ 01005 \n\ 01006 # Binning refers here to any camera setting which combines rectangular\n\ 01007 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01008 # resolution of the output image to\n\ 01009 # (width / binning_x) x (height / binning_y).\n\ 01010 # The default values binning_x = binning_y = 0 is considered the same\n\ 01011 # as binning_x = binning_y = 1 (no subsampling).\n\ 01012 uint32 binning_x\n\ 01013 uint32 binning_y\n\ 01014 \n\ 01015 # Region of interest (subwindow of full camera resolution), given in\n\ 01016 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01017 # always denotes the same window of pixels on the camera sensor,\n\ 01018 # regardless of binning settings.\n\ 01019 # The default setting of roi (all values 0) is considered the same as\n\ 01020 # full resolution (roi.width = width, roi.height = height).\n\ 01021 RegionOfInterest roi\n\ 01022 \n\ 01023 ================================================================================\n\ 01024 MSG: sensor_msgs/RegionOfInterest\n\ 01025 # This message is used to specify a region of interest within an image.\n\ 01026 #\n\ 01027 # When used to specify the ROI setting of the camera when the image was\n\ 01028 # taken, the height and width fields should either match the height and\n\ 01029 # width fields for the associated image; or height = width = 0\n\ 01030 # indicates that the full resolution image was captured.\n\ 01031 \n\ 01032 uint32 x_offset # Leftmost pixel of the ROI\n\ 01033 # (0 if the ROI includes the left edge of the image)\n\ 01034 uint32 y_offset # Topmost pixel of the ROI\n\ 01035 # (0 if the ROI includes the top edge of the image)\n\ 01036 uint32 height # Height of ROI\n\ 01037 uint32 width # Width of ROI\n\ 01038 \n\ 01039 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01040 # ROI in this message. Typically this should be False if the full image\n\ 01041 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01042 # used).\n\ 01043 bool do_rectify\n\ 01044 \n\ 01045 ================================================================================\n\ 01046 MSG: geometry_msgs/Vector3\n\ 01047 # This represents a vector in free space. \n\ 01048 \n\ 01049 float64 x\n\ 01050 float64 y\n\ 01051 float64 z\n\ 01052 ================================================================================\n\ 01053 MSG: object_manipulation_msgs/GripperTranslation\n\ 01054 # defines a translation for the gripper, used in pickup or place tasks\n\ 01055 # for example for lifting an object off a table or approaching the table for placing\n\ 01056 \n\ 01057 # the direction of the translation\n\ 01058 geometry_msgs/Vector3Stamped direction\n\ 01059 \n\ 01060 # the desired translation distance\n\ 01061 float32 desired_distance\n\ 01062 \n\ 01063 # the min distance that must be considered feasible before the\n\ 01064 # grasp is even attempted\n\ 01065 float32 min_distance\n\ 01066 ================================================================================\n\ 01067 MSG: geometry_msgs/Vector3Stamped\n\ 01068 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01069 Header header\n\ 01070 Vector3 vector\n\ 01071 \n\ 01072 ================================================================================\n\ 01073 MSG: trajectory_msgs/JointTrajectory\n\ 01074 Header header\n\ 01075 string[] joint_names\n\ 01076 JointTrajectoryPoint[] points\n\ 01077 ================================================================================\n\ 01078 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 01079 float64[] positions\n\ 01080 float64[] velocities\n\ 01081 float64[] accelerations\n\ 01082 duration time_from_start\n\ 01083 "; 01084 } 01085 01086 static const char* value(const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); } 01087 }; 01088 01089 } // namespace message_traits 01090 } // namespace ros 01091 01092 namespace ros 01093 { 01094 namespace serialization 01095 { 01096 01097 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > 01098 { 01099 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01100 { 01101 stream.next(m.arm_name); 01102 stream.next(m.target); 01103 stream.next(m.lift); 01104 stream.next(m.trajectory); 01105 stream.next(m.collision_support_surface_name); 01106 } 01107 01108 ROS_DECLARE_ALLINONE_SERIALIZER; 01109 }; // struct ReactiveLiftGoal_ 01110 } // namespace serialization 01111 } // namespace ros 01112 01113 namespace ros 01114 { 01115 namespace message_operations 01116 { 01117 01118 template<class ContainerAllocator> 01119 struct Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > 01120 { 01121 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v) 01122 { 01123 s << indent << "arm_name: "; 01124 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name); 01125 s << indent << "target: "; 01126 s << std::endl; 01127 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target); 01128 s << indent << "lift: "; 01129 s << std::endl; 01130 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift); 01131 s << indent << "trajectory: "; 01132 s << std::endl; 01133 Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + " ", v.trajectory); 01134 s << indent << "collision_support_surface_name: "; 01135 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name); 01136 } 01137 }; 01138 01139 01140 } // namespace message_operations 01141 } // namespace ros 01142 01143 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H 01144