$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/srv/GraspStatus.srv */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H 00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "object_manipulation_msgs/Grasp.h" 00020 00021 00022 00023 namespace object_manipulation_msgs 00024 { 00025 template <class ContainerAllocator> 00026 struct GraspStatusRequest_ { 00027 typedef GraspStatusRequest_<ContainerAllocator> Type; 00028 00029 GraspStatusRequest_() 00030 : grasp() 00031 { 00032 } 00033 00034 GraspStatusRequest_(const ContainerAllocator& _alloc) 00035 : grasp(_alloc) 00036 { 00037 } 00038 00039 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type; 00040 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp; 00041 00042 00043 private: 00044 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspStatusRequest"; } 00045 public: 00046 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00047 00048 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00049 00050 private: 00051 static const char* __s_getMD5Sum_() { return "46f92cc36c8200695a0cfa52ac75eb0a"; } 00052 public: 00053 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00054 00055 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00056 00057 private: 00058 static const char* __s_getServerMD5Sum_() { return "222f0090ca965a030dae07c0a77db48b"; } 00059 public: 00060 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00061 00062 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00063 00064 private: 00065 static const char* __s_getMessageDefinition_() { return "\n\ 00066 \n\ 00067 \n\ 00068 \n\ 00069 \n\ 00070 \n\ 00071 \n\ 00072 \n\ 00073 object_manipulation_msgs/Grasp grasp\n\ 00074 \n\ 00075 \n\ 00076 ================================================================================\n\ 00077 MSG: object_manipulation_msgs/Grasp\n\ 00078 \n\ 00079 # The internal posture of the hand for the pre-grasp\n\ 00080 # only positions are used\n\ 00081 sensor_msgs/JointState pre_grasp_posture\n\ 00082 \n\ 00083 # The internal posture of the hand for the grasp\n\ 00084 # positions and efforts are used\n\ 00085 sensor_msgs/JointState grasp_posture\n\ 00086 \n\ 00087 # The position of the end-effector for the grasp relative to a reference frame \n\ 00088 # (that is always specified elsewhere, not in this message)\n\ 00089 geometry_msgs/Pose grasp_pose\n\ 00090 \n\ 00091 # The estimated probability of success for this grasp\n\ 00092 float64 success_probability\n\ 00093 \n\ 00094 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00095 bool cluster_rep\n\ 00096 \n\ 00097 # how far the pre-grasp should ideally be away from the grasp\n\ 00098 float32 desired_approach_distance\n\ 00099 \n\ 00100 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00101 # for the grasp not to be rejected\n\ 00102 float32 min_approach_distance\n\ 00103 \n\ 00104 # an optional list of obstacles that we have semantic information about\n\ 00105 # and that we expect might move in the course of executing this grasp\n\ 00106 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00107 # execution, grasp executors will not check for collisions against these objects\n\ 00108 GraspableObject[] moved_obstacles\n\ 00109 \n\ 00110 ================================================================================\n\ 00111 MSG: sensor_msgs/JointState\n\ 00112 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00113 #\n\ 00114 # The state of each joint (revolute or prismatic) is defined by:\n\ 00115 # * the position of the joint (rad or m),\n\ 00116 # * the velocity of the joint (rad/s or m/s) and \n\ 00117 # * the effort that is applied in the joint (Nm or N).\n\ 00118 #\n\ 00119 # Each joint is uniquely identified by its name\n\ 00120 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00121 # in one message have to be recorded at the same time.\n\ 00122 #\n\ 00123 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00124 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00125 # effort associated with them, you can leave the effort array empty. \n\ 00126 #\n\ 00127 # All arrays in this message should have the same size, or be empty.\n\ 00128 # This is the only way to uniquely associate the joint name with the correct\n\ 00129 # states.\n\ 00130 \n\ 00131 \n\ 00132 Header header\n\ 00133 \n\ 00134 string[] name\n\ 00135 float64[] position\n\ 00136 float64[] velocity\n\ 00137 float64[] effort\n\ 00138 \n\ 00139 ================================================================================\n\ 00140 MSG: std_msgs/Header\n\ 00141 # Standard metadata for higher-level stamped data types.\n\ 00142 # This is generally used to communicate timestamped data \n\ 00143 # in a particular coordinate frame.\n\ 00144 # \n\ 00145 # sequence ID: consecutively increasing ID \n\ 00146 uint32 seq\n\ 00147 #Two-integer timestamp that is expressed as:\n\ 00148 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00149 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00150 # time-handling sugar is provided by the client library\n\ 00151 time stamp\n\ 00152 #Frame this data is associated with\n\ 00153 # 0: no frame\n\ 00154 # 1: global frame\n\ 00155 string frame_id\n\ 00156 \n\ 00157 ================================================================================\n\ 00158 MSG: geometry_msgs/Pose\n\ 00159 # A representation of pose in free space, composed of postion and orientation. \n\ 00160 Point position\n\ 00161 Quaternion orientation\n\ 00162 \n\ 00163 ================================================================================\n\ 00164 MSG: geometry_msgs/Point\n\ 00165 # This contains the position of a point in free space\n\ 00166 float64 x\n\ 00167 float64 y\n\ 00168 float64 z\n\ 00169 \n\ 00170 ================================================================================\n\ 00171 MSG: geometry_msgs/Quaternion\n\ 00172 # This represents an orientation in free space in quaternion form.\n\ 00173 \n\ 00174 float64 x\n\ 00175 float64 y\n\ 00176 float64 z\n\ 00177 float64 w\n\ 00178 \n\ 00179 ================================================================================\n\ 00180 MSG: object_manipulation_msgs/GraspableObject\n\ 00181 # an object that the object_manipulator can work on\n\ 00182 \n\ 00183 # a graspable object can be represented in multiple ways. This message\n\ 00184 # can contain all of them. Which one is actually used is up to the receiver\n\ 00185 # of this message. When adding new representations, one must be careful that\n\ 00186 # they have reasonable lightweight defaults indicating that that particular\n\ 00187 # representation is not available.\n\ 00188 \n\ 00189 # the tf frame to be used as a reference frame when combining information from\n\ 00190 # the different representations below\n\ 00191 string reference_frame_id\n\ 00192 \n\ 00193 # potential recognition results from a database of models\n\ 00194 # all poses are relative to the object reference pose\n\ 00195 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00196 \n\ 00197 # the point cloud itself\n\ 00198 sensor_msgs/PointCloud cluster\n\ 00199 \n\ 00200 # a region of a PointCloud2 of interest\n\ 00201 object_manipulation_msgs/SceneRegion region\n\ 00202 \n\ 00203 # the name that this object has in the collision environment\n\ 00204 string collision_name\n\ 00205 ================================================================================\n\ 00206 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00207 # Informs that a specific model from the Model Database has been \n\ 00208 # identified at a certain location\n\ 00209 \n\ 00210 # the database id of the model\n\ 00211 int32 model_id\n\ 00212 \n\ 00213 # the pose that it can be found in\n\ 00214 geometry_msgs/PoseStamped pose\n\ 00215 \n\ 00216 # a measure of the confidence level in this detection result\n\ 00217 float32 confidence\n\ 00218 \n\ 00219 # the name of the object detector that generated this detection result\n\ 00220 string detector_name\n\ 00221 \n\ 00222 ================================================================================\n\ 00223 MSG: geometry_msgs/PoseStamped\n\ 00224 # A Pose with reference coordinate frame and timestamp\n\ 00225 Header header\n\ 00226 Pose pose\n\ 00227 \n\ 00228 ================================================================================\n\ 00229 MSG: sensor_msgs/PointCloud\n\ 00230 # This message holds a collection of 3d points, plus optional additional\n\ 00231 # information about each point.\n\ 00232 \n\ 00233 # Time of sensor data acquisition, coordinate frame ID.\n\ 00234 Header header\n\ 00235 \n\ 00236 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00237 # in the frame given in the header.\n\ 00238 geometry_msgs/Point32[] points\n\ 00239 \n\ 00240 # Each channel should have the same number of elements as points array,\n\ 00241 # and the data in each channel should correspond 1:1 with each point.\n\ 00242 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00243 ChannelFloat32[] channels\n\ 00244 \n\ 00245 ================================================================================\n\ 00246 MSG: geometry_msgs/Point32\n\ 00247 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00248 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00249 # \n\ 00250 # This recommendation is to promote interoperability. \n\ 00251 #\n\ 00252 # This message is designed to take up less space when sending\n\ 00253 # lots of points at once, as in the case of a PointCloud. \n\ 00254 \n\ 00255 float32 x\n\ 00256 float32 y\n\ 00257 float32 z\n\ 00258 ================================================================================\n\ 00259 MSG: sensor_msgs/ChannelFloat32\n\ 00260 # This message is used by the PointCloud message to hold optional data\n\ 00261 # associated with each point in the cloud. The length of the values\n\ 00262 # array should be the same as the length of the points array in the\n\ 00263 # PointCloud, and each value should be associated with the corresponding\n\ 00264 # point.\n\ 00265 \n\ 00266 # Channel names in existing practice include:\n\ 00267 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00268 # This is opposite to usual conventions but remains for\n\ 00269 # historical reasons. The newer PointCloud2 message has no\n\ 00270 # such problem.\n\ 00271 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00272 # (R,G,B) values packed into the least significant 24 bits,\n\ 00273 # in order.\n\ 00274 # \"intensity\" - laser or pixel intensity.\n\ 00275 # \"distance\"\n\ 00276 \n\ 00277 # The channel name should give semantics of the channel (e.g.\n\ 00278 # \"intensity\" instead of \"value\").\n\ 00279 string name\n\ 00280 \n\ 00281 # The values array should be 1-1 with the elements of the associated\n\ 00282 # PointCloud.\n\ 00283 float32[] values\n\ 00284 \n\ 00285 ================================================================================\n\ 00286 MSG: object_manipulation_msgs/SceneRegion\n\ 00287 # Point cloud\n\ 00288 sensor_msgs/PointCloud2 cloud\n\ 00289 \n\ 00290 # Indices for the region of interest\n\ 00291 int32[] mask\n\ 00292 \n\ 00293 # One of the corresponding 2D images, if applicable\n\ 00294 sensor_msgs/Image image\n\ 00295 \n\ 00296 # The disparity image, if applicable\n\ 00297 sensor_msgs/Image disparity_image\n\ 00298 \n\ 00299 # Camera info for the camera that took the image\n\ 00300 sensor_msgs/CameraInfo cam_info\n\ 00301 \n\ 00302 # a 3D region of interest for grasp planning\n\ 00303 geometry_msgs/PoseStamped roi_box_pose\n\ 00304 geometry_msgs/Vector3 roi_box_dims\n\ 00305 \n\ 00306 ================================================================================\n\ 00307 MSG: sensor_msgs/PointCloud2\n\ 00308 # This message holds a collection of N-dimensional points, which may\n\ 00309 # contain additional information such as normals, intensity, etc. The\n\ 00310 # point data is stored as a binary blob, its layout described by the\n\ 00311 # contents of the \"fields\" array.\n\ 00312 \n\ 00313 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00314 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00315 # camera depth sensors such as stereo or time-of-flight.\n\ 00316 \n\ 00317 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00318 # points).\n\ 00319 Header header\n\ 00320 \n\ 00321 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00322 # 1 and width is the length of the point cloud.\n\ 00323 uint32 height\n\ 00324 uint32 width\n\ 00325 \n\ 00326 # Describes the channels and their layout in the binary data blob.\n\ 00327 PointField[] fields\n\ 00328 \n\ 00329 bool is_bigendian # Is this data bigendian?\n\ 00330 uint32 point_step # Length of a point in bytes\n\ 00331 uint32 row_step # Length of a row in bytes\n\ 00332 uint8[] data # Actual point data, size is (row_step*height)\n\ 00333 \n\ 00334 bool is_dense # True if there are no invalid points\n\ 00335 \n\ 00336 ================================================================================\n\ 00337 MSG: sensor_msgs/PointField\n\ 00338 # This message holds the description of one point entry in the\n\ 00339 # PointCloud2 message format.\n\ 00340 uint8 INT8 = 1\n\ 00341 uint8 UINT8 = 2\n\ 00342 uint8 INT16 = 3\n\ 00343 uint8 UINT16 = 4\n\ 00344 uint8 INT32 = 5\n\ 00345 uint8 UINT32 = 6\n\ 00346 uint8 FLOAT32 = 7\n\ 00347 uint8 FLOAT64 = 8\n\ 00348 \n\ 00349 string name # Name of field\n\ 00350 uint32 offset # Offset from start of point struct\n\ 00351 uint8 datatype # Datatype enumeration, see above\n\ 00352 uint32 count # How many elements in the field\n\ 00353 \n\ 00354 ================================================================================\n\ 00355 MSG: sensor_msgs/Image\n\ 00356 # This message contains an uncompressed image\n\ 00357 # (0, 0) is at top-left corner of image\n\ 00358 #\n\ 00359 \n\ 00360 Header header # Header timestamp should be acquisition time of image\n\ 00361 # Header frame_id should be optical frame of camera\n\ 00362 # origin of frame should be optical center of cameara\n\ 00363 # +x should point to the right in the image\n\ 00364 # +y should point down in the image\n\ 00365 # +z should point into to plane of the image\n\ 00366 # If the frame_id here and the frame_id of the CameraInfo\n\ 00367 # message associated with the image conflict\n\ 00368 # the behavior is undefined\n\ 00369 \n\ 00370 uint32 height # image height, that is, number of rows\n\ 00371 uint32 width # image width, that is, number of columns\n\ 00372 \n\ 00373 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00374 # If you want to standardize a new string format, join\n\ 00375 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00376 \n\ 00377 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00378 # taken from the list of strings in src/image_encodings.cpp\n\ 00379 \n\ 00380 uint8 is_bigendian # is this data bigendian?\n\ 00381 uint32 step # Full row length in bytes\n\ 00382 uint8[] data # actual matrix data, size is (step * rows)\n\ 00383 \n\ 00384 ================================================================================\n\ 00385 MSG: sensor_msgs/CameraInfo\n\ 00386 # This message defines meta information for a camera. It should be in a\n\ 00387 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00388 # image topics named:\n\ 00389 #\n\ 00390 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00391 # image - monochrome, distorted\n\ 00392 # image_color - color, distorted\n\ 00393 # image_rect - monochrome, rectified\n\ 00394 # image_rect_color - color, rectified\n\ 00395 #\n\ 00396 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00397 # for producing the four processed image topics from image_raw and\n\ 00398 # camera_info. The meaning of the camera parameters are described in\n\ 00399 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00400 #\n\ 00401 # The image_geometry package provides a user-friendly interface to\n\ 00402 # common operations using this meta information. If you want to, e.g.,\n\ 00403 # project a 3d point into image coordinates, we strongly recommend\n\ 00404 # using image_geometry.\n\ 00405 #\n\ 00406 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00407 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00408 # indicates an uncalibrated camera.\n\ 00409 \n\ 00410 #######################################################################\n\ 00411 # Image acquisition info #\n\ 00412 #######################################################################\n\ 00413 \n\ 00414 # Time of image acquisition, camera coordinate frame ID\n\ 00415 Header header # Header timestamp should be acquisition time of image\n\ 00416 # Header frame_id should be optical frame of camera\n\ 00417 # origin of frame should be optical center of camera\n\ 00418 # +x should point to the right in the image\n\ 00419 # +y should point down in the image\n\ 00420 # +z should point into the plane of the image\n\ 00421 \n\ 00422 \n\ 00423 #######################################################################\n\ 00424 # Calibration Parameters #\n\ 00425 #######################################################################\n\ 00426 # These are fixed during camera calibration. Their values will be the #\n\ 00427 # same in all messages until the camera is recalibrated. Note that #\n\ 00428 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00429 # #\n\ 00430 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00431 # to: #\n\ 00432 # 1. An undistorted image (requires D and K) #\n\ 00433 # 2. A rectified image (requires D, K, R) #\n\ 00434 # The projection matrix P projects 3D points into the rectified image.#\n\ 00435 #######################################################################\n\ 00436 \n\ 00437 # The image dimensions with which the camera was calibrated. Normally\n\ 00438 # this will be the full camera resolution in pixels.\n\ 00439 uint32 height\n\ 00440 uint32 width\n\ 00441 \n\ 00442 # The distortion model used. Supported models are listed in\n\ 00443 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00444 # simple model of radial and tangential distortion - is sufficent.\n\ 00445 string distortion_model\n\ 00446 \n\ 00447 # The distortion parameters, size depending on the distortion model.\n\ 00448 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00449 float64[] D\n\ 00450 \n\ 00451 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00452 # [fx 0 cx]\n\ 00453 # K = [ 0 fy cy]\n\ 00454 # [ 0 0 1]\n\ 00455 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00456 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00457 # (cx, cy).\n\ 00458 float64[9] K # 3x3 row-major matrix\n\ 00459 \n\ 00460 # Rectification matrix (stereo cameras only)\n\ 00461 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00462 # stereo image plane so that epipolar lines in both stereo images are\n\ 00463 # parallel.\n\ 00464 float64[9] R # 3x3 row-major matrix\n\ 00465 \n\ 00466 # Projection/camera matrix\n\ 00467 # [fx' 0 cx' Tx]\n\ 00468 # P = [ 0 fy' cy' Ty]\n\ 00469 # [ 0 0 1 0]\n\ 00470 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00471 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00472 # is the normal camera intrinsic matrix for the rectified image.\n\ 00473 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00474 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00475 # (cx', cy') - these may differ from the values in K.\n\ 00476 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00477 # also have R = the identity and P[1:3,1:3] = K.\n\ 00478 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00479 # position of the optical center of the second camera in the first\n\ 00480 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00481 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00482 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00483 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00484 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00485 # the rectified image is given by:\n\ 00486 # [u v w]' = P * [X Y Z 1]'\n\ 00487 # x = u / w\n\ 00488 # y = v / w\n\ 00489 # This holds for both images of a stereo pair.\n\ 00490 float64[12] P # 3x4 row-major matrix\n\ 00491 \n\ 00492 \n\ 00493 #######################################################################\n\ 00494 # Operational Parameters #\n\ 00495 #######################################################################\n\ 00496 # These define the image region actually captured by the camera #\n\ 00497 # driver. Although they affect the geometry of the output image, they #\n\ 00498 # may be changed freely without recalibrating the camera. #\n\ 00499 #######################################################################\n\ 00500 \n\ 00501 # Binning refers here to any camera setting which combines rectangular\n\ 00502 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00503 # resolution of the output image to\n\ 00504 # (width / binning_x) x (height / binning_y).\n\ 00505 # The default values binning_x = binning_y = 0 is considered the same\n\ 00506 # as binning_x = binning_y = 1 (no subsampling).\n\ 00507 uint32 binning_x\n\ 00508 uint32 binning_y\n\ 00509 \n\ 00510 # Region of interest (subwindow of full camera resolution), given in\n\ 00511 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00512 # always denotes the same window of pixels on the camera sensor,\n\ 00513 # regardless of binning settings.\n\ 00514 # The default setting of roi (all values 0) is considered the same as\n\ 00515 # full resolution (roi.width = width, roi.height = height).\n\ 00516 RegionOfInterest roi\n\ 00517 \n\ 00518 ================================================================================\n\ 00519 MSG: sensor_msgs/RegionOfInterest\n\ 00520 # This message is used to specify a region of interest within an image.\n\ 00521 #\n\ 00522 # When used to specify the ROI setting of the camera when the image was\n\ 00523 # taken, the height and width fields should either match the height and\n\ 00524 # width fields for the associated image; or height = width = 0\n\ 00525 # indicates that the full resolution image was captured.\n\ 00526 \n\ 00527 uint32 x_offset # Leftmost pixel of the ROI\n\ 00528 # (0 if the ROI includes the left edge of the image)\n\ 00529 uint32 y_offset # Topmost pixel of the ROI\n\ 00530 # (0 if the ROI includes the top edge of the image)\n\ 00531 uint32 height # Height of ROI\n\ 00532 uint32 width # Width of ROI\n\ 00533 \n\ 00534 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00535 # ROI in this message. Typically this should be False if the full image\n\ 00536 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00537 # used).\n\ 00538 bool do_rectify\n\ 00539 \n\ 00540 ================================================================================\n\ 00541 MSG: geometry_msgs/Vector3\n\ 00542 # This represents a vector in free space. \n\ 00543 \n\ 00544 float64 x\n\ 00545 float64 y\n\ 00546 float64 z\n\ 00547 "; } 00548 public: 00549 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00550 00551 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00552 00553 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00554 { 00555 ros::serialization::OStream stream(write_ptr, 1000000000); 00556 ros::serialization::serialize(stream, grasp); 00557 return stream.getData(); 00558 } 00559 00560 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00561 { 00562 ros::serialization::IStream stream(read_ptr, 1000000000); 00563 ros::serialization::deserialize(stream, grasp); 00564 return stream.getData(); 00565 } 00566 00567 ROS_DEPRECATED virtual uint32_t serializationLength() const 00568 { 00569 uint32_t size = 0; 00570 size += ros::serialization::serializationLength(grasp); 00571 return size; 00572 } 00573 00574 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > Ptr; 00575 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> const> ConstPtr; 00576 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00577 }; // struct GraspStatusRequest 00578 typedef ::object_manipulation_msgs::GraspStatusRequest_<std::allocator<void> > GraspStatusRequest; 00579 00580 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest> GraspStatusRequestPtr; 00581 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest const> GraspStatusRequestConstPtr; 00582 00583 00584 template <class ContainerAllocator> 00585 struct GraspStatusResponse_ { 00586 typedef GraspStatusResponse_<ContainerAllocator> Type; 00587 00588 GraspStatusResponse_() 00589 : is_hand_occupied(false) 00590 { 00591 } 00592 00593 GraspStatusResponse_(const ContainerAllocator& _alloc) 00594 : is_hand_occupied(false) 00595 { 00596 } 00597 00598 typedef uint8_t _is_hand_occupied_type; 00599 uint8_t is_hand_occupied; 00600 00601 00602 private: 00603 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspStatusResponse"; } 00604 public: 00605 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00606 00607 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00608 00609 private: 00610 static const char* __s_getMD5Sum_() { return "d58cf7836f039d8e002583af45001d6d"; } 00611 public: 00612 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00613 00614 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00615 00616 private: 00617 static const char* __s_getServerMD5Sum_() { return "222f0090ca965a030dae07c0a77db48b"; } 00618 public: 00619 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00620 00621 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00622 00623 private: 00624 static const char* __s_getMessageDefinition_() { return "\n\ 00625 bool is_hand_occupied\n\ 00626 \n\ 00627 \n\ 00628 "; } 00629 public: 00630 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00631 00632 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00633 00634 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00635 { 00636 ros::serialization::OStream stream(write_ptr, 1000000000); 00637 ros::serialization::serialize(stream, is_hand_occupied); 00638 return stream.getData(); 00639 } 00640 00641 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00642 { 00643 ros::serialization::IStream stream(read_ptr, 1000000000); 00644 ros::serialization::deserialize(stream, is_hand_occupied); 00645 return stream.getData(); 00646 } 00647 00648 ROS_DEPRECATED virtual uint32_t serializationLength() const 00649 { 00650 uint32_t size = 0; 00651 size += ros::serialization::serializationLength(is_hand_occupied); 00652 return size; 00653 } 00654 00655 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > Ptr; 00656 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> const> ConstPtr; 00657 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00658 }; // struct GraspStatusResponse 00659 typedef ::object_manipulation_msgs::GraspStatusResponse_<std::allocator<void> > GraspStatusResponse; 00660 00661 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse> GraspStatusResponsePtr; 00662 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse const> GraspStatusResponseConstPtr; 00663 00664 struct GraspStatus 00665 { 00666 00667 typedef GraspStatusRequest Request; 00668 typedef GraspStatusResponse Response; 00669 Request request; 00670 Response response; 00671 00672 typedef Request RequestType; 00673 typedef Response ResponseType; 00674 }; // struct GraspStatus 00675 } // namespace object_manipulation_msgs 00676 00677 namespace ros 00678 { 00679 namespace message_traits 00680 { 00681 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > : public TrueType {}; 00682 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> const> : public TrueType {}; 00683 template<class ContainerAllocator> 00684 struct MD5Sum< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > { 00685 static const char* value() 00686 { 00687 return "46f92cc36c8200695a0cfa52ac75eb0a"; 00688 } 00689 00690 static const char* value(const ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 00691 static const uint64_t static_value1 = 0x46f92cc36c820069ULL; 00692 static const uint64_t static_value2 = 0x5a0cfa52ac75eb0aULL; 00693 }; 00694 00695 template<class ContainerAllocator> 00696 struct DataType< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > { 00697 static const char* value() 00698 { 00699 return "object_manipulation_msgs/GraspStatusRequest"; 00700 } 00701 00702 static const char* value(const ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 00703 }; 00704 00705 template<class ContainerAllocator> 00706 struct Definition< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > { 00707 static const char* value() 00708 { 00709 return "\n\ 00710 \n\ 00711 \n\ 00712 \n\ 00713 \n\ 00714 \n\ 00715 \n\ 00716 \n\ 00717 object_manipulation_msgs/Grasp grasp\n\ 00718 \n\ 00719 \n\ 00720 ================================================================================\n\ 00721 MSG: object_manipulation_msgs/Grasp\n\ 00722 \n\ 00723 # The internal posture of the hand for the pre-grasp\n\ 00724 # only positions are used\n\ 00725 sensor_msgs/JointState pre_grasp_posture\n\ 00726 \n\ 00727 # The internal posture of the hand for the grasp\n\ 00728 # positions and efforts are used\n\ 00729 sensor_msgs/JointState grasp_posture\n\ 00730 \n\ 00731 # The position of the end-effector for the grasp relative to a reference frame \n\ 00732 # (that is always specified elsewhere, not in this message)\n\ 00733 geometry_msgs/Pose grasp_pose\n\ 00734 \n\ 00735 # The estimated probability of success for this grasp\n\ 00736 float64 success_probability\n\ 00737 \n\ 00738 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00739 bool cluster_rep\n\ 00740 \n\ 00741 # how far the pre-grasp should ideally be away from the grasp\n\ 00742 float32 desired_approach_distance\n\ 00743 \n\ 00744 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00745 # for the grasp not to be rejected\n\ 00746 float32 min_approach_distance\n\ 00747 \n\ 00748 # an optional list of obstacles that we have semantic information about\n\ 00749 # and that we expect might move in the course of executing this grasp\n\ 00750 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00751 # execution, grasp executors will not check for collisions against these objects\n\ 00752 GraspableObject[] moved_obstacles\n\ 00753 \n\ 00754 ================================================================================\n\ 00755 MSG: sensor_msgs/JointState\n\ 00756 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00757 #\n\ 00758 # The state of each joint (revolute or prismatic) is defined by:\n\ 00759 # * the position of the joint (rad or m),\n\ 00760 # * the velocity of the joint (rad/s or m/s) and \n\ 00761 # * the effort that is applied in the joint (Nm or N).\n\ 00762 #\n\ 00763 # Each joint is uniquely identified by its name\n\ 00764 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00765 # in one message have to be recorded at the same time.\n\ 00766 #\n\ 00767 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00768 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00769 # effort associated with them, you can leave the effort array empty. \n\ 00770 #\n\ 00771 # All arrays in this message should have the same size, or be empty.\n\ 00772 # This is the only way to uniquely associate the joint name with the correct\n\ 00773 # states.\n\ 00774 \n\ 00775 \n\ 00776 Header header\n\ 00777 \n\ 00778 string[] name\n\ 00779 float64[] position\n\ 00780 float64[] velocity\n\ 00781 float64[] effort\n\ 00782 \n\ 00783 ================================================================================\n\ 00784 MSG: std_msgs/Header\n\ 00785 # Standard metadata for higher-level stamped data types.\n\ 00786 # This is generally used to communicate timestamped data \n\ 00787 # in a particular coordinate frame.\n\ 00788 # \n\ 00789 # sequence ID: consecutively increasing ID \n\ 00790 uint32 seq\n\ 00791 #Two-integer timestamp that is expressed as:\n\ 00792 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00793 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00794 # time-handling sugar is provided by the client library\n\ 00795 time stamp\n\ 00796 #Frame this data is associated with\n\ 00797 # 0: no frame\n\ 00798 # 1: global frame\n\ 00799 string frame_id\n\ 00800 \n\ 00801 ================================================================================\n\ 00802 MSG: geometry_msgs/Pose\n\ 00803 # A representation of pose in free space, composed of postion and orientation. \n\ 00804 Point position\n\ 00805 Quaternion orientation\n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: geometry_msgs/Point\n\ 00809 # This contains the position of a point in free space\n\ 00810 float64 x\n\ 00811 float64 y\n\ 00812 float64 z\n\ 00813 \n\ 00814 ================================================================================\n\ 00815 MSG: geometry_msgs/Quaternion\n\ 00816 # This represents an orientation in free space in quaternion form.\n\ 00817 \n\ 00818 float64 x\n\ 00819 float64 y\n\ 00820 float64 z\n\ 00821 float64 w\n\ 00822 \n\ 00823 ================================================================================\n\ 00824 MSG: object_manipulation_msgs/GraspableObject\n\ 00825 # an object that the object_manipulator can work on\n\ 00826 \n\ 00827 # a graspable object can be represented in multiple ways. This message\n\ 00828 # can contain all of them. Which one is actually used is up to the receiver\n\ 00829 # of this message. When adding new representations, one must be careful that\n\ 00830 # they have reasonable lightweight defaults indicating that that particular\n\ 00831 # representation is not available.\n\ 00832 \n\ 00833 # the tf frame to be used as a reference frame when combining information from\n\ 00834 # the different representations below\n\ 00835 string reference_frame_id\n\ 00836 \n\ 00837 # potential recognition results from a database of models\n\ 00838 # all poses are relative to the object reference pose\n\ 00839 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00840 \n\ 00841 # the point cloud itself\n\ 00842 sensor_msgs/PointCloud cluster\n\ 00843 \n\ 00844 # a region of a PointCloud2 of interest\n\ 00845 object_manipulation_msgs/SceneRegion region\n\ 00846 \n\ 00847 # the name that this object has in the collision environment\n\ 00848 string collision_name\n\ 00849 ================================================================================\n\ 00850 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00851 # Informs that a specific model from the Model Database has been \n\ 00852 # identified at a certain location\n\ 00853 \n\ 00854 # the database id of the model\n\ 00855 int32 model_id\n\ 00856 \n\ 00857 # the pose that it can be found in\n\ 00858 geometry_msgs/PoseStamped pose\n\ 00859 \n\ 00860 # a measure of the confidence level in this detection result\n\ 00861 float32 confidence\n\ 00862 \n\ 00863 # the name of the object detector that generated this detection result\n\ 00864 string detector_name\n\ 00865 \n\ 00866 ================================================================================\n\ 00867 MSG: geometry_msgs/PoseStamped\n\ 00868 # A Pose with reference coordinate frame and timestamp\n\ 00869 Header header\n\ 00870 Pose pose\n\ 00871 \n\ 00872 ================================================================================\n\ 00873 MSG: sensor_msgs/PointCloud\n\ 00874 # This message holds a collection of 3d points, plus optional additional\n\ 00875 # information about each point.\n\ 00876 \n\ 00877 # Time of sensor data acquisition, coordinate frame ID.\n\ 00878 Header header\n\ 00879 \n\ 00880 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00881 # in the frame given in the header.\n\ 00882 geometry_msgs/Point32[] points\n\ 00883 \n\ 00884 # Each channel should have the same number of elements as points array,\n\ 00885 # and the data in each channel should correspond 1:1 with each point.\n\ 00886 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00887 ChannelFloat32[] channels\n\ 00888 \n\ 00889 ================================================================================\n\ 00890 MSG: geometry_msgs/Point32\n\ 00891 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00892 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00893 # \n\ 00894 # This recommendation is to promote interoperability. \n\ 00895 #\n\ 00896 # This message is designed to take up less space when sending\n\ 00897 # lots of points at once, as in the case of a PointCloud. \n\ 00898 \n\ 00899 float32 x\n\ 00900 float32 y\n\ 00901 float32 z\n\ 00902 ================================================================================\n\ 00903 MSG: sensor_msgs/ChannelFloat32\n\ 00904 # This message is used by the PointCloud message to hold optional data\n\ 00905 # associated with each point in the cloud. The length of the values\n\ 00906 # array should be the same as the length of the points array in the\n\ 00907 # PointCloud, and each value should be associated with the corresponding\n\ 00908 # point.\n\ 00909 \n\ 00910 # Channel names in existing practice include:\n\ 00911 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00912 # This is opposite to usual conventions but remains for\n\ 00913 # historical reasons. The newer PointCloud2 message has no\n\ 00914 # such problem.\n\ 00915 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00916 # (R,G,B) values packed into the least significant 24 bits,\n\ 00917 # in order.\n\ 00918 # \"intensity\" - laser or pixel intensity.\n\ 00919 # \"distance\"\n\ 00920 \n\ 00921 # The channel name should give semantics of the channel (e.g.\n\ 00922 # \"intensity\" instead of \"value\").\n\ 00923 string name\n\ 00924 \n\ 00925 # The values array should be 1-1 with the elements of the associated\n\ 00926 # PointCloud.\n\ 00927 float32[] values\n\ 00928 \n\ 00929 ================================================================================\n\ 00930 MSG: object_manipulation_msgs/SceneRegion\n\ 00931 # Point cloud\n\ 00932 sensor_msgs/PointCloud2 cloud\n\ 00933 \n\ 00934 # Indices for the region of interest\n\ 00935 int32[] mask\n\ 00936 \n\ 00937 # One of the corresponding 2D images, if applicable\n\ 00938 sensor_msgs/Image image\n\ 00939 \n\ 00940 # The disparity image, if applicable\n\ 00941 sensor_msgs/Image disparity_image\n\ 00942 \n\ 00943 # Camera info for the camera that took the image\n\ 00944 sensor_msgs/CameraInfo cam_info\n\ 00945 \n\ 00946 # a 3D region of interest for grasp planning\n\ 00947 geometry_msgs/PoseStamped roi_box_pose\n\ 00948 geometry_msgs/Vector3 roi_box_dims\n\ 00949 \n\ 00950 ================================================================================\n\ 00951 MSG: sensor_msgs/PointCloud2\n\ 00952 # This message holds a collection of N-dimensional points, which may\n\ 00953 # contain additional information such as normals, intensity, etc. The\n\ 00954 # point data is stored as a binary blob, its layout described by the\n\ 00955 # contents of the \"fields\" array.\n\ 00956 \n\ 00957 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00958 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00959 # camera depth sensors such as stereo or time-of-flight.\n\ 00960 \n\ 00961 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00962 # points).\n\ 00963 Header header\n\ 00964 \n\ 00965 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00966 # 1 and width is the length of the point cloud.\n\ 00967 uint32 height\n\ 00968 uint32 width\n\ 00969 \n\ 00970 # Describes the channels and their layout in the binary data blob.\n\ 00971 PointField[] fields\n\ 00972 \n\ 00973 bool is_bigendian # Is this data bigendian?\n\ 00974 uint32 point_step # Length of a point in bytes\n\ 00975 uint32 row_step # Length of a row in bytes\n\ 00976 uint8[] data # Actual point data, size is (row_step*height)\n\ 00977 \n\ 00978 bool is_dense # True if there are no invalid points\n\ 00979 \n\ 00980 ================================================================================\n\ 00981 MSG: sensor_msgs/PointField\n\ 00982 # This message holds the description of one point entry in the\n\ 00983 # PointCloud2 message format.\n\ 00984 uint8 INT8 = 1\n\ 00985 uint8 UINT8 = 2\n\ 00986 uint8 INT16 = 3\n\ 00987 uint8 UINT16 = 4\n\ 00988 uint8 INT32 = 5\n\ 00989 uint8 UINT32 = 6\n\ 00990 uint8 FLOAT32 = 7\n\ 00991 uint8 FLOAT64 = 8\n\ 00992 \n\ 00993 string name # Name of field\n\ 00994 uint32 offset # Offset from start of point struct\n\ 00995 uint8 datatype # Datatype enumeration, see above\n\ 00996 uint32 count # How many elements in the field\n\ 00997 \n\ 00998 ================================================================================\n\ 00999 MSG: sensor_msgs/Image\n\ 01000 # This message contains an uncompressed image\n\ 01001 # (0, 0) is at top-left corner of image\n\ 01002 #\n\ 01003 \n\ 01004 Header header # Header timestamp should be acquisition time of image\n\ 01005 # Header frame_id should be optical frame of camera\n\ 01006 # origin of frame should be optical center of cameara\n\ 01007 # +x should point to the right in the image\n\ 01008 # +y should point down in the image\n\ 01009 # +z should point into to plane of the image\n\ 01010 # If the frame_id here and the frame_id of the CameraInfo\n\ 01011 # message associated with the image conflict\n\ 01012 # the behavior is undefined\n\ 01013 \n\ 01014 uint32 height # image height, that is, number of rows\n\ 01015 uint32 width # image width, that is, number of columns\n\ 01016 \n\ 01017 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01018 # If you want to standardize a new string format, join\n\ 01019 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01020 \n\ 01021 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01022 # taken from the list of strings in src/image_encodings.cpp\n\ 01023 \n\ 01024 uint8 is_bigendian # is this data bigendian?\n\ 01025 uint32 step # Full row length in bytes\n\ 01026 uint8[] data # actual matrix data, size is (step * rows)\n\ 01027 \n\ 01028 ================================================================================\n\ 01029 MSG: sensor_msgs/CameraInfo\n\ 01030 # This message defines meta information for a camera. It should be in a\n\ 01031 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01032 # image topics named:\n\ 01033 #\n\ 01034 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01035 # image - monochrome, distorted\n\ 01036 # image_color - color, distorted\n\ 01037 # image_rect - monochrome, rectified\n\ 01038 # image_rect_color - color, rectified\n\ 01039 #\n\ 01040 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01041 # for producing the four processed image topics from image_raw and\n\ 01042 # camera_info. The meaning of the camera parameters are described in\n\ 01043 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01044 #\n\ 01045 # The image_geometry package provides a user-friendly interface to\n\ 01046 # common operations using this meta information. If you want to, e.g.,\n\ 01047 # project a 3d point into image coordinates, we strongly recommend\n\ 01048 # using image_geometry.\n\ 01049 #\n\ 01050 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01051 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01052 # indicates an uncalibrated camera.\n\ 01053 \n\ 01054 #######################################################################\n\ 01055 # Image acquisition info #\n\ 01056 #######################################################################\n\ 01057 \n\ 01058 # Time of image acquisition, camera coordinate frame ID\n\ 01059 Header header # Header timestamp should be acquisition time of image\n\ 01060 # Header frame_id should be optical frame of camera\n\ 01061 # origin of frame should be optical center of camera\n\ 01062 # +x should point to the right in the image\n\ 01063 # +y should point down in the image\n\ 01064 # +z should point into the plane of the image\n\ 01065 \n\ 01066 \n\ 01067 #######################################################################\n\ 01068 # Calibration Parameters #\n\ 01069 #######################################################################\n\ 01070 # These are fixed during camera calibration. Their values will be the #\n\ 01071 # same in all messages until the camera is recalibrated. Note that #\n\ 01072 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01073 # #\n\ 01074 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01075 # to: #\n\ 01076 # 1. An undistorted image (requires D and K) #\n\ 01077 # 2. A rectified image (requires D, K, R) #\n\ 01078 # The projection matrix P projects 3D points into the rectified image.#\n\ 01079 #######################################################################\n\ 01080 \n\ 01081 # The image dimensions with which the camera was calibrated. Normally\n\ 01082 # this will be the full camera resolution in pixels.\n\ 01083 uint32 height\n\ 01084 uint32 width\n\ 01085 \n\ 01086 # The distortion model used. Supported models are listed in\n\ 01087 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01088 # simple model of radial and tangential distortion - is sufficent.\n\ 01089 string distortion_model\n\ 01090 \n\ 01091 # The distortion parameters, size depending on the distortion model.\n\ 01092 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01093 float64[] D\n\ 01094 \n\ 01095 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01096 # [fx 0 cx]\n\ 01097 # K = [ 0 fy cy]\n\ 01098 # [ 0 0 1]\n\ 01099 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01100 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01101 # (cx, cy).\n\ 01102 float64[9] K # 3x3 row-major matrix\n\ 01103 \n\ 01104 # Rectification matrix (stereo cameras only)\n\ 01105 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01106 # stereo image plane so that epipolar lines in both stereo images are\n\ 01107 # parallel.\n\ 01108 float64[9] R # 3x3 row-major matrix\n\ 01109 \n\ 01110 # Projection/camera matrix\n\ 01111 # [fx' 0 cx' Tx]\n\ 01112 # P = [ 0 fy' cy' Ty]\n\ 01113 # [ 0 0 1 0]\n\ 01114 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01115 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01116 # is the normal camera intrinsic matrix for the rectified image.\n\ 01117 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01118 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01119 # (cx', cy') - these may differ from the values in K.\n\ 01120 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01121 # also have R = the identity and P[1:3,1:3] = K.\n\ 01122 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01123 # position of the optical center of the second camera in the first\n\ 01124 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01125 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01126 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01127 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01128 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01129 # the rectified image is given by:\n\ 01130 # [u v w]' = P * [X Y Z 1]'\n\ 01131 # x = u / w\n\ 01132 # y = v / w\n\ 01133 # This holds for both images of a stereo pair.\n\ 01134 float64[12] P # 3x4 row-major matrix\n\ 01135 \n\ 01136 \n\ 01137 #######################################################################\n\ 01138 # Operational Parameters #\n\ 01139 #######################################################################\n\ 01140 # These define the image region actually captured by the camera #\n\ 01141 # driver. Although they affect the geometry of the output image, they #\n\ 01142 # may be changed freely without recalibrating the camera. #\n\ 01143 #######################################################################\n\ 01144 \n\ 01145 # Binning refers here to any camera setting which combines rectangular\n\ 01146 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01147 # resolution of the output image to\n\ 01148 # (width / binning_x) x (height / binning_y).\n\ 01149 # The default values binning_x = binning_y = 0 is considered the same\n\ 01150 # as binning_x = binning_y = 1 (no subsampling).\n\ 01151 uint32 binning_x\n\ 01152 uint32 binning_y\n\ 01153 \n\ 01154 # Region of interest (subwindow of full camera resolution), given in\n\ 01155 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01156 # always denotes the same window of pixels on the camera sensor,\n\ 01157 # regardless of binning settings.\n\ 01158 # The default setting of roi (all values 0) is considered the same as\n\ 01159 # full resolution (roi.width = width, roi.height = height).\n\ 01160 RegionOfInterest roi\n\ 01161 \n\ 01162 ================================================================================\n\ 01163 MSG: sensor_msgs/RegionOfInterest\n\ 01164 # This message is used to specify a region of interest within an image.\n\ 01165 #\n\ 01166 # When used to specify the ROI setting of the camera when the image was\n\ 01167 # taken, the height and width fields should either match the height and\n\ 01168 # width fields for the associated image; or height = width = 0\n\ 01169 # indicates that the full resolution image was captured.\n\ 01170 \n\ 01171 uint32 x_offset # Leftmost pixel of the ROI\n\ 01172 # (0 if the ROI includes the left edge of the image)\n\ 01173 uint32 y_offset # Topmost pixel of the ROI\n\ 01174 # (0 if the ROI includes the top edge of the image)\n\ 01175 uint32 height # Height of ROI\n\ 01176 uint32 width # Width of ROI\n\ 01177 \n\ 01178 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01179 # ROI in this message. Typically this should be False if the full image\n\ 01180 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01181 # used).\n\ 01182 bool do_rectify\n\ 01183 \n\ 01184 ================================================================================\n\ 01185 MSG: geometry_msgs/Vector3\n\ 01186 # This represents a vector in free space. \n\ 01187 \n\ 01188 float64 x\n\ 01189 float64 y\n\ 01190 float64 z\n\ 01191 "; 01192 } 01193 01194 static const char* value(const ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 01195 }; 01196 01197 } // namespace message_traits 01198 } // namespace ros 01199 01200 01201 namespace ros 01202 { 01203 namespace message_traits 01204 { 01205 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > : public TrueType {}; 01206 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> const> : public TrueType {}; 01207 template<class ContainerAllocator> 01208 struct MD5Sum< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > { 01209 static const char* value() 01210 { 01211 return "d58cf7836f039d8e002583af45001d6d"; 01212 } 01213 01214 static const char* value(const ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 01215 static const uint64_t static_value1 = 0xd58cf7836f039d8eULL; 01216 static const uint64_t static_value2 = 0x002583af45001d6dULL; 01217 }; 01218 01219 template<class ContainerAllocator> 01220 struct DataType< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > { 01221 static const char* value() 01222 { 01223 return "object_manipulation_msgs/GraspStatusResponse"; 01224 } 01225 01226 static const char* value(const ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 01227 }; 01228 01229 template<class ContainerAllocator> 01230 struct Definition< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > { 01231 static const char* value() 01232 { 01233 return "\n\ 01234 bool is_hand_occupied\n\ 01235 \n\ 01236 \n\ 01237 "; 01238 } 01239 01240 static const char* value(const ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 01241 }; 01242 01243 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > : public TrueType {}; 01244 } // namespace message_traits 01245 } // namespace ros 01246 01247 namespace ros 01248 { 01249 namespace serialization 01250 { 01251 01252 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > 01253 { 01254 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01255 { 01256 stream.next(m.grasp); 01257 } 01258 01259 ROS_DECLARE_ALLINONE_SERIALIZER; 01260 }; // struct GraspStatusRequest_ 01261 } // namespace serialization 01262 } // namespace ros 01263 01264 01265 namespace ros 01266 { 01267 namespace serialization 01268 { 01269 01270 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > 01271 { 01272 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01273 { 01274 stream.next(m.is_hand_occupied); 01275 } 01276 01277 ROS_DECLARE_ALLINONE_SERIALIZER; 01278 }; // struct GraspStatusResponse_ 01279 } // namespace serialization 01280 } // namespace ros 01281 01282 namespace ros 01283 { 01284 namespace service_traits 01285 { 01286 template<> 01287 struct MD5Sum<object_manipulation_msgs::GraspStatus> { 01288 static const char* value() 01289 { 01290 return "222f0090ca965a030dae07c0a77db48b"; 01291 } 01292 01293 static const char* value(const object_manipulation_msgs::GraspStatus&) { return value(); } 01294 }; 01295 01296 template<> 01297 struct DataType<object_manipulation_msgs::GraspStatus> { 01298 static const char* value() 01299 { 01300 return "object_manipulation_msgs/GraspStatus"; 01301 } 01302 01303 static const char* value(const object_manipulation_msgs::GraspStatus&) { return value(); } 01304 }; 01305 01306 template<class ContainerAllocator> 01307 struct MD5Sum<object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > { 01308 static const char* value() 01309 { 01310 return "222f0090ca965a030dae07c0a77db48b"; 01311 } 01312 01313 static const char* value(const object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 01314 }; 01315 01316 template<class ContainerAllocator> 01317 struct DataType<object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > { 01318 static const char* value() 01319 { 01320 return "object_manipulation_msgs/GraspStatus"; 01321 } 01322 01323 static const char* value(const object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); } 01324 }; 01325 01326 template<class ContainerAllocator> 01327 struct MD5Sum<object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > { 01328 static const char* value() 01329 { 01330 return "222f0090ca965a030dae07c0a77db48b"; 01331 } 01332 01333 static const char* value(const object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 01334 }; 01335 01336 template<class ContainerAllocator> 01337 struct DataType<object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > { 01338 static const char* value() 01339 { 01340 return "object_manipulation_msgs/GraspStatus"; 01341 } 01342 01343 static const char* value(const object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); } 01344 }; 01345 01346 } // namespace service_traits 01347 } // namespace ros 01348 01349 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H 01350