$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningResult.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGRESULT_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/Grasp.h" 00018 #include "object_manipulation_msgs/GraspPlanningErrorCode.h" 00019 00020 namespace object_manipulation_msgs 00021 { 00022 template <class ContainerAllocator> 00023 struct GraspPlanningResult_ { 00024 typedef GraspPlanningResult_<ContainerAllocator> Type; 00025 00026 GraspPlanningResult_() 00027 : grasps() 00028 , error_code() 00029 { 00030 } 00031 00032 GraspPlanningResult_(const ContainerAllocator& _alloc) 00033 : grasps(_alloc) 00034 , error_code(_alloc) 00035 { 00036 } 00037 00038 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_type; 00039 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps; 00040 00041 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _error_code_type; 00042 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> error_code; 00043 00044 00045 ROS_DEPRECATED uint32_t get_grasps_size() const { return (uint32_t)grasps.size(); } 00046 ROS_DEPRECATED void set_grasps_size(uint32_t size) { grasps.resize((size_t)size); } 00047 ROS_DEPRECATED void get_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->grasps; } 00048 ROS_DEPRECATED void set_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->grasps = vec; } 00049 private: 00050 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningResult"; } 00051 public: 00052 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00053 00054 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00055 00056 private: 00057 static const char* __s_getMD5Sum_() { return "998e3d06c509abfc46d7fdf96fe1c188"; } 00058 public: 00059 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00060 00061 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00062 00063 private: 00064 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00065 \n\ 00066 # the list of planned grasps\n\ 00067 Grasp[] grasps\n\ 00068 \n\ 00069 # whether an error occurred\n\ 00070 GraspPlanningErrorCode error_code\n\ 00071 \n\ 00072 \n\ 00073 ================================================================================\n\ 00074 MSG: object_manipulation_msgs/Grasp\n\ 00075 \n\ 00076 # The internal posture of the hand for the pre-grasp\n\ 00077 # only positions are used\n\ 00078 sensor_msgs/JointState pre_grasp_posture\n\ 00079 \n\ 00080 # The internal posture of the hand for the grasp\n\ 00081 # positions and efforts are used\n\ 00082 sensor_msgs/JointState grasp_posture\n\ 00083 \n\ 00084 # The position of the end-effector for the grasp relative to a reference frame \n\ 00085 # (that is always specified elsewhere, not in this message)\n\ 00086 geometry_msgs/Pose grasp_pose\n\ 00087 \n\ 00088 # The estimated probability of success for this grasp\n\ 00089 float64 success_probability\n\ 00090 \n\ 00091 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00092 bool cluster_rep\n\ 00093 \n\ 00094 # how far the pre-grasp should ideally be away from the grasp\n\ 00095 float32 desired_approach_distance\n\ 00096 \n\ 00097 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00098 # for the grasp not to be rejected\n\ 00099 float32 min_approach_distance\n\ 00100 \n\ 00101 # an optional list of obstacles that we have semantic information about\n\ 00102 # and that we expect might move in the course of executing this grasp\n\ 00103 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00104 # execution, grasp executors will not check for collisions against these objects\n\ 00105 GraspableObject[] moved_obstacles\n\ 00106 \n\ 00107 ================================================================================\n\ 00108 MSG: sensor_msgs/JointState\n\ 00109 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00110 #\n\ 00111 # The state of each joint (revolute or prismatic) is defined by:\n\ 00112 # * the position of the joint (rad or m),\n\ 00113 # * the velocity of the joint (rad/s or m/s) and \n\ 00114 # * the effort that is applied in the joint (Nm or N).\n\ 00115 #\n\ 00116 # Each joint is uniquely identified by its name\n\ 00117 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00118 # in one message have to be recorded at the same time.\n\ 00119 #\n\ 00120 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00121 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00122 # effort associated with them, you can leave the effort array empty. \n\ 00123 #\n\ 00124 # All arrays in this message should have the same size, or be empty.\n\ 00125 # This is the only way to uniquely associate the joint name with the correct\n\ 00126 # states.\n\ 00127 \n\ 00128 \n\ 00129 Header header\n\ 00130 \n\ 00131 string[] name\n\ 00132 float64[] position\n\ 00133 float64[] velocity\n\ 00134 float64[] effort\n\ 00135 \n\ 00136 ================================================================================\n\ 00137 MSG: std_msgs/Header\n\ 00138 # Standard metadata for higher-level stamped data types.\n\ 00139 # This is generally used to communicate timestamped data \n\ 00140 # in a particular coordinate frame.\n\ 00141 # \n\ 00142 # sequence ID: consecutively increasing ID \n\ 00143 uint32 seq\n\ 00144 #Two-integer timestamp that is expressed as:\n\ 00145 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00146 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00147 # time-handling sugar is provided by the client library\n\ 00148 time stamp\n\ 00149 #Frame this data is associated with\n\ 00150 # 0: no frame\n\ 00151 # 1: global frame\n\ 00152 string frame_id\n\ 00153 \n\ 00154 ================================================================================\n\ 00155 MSG: geometry_msgs/Pose\n\ 00156 # A representation of pose in free space, composed of postion and orientation. \n\ 00157 Point position\n\ 00158 Quaternion orientation\n\ 00159 \n\ 00160 ================================================================================\n\ 00161 MSG: geometry_msgs/Point\n\ 00162 # This contains the position of a point in free space\n\ 00163 float64 x\n\ 00164 float64 y\n\ 00165 float64 z\n\ 00166 \n\ 00167 ================================================================================\n\ 00168 MSG: geometry_msgs/Quaternion\n\ 00169 # This represents an orientation in free space in quaternion form.\n\ 00170 \n\ 00171 float64 x\n\ 00172 float64 y\n\ 00173 float64 z\n\ 00174 float64 w\n\ 00175 \n\ 00176 ================================================================================\n\ 00177 MSG: object_manipulation_msgs/GraspableObject\n\ 00178 # an object that the object_manipulator can work on\n\ 00179 \n\ 00180 # a graspable object can be represented in multiple ways. This message\n\ 00181 # can contain all of them. Which one is actually used is up to the receiver\n\ 00182 # of this message. When adding new representations, one must be careful that\n\ 00183 # they have reasonable lightweight defaults indicating that that particular\n\ 00184 # representation is not available.\n\ 00185 \n\ 00186 # the tf frame to be used as a reference frame when combining information from\n\ 00187 # the different representations below\n\ 00188 string reference_frame_id\n\ 00189 \n\ 00190 # potential recognition results from a database of models\n\ 00191 # all poses are relative to the object reference pose\n\ 00192 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00193 \n\ 00194 # the point cloud itself\n\ 00195 sensor_msgs/PointCloud cluster\n\ 00196 \n\ 00197 # a region of a PointCloud2 of interest\n\ 00198 object_manipulation_msgs/SceneRegion region\n\ 00199 \n\ 00200 # the name that this object has in the collision environment\n\ 00201 string collision_name\n\ 00202 ================================================================================\n\ 00203 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00204 # Informs that a specific model from the Model Database has been \n\ 00205 # identified at a certain location\n\ 00206 \n\ 00207 # the database id of the model\n\ 00208 int32 model_id\n\ 00209 \n\ 00210 # the pose that it can be found in\n\ 00211 geometry_msgs/PoseStamped pose\n\ 00212 \n\ 00213 # a measure of the confidence level in this detection result\n\ 00214 float32 confidence\n\ 00215 \n\ 00216 # the name of the object detector that generated this detection result\n\ 00217 string detector_name\n\ 00218 \n\ 00219 ================================================================================\n\ 00220 MSG: geometry_msgs/PoseStamped\n\ 00221 # A Pose with reference coordinate frame and timestamp\n\ 00222 Header header\n\ 00223 Pose pose\n\ 00224 \n\ 00225 ================================================================================\n\ 00226 MSG: sensor_msgs/PointCloud\n\ 00227 # This message holds a collection of 3d points, plus optional additional\n\ 00228 # information about each point.\n\ 00229 \n\ 00230 # Time of sensor data acquisition, coordinate frame ID.\n\ 00231 Header header\n\ 00232 \n\ 00233 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00234 # in the frame given in the header.\n\ 00235 geometry_msgs/Point32[] points\n\ 00236 \n\ 00237 # Each channel should have the same number of elements as points array,\n\ 00238 # and the data in each channel should correspond 1:1 with each point.\n\ 00239 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00240 ChannelFloat32[] channels\n\ 00241 \n\ 00242 ================================================================================\n\ 00243 MSG: geometry_msgs/Point32\n\ 00244 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00245 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00246 # \n\ 00247 # This recommendation is to promote interoperability. \n\ 00248 #\n\ 00249 # This message is designed to take up less space when sending\n\ 00250 # lots of points at once, as in the case of a PointCloud. \n\ 00251 \n\ 00252 float32 x\n\ 00253 float32 y\n\ 00254 float32 z\n\ 00255 ================================================================================\n\ 00256 MSG: sensor_msgs/ChannelFloat32\n\ 00257 # This message is used by the PointCloud message to hold optional data\n\ 00258 # associated with each point in the cloud. The length of the values\n\ 00259 # array should be the same as the length of the points array in the\n\ 00260 # PointCloud, and each value should be associated with the corresponding\n\ 00261 # point.\n\ 00262 \n\ 00263 # Channel names in existing practice include:\n\ 00264 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00265 # This is opposite to usual conventions but remains for\n\ 00266 # historical reasons. The newer PointCloud2 message has no\n\ 00267 # such problem.\n\ 00268 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00269 # (R,G,B) values packed into the least significant 24 bits,\n\ 00270 # in order.\n\ 00271 # \"intensity\" - laser or pixel intensity.\n\ 00272 # \"distance\"\n\ 00273 \n\ 00274 # The channel name should give semantics of the channel (e.g.\n\ 00275 # \"intensity\" instead of \"value\").\n\ 00276 string name\n\ 00277 \n\ 00278 # The values array should be 1-1 with the elements of the associated\n\ 00279 # PointCloud.\n\ 00280 float32[] values\n\ 00281 \n\ 00282 ================================================================================\n\ 00283 MSG: object_manipulation_msgs/SceneRegion\n\ 00284 # Point cloud\n\ 00285 sensor_msgs/PointCloud2 cloud\n\ 00286 \n\ 00287 # Indices for the region of interest\n\ 00288 int32[] mask\n\ 00289 \n\ 00290 # One of the corresponding 2D images, if applicable\n\ 00291 sensor_msgs/Image image\n\ 00292 \n\ 00293 # The disparity image, if applicable\n\ 00294 sensor_msgs/Image disparity_image\n\ 00295 \n\ 00296 # Camera info for the camera that took the image\n\ 00297 sensor_msgs/CameraInfo cam_info\n\ 00298 \n\ 00299 # a 3D region of interest for grasp planning\n\ 00300 geometry_msgs/PoseStamped roi_box_pose\n\ 00301 geometry_msgs/Vector3 roi_box_dims\n\ 00302 \n\ 00303 ================================================================================\n\ 00304 MSG: sensor_msgs/PointCloud2\n\ 00305 # This message holds a collection of N-dimensional points, which may\n\ 00306 # contain additional information such as normals, intensity, etc. The\n\ 00307 # point data is stored as a binary blob, its layout described by the\n\ 00308 # contents of the \"fields\" array.\n\ 00309 \n\ 00310 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00311 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00312 # camera depth sensors such as stereo or time-of-flight.\n\ 00313 \n\ 00314 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00315 # points).\n\ 00316 Header header\n\ 00317 \n\ 00318 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00319 # 1 and width is the length of the point cloud.\n\ 00320 uint32 height\n\ 00321 uint32 width\n\ 00322 \n\ 00323 # Describes the channels and their layout in the binary data blob.\n\ 00324 PointField[] fields\n\ 00325 \n\ 00326 bool is_bigendian # Is this data bigendian?\n\ 00327 uint32 point_step # Length of a point in bytes\n\ 00328 uint32 row_step # Length of a row in bytes\n\ 00329 uint8[] data # Actual point data, size is (row_step*height)\n\ 00330 \n\ 00331 bool is_dense # True if there are no invalid points\n\ 00332 \n\ 00333 ================================================================================\n\ 00334 MSG: sensor_msgs/PointField\n\ 00335 # This message holds the description of one point entry in the\n\ 00336 # PointCloud2 message format.\n\ 00337 uint8 INT8 = 1\n\ 00338 uint8 UINT8 = 2\n\ 00339 uint8 INT16 = 3\n\ 00340 uint8 UINT16 = 4\n\ 00341 uint8 INT32 = 5\n\ 00342 uint8 UINT32 = 6\n\ 00343 uint8 FLOAT32 = 7\n\ 00344 uint8 FLOAT64 = 8\n\ 00345 \n\ 00346 string name # Name of field\n\ 00347 uint32 offset # Offset from start of point struct\n\ 00348 uint8 datatype # Datatype enumeration, see above\n\ 00349 uint32 count # How many elements in the field\n\ 00350 \n\ 00351 ================================================================================\n\ 00352 MSG: sensor_msgs/Image\n\ 00353 # This message contains an uncompressed image\n\ 00354 # (0, 0) is at top-left corner of image\n\ 00355 #\n\ 00356 \n\ 00357 Header header # Header timestamp should be acquisition time of image\n\ 00358 # Header frame_id should be optical frame of camera\n\ 00359 # origin of frame should be optical center of cameara\n\ 00360 # +x should point to the right in the image\n\ 00361 # +y should point down in the image\n\ 00362 # +z should point into to plane of the image\n\ 00363 # If the frame_id here and the frame_id of the CameraInfo\n\ 00364 # message associated with the image conflict\n\ 00365 # the behavior is undefined\n\ 00366 \n\ 00367 uint32 height # image height, that is, number of rows\n\ 00368 uint32 width # image width, that is, number of columns\n\ 00369 \n\ 00370 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00371 # If you want to standardize a new string format, join\n\ 00372 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00373 \n\ 00374 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00375 # taken from the list of strings in src/image_encodings.cpp\n\ 00376 \n\ 00377 uint8 is_bigendian # is this data bigendian?\n\ 00378 uint32 step # Full row length in bytes\n\ 00379 uint8[] data # actual matrix data, size is (step * rows)\n\ 00380 \n\ 00381 ================================================================================\n\ 00382 MSG: sensor_msgs/CameraInfo\n\ 00383 # This message defines meta information for a camera. It should be in a\n\ 00384 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00385 # image topics named:\n\ 00386 #\n\ 00387 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00388 # image - monochrome, distorted\n\ 00389 # image_color - color, distorted\n\ 00390 # image_rect - monochrome, rectified\n\ 00391 # image_rect_color - color, rectified\n\ 00392 #\n\ 00393 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00394 # for producing the four processed image topics from image_raw and\n\ 00395 # camera_info. The meaning of the camera parameters are described in\n\ 00396 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00397 #\n\ 00398 # The image_geometry package provides a user-friendly interface to\n\ 00399 # common operations using this meta information. If you want to, e.g.,\n\ 00400 # project a 3d point into image coordinates, we strongly recommend\n\ 00401 # using image_geometry.\n\ 00402 #\n\ 00403 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00404 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00405 # indicates an uncalibrated camera.\n\ 00406 \n\ 00407 #######################################################################\n\ 00408 # Image acquisition info #\n\ 00409 #######################################################################\n\ 00410 \n\ 00411 # Time of image acquisition, camera coordinate frame ID\n\ 00412 Header header # Header timestamp should be acquisition time of image\n\ 00413 # Header frame_id should be optical frame of camera\n\ 00414 # origin of frame should be optical center of camera\n\ 00415 # +x should point to the right in the image\n\ 00416 # +y should point down in the image\n\ 00417 # +z should point into the plane of the image\n\ 00418 \n\ 00419 \n\ 00420 #######################################################################\n\ 00421 # Calibration Parameters #\n\ 00422 #######################################################################\n\ 00423 # These are fixed during camera calibration. Their values will be the #\n\ 00424 # same in all messages until the camera is recalibrated. Note that #\n\ 00425 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00426 # #\n\ 00427 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00428 # to: #\n\ 00429 # 1. An undistorted image (requires D and K) #\n\ 00430 # 2. A rectified image (requires D, K, R) #\n\ 00431 # The projection matrix P projects 3D points into the rectified image.#\n\ 00432 #######################################################################\n\ 00433 \n\ 00434 # The image dimensions with which the camera was calibrated. Normally\n\ 00435 # this will be the full camera resolution in pixels.\n\ 00436 uint32 height\n\ 00437 uint32 width\n\ 00438 \n\ 00439 # The distortion model used. Supported models are listed in\n\ 00440 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00441 # simple model of radial and tangential distortion - is sufficent.\n\ 00442 string distortion_model\n\ 00443 \n\ 00444 # The distortion parameters, size depending on the distortion model.\n\ 00445 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00446 float64[] D\n\ 00447 \n\ 00448 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00449 # [fx 0 cx]\n\ 00450 # K = [ 0 fy cy]\n\ 00451 # [ 0 0 1]\n\ 00452 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00453 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00454 # (cx, cy).\n\ 00455 float64[9] K # 3x3 row-major matrix\n\ 00456 \n\ 00457 # Rectification matrix (stereo cameras only)\n\ 00458 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00459 # stereo image plane so that epipolar lines in both stereo images are\n\ 00460 # parallel.\n\ 00461 float64[9] R # 3x3 row-major matrix\n\ 00462 \n\ 00463 # Projection/camera matrix\n\ 00464 # [fx' 0 cx' Tx]\n\ 00465 # P = [ 0 fy' cy' Ty]\n\ 00466 # [ 0 0 1 0]\n\ 00467 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00468 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00469 # is the normal camera intrinsic matrix for the rectified image.\n\ 00470 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00471 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00472 # (cx', cy') - these may differ from the values in K.\n\ 00473 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00474 # also have R = the identity and P[1:3,1:3] = K.\n\ 00475 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00476 # position of the optical center of the second camera in the first\n\ 00477 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00478 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00479 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00480 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00481 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00482 # the rectified image is given by:\n\ 00483 # [u v w]' = P * [X Y Z 1]'\n\ 00484 # x = u / w\n\ 00485 # y = v / w\n\ 00486 # This holds for both images of a stereo pair.\n\ 00487 float64[12] P # 3x4 row-major matrix\n\ 00488 \n\ 00489 \n\ 00490 #######################################################################\n\ 00491 # Operational Parameters #\n\ 00492 #######################################################################\n\ 00493 # These define the image region actually captured by the camera #\n\ 00494 # driver. Although they affect the geometry of the output image, they #\n\ 00495 # may be changed freely without recalibrating the camera. #\n\ 00496 #######################################################################\n\ 00497 \n\ 00498 # Binning refers here to any camera setting which combines rectangular\n\ 00499 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00500 # resolution of the output image to\n\ 00501 # (width / binning_x) x (height / binning_y).\n\ 00502 # The default values binning_x = binning_y = 0 is considered the same\n\ 00503 # as binning_x = binning_y = 1 (no subsampling).\n\ 00504 uint32 binning_x\n\ 00505 uint32 binning_y\n\ 00506 \n\ 00507 # Region of interest (subwindow of full camera resolution), given in\n\ 00508 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00509 # always denotes the same window of pixels on the camera sensor,\n\ 00510 # regardless of binning settings.\n\ 00511 # The default setting of roi (all values 0) is considered the same as\n\ 00512 # full resolution (roi.width = width, roi.height = height).\n\ 00513 RegionOfInterest roi\n\ 00514 \n\ 00515 ================================================================================\n\ 00516 MSG: sensor_msgs/RegionOfInterest\n\ 00517 # This message is used to specify a region of interest within an image.\n\ 00518 #\n\ 00519 # When used to specify the ROI setting of the camera when the image was\n\ 00520 # taken, the height and width fields should either match the height and\n\ 00521 # width fields for the associated image; or height = width = 0\n\ 00522 # indicates that the full resolution image was captured.\n\ 00523 \n\ 00524 uint32 x_offset # Leftmost pixel of the ROI\n\ 00525 # (0 if the ROI includes the left edge of the image)\n\ 00526 uint32 y_offset # Topmost pixel of the ROI\n\ 00527 # (0 if the ROI includes the top edge of the image)\n\ 00528 uint32 height # Height of ROI\n\ 00529 uint32 width # Width of ROI\n\ 00530 \n\ 00531 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00532 # ROI in this message. Typically this should be False if the full image\n\ 00533 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00534 # used).\n\ 00535 bool do_rectify\n\ 00536 \n\ 00537 ================================================================================\n\ 00538 MSG: geometry_msgs/Vector3\n\ 00539 # This represents a vector in free space. \n\ 00540 \n\ 00541 float64 x\n\ 00542 float64 y\n\ 00543 float64 z\n\ 00544 ================================================================================\n\ 00545 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00546 # Error codes for grasp and place planning\n\ 00547 \n\ 00548 # plan completed as expected\n\ 00549 int32 SUCCESS = 0\n\ 00550 \n\ 00551 # tf error encountered while transforming\n\ 00552 int32 TF_ERROR = 1 \n\ 00553 \n\ 00554 # some other error\n\ 00555 int32 OTHER_ERROR = 2\n\ 00556 \n\ 00557 # the actual value of this error code\n\ 00558 int32 value\n\ 00559 "; } 00560 public: 00561 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00562 00563 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00564 00565 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00566 { 00567 ros::serialization::OStream stream(write_ptr, 1000000000); 00568 ros::serialization::serialize(stream, grasps); 00569 ros::serialization::serialize(stream, error_code); 00570 return stream.getData(); 00571 } 00572 00573 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00574 { 00575 ros::serialization::IStream stream(read_ptr, 1000000000); 00576 ros::serialization::deserialize(stream, grasps); 00577 ros::serialization::deserialize(stream, error_code); 00578 return stream.getData(); 00579 } 00580 00581 ROS_DEPRECATED virtual uint32_t serializationLength() const 00582 { 00583 uint32_t size = 0; 00584 size += ros::serialization::serializationLength(grasps); 00585 size += ros::serialization::serializationLength(error_code); 00586 return size; 00587 } 00588 00589 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > Ptr; 00590 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> const> ConstPtr; 00591 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00592 }; // struct GraspPlanningResult 00593 typedef ::object_manipulation_msgs::GraspPlanningResult_<std::allocator<void> > GraspPlanningResult; 00594 00595 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult> GraspPlanningResultPtr; 00596 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResult const> GraspPlanningResultConstPtr; 00597 00598 00599 template<typename ContainerAllocator> 00600 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> & v) 00601 { 00602 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> >::stream(s, "", v); 00603 return s;} 00604 00605 } // namespace object_manipulation_msgs 00606 00607 namespace ros 00608 { 00609 namespace message_traits 00610 { 00611 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > : public TrueType {}; 00612 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> const> : public TrueType {}; 00613 template<class ContainerAllocator> 00614 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > { 00615 static const char* value() 00616 { 00617 return "998e3d06c509abfc46d7fdf96fe1c188"; 00618 } 00619 00620 static const char* value(const ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> &) { return value(); } 00621 static const uint64_t static_value1 = 0x998e3d06c509abfcULL; 00622 static const uint64_t static_value2 = 0x46d7fdf96fe1c188ULL; 00623 }; 00624 00625 template<class ContainerAllocator> 00626 struct DataType< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > { 00627 static const char* value() 00628 { 00629 return "object_manipulation_msgs/GraspPlanningResult"; 00630 } 00631 00632 static const char* value(const ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> &) { return value(); } 00633 }; 00634 00635 template<class ContainerAllocator> 00636 struct Definition< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > { 00637 static const char* value() 00638 { 00639 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00640 \n\ 00641 # the list of planned grasps\n\ 00642 Grasp[] grasps\n\ 00643 \n\ 00644 # whether an error occurred\n\ 00645 GraspPlanningErrorCode error_code\n\ 00646 \n\ 00647 \n\ 00648 ================================================================================\n\ 00649 MSG: object_manipulation_msgs/Grasp\n\ 00650 \n\ 00651 # The internal posture of the hand for the pre-grasp\n\ 00652 # only positions are used\n\ 00653 sensor_msgs/JointState pre_grasp_posture\n\ 00654 \n\ 00655 # The internal posture of the hand for the grasp\n\ 00656 # positions and efforts are used\n\ 00657 sensor_msgs/JointState grasp_posture\n\ 00658 \n\ 00659 # The position of the end-effector for the grasp relative to a reference frame \n\ 00660 # (that is always specified elsewhere, not in this message)\n\ 00661 geometry_msgs/Pose grasp_pose\n\ 00662 \n\ 00663 # The estimated probability of success for this grasp\n\ 00664 float64 success_probability\n\ 00665 \n\ 00666 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00667 bool cluster_rep\n\ 00668 \n\ 00669 # how far the pre-grasp should ideally be away from the grasp\n\ 00670 float32 desired_approach_distance\n\ 00671 \n\ 00672 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00673 # for the grasp not to be rejected\n\ 00674 float32 min_approach_distance\n\ 00675 \n\ 00676 # an optional list of obstacles that we have semantic information about\n\ 00677 # and that we expect might move in the course of executing this grasp\n\ 00678 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00679 # execution, grasp executors will not check for collisions against these objects\n\ 00680 GraspableObject[] moved_obstacles\n\ 00681 \n\ 00682 ================================================================================\n\ 00683 MSG: sensor_msgs/JointState\n\ 00684 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00685 #\n\ 00686 # The state of each joint (revolute or prismatic) is defined by:\n\ 00687 # * the position of the joint (rad or m),\n\ 00688 # * the velocity of the joint (rad/s or m/s) and \n\ 00689 # * the effort that is applied in the joint (Nm or N).\n\ 00690 #\n\ 00691 # Each joint is uniquely identified by its name\n\ 00692 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00693 # in one message have to be recorded at the same time.\n\ 00694 #\n\ 00695 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00696 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00697 # effort associated with them, you can leave the effort array empty. \n\ 00698 #\n\ 00699 # All arrays in this message should have the same size, or be empty.\n\ 00700 # This is the only way to uniquely associate the joint name with the correct\n\ 00701 # states.\n\ 00702 \n\ 00703 \n\ 00704 Header header\n\ 00705 \n\ 00706 string[] name\n\ 00707 float64[] position\n\ 00708 float64[] velocity\n\ 00709 float64[] effort\n\ 00710 \n\ 00711 ================================================================================\n\ 00712 MSG: std_msgs/Header\n\ 00713 # Standard metadata for higher-level stamped data types.\n\ 00714 # This is generally used to communicate timestamped data \n\ 00715 # in a particular coordinate frame.\n\ 00716 # \n\ 00717 # sequence ID: consecutively increasing ID \n\ 00718 uint32 seq\n\ 00719 #Two-integer timestamp that is expressed as:\n\ 00720 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00721 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00722 # time-handling sugar is provided by the client library\n\ 00723 time stamp\n\ 00724 #Frame this data is associated with\n\ 00725 # 0: no frame\n\ 00726 # 1: global frame\n\ 00727 string frame_id\n\ 00728 \n\ 00729 ================================================================================\n\ 00730 MSG: geometry_msgs/Pose\n\ 00731 # A representation of pose in free space, composed of postion and orientation. \n\ 00732 Point position\n\ 00733 Quaternion orientation\n\ 00734 \n\ 00735 ================================================================================\n\ 00736 MSG: geometry_msgs/Point\n\ 00737 # This contains the position of a point in free space\n\ 00738 float64 x\n\ 00739 float64 y\n\ 00740 float64 z\n\ 00741 \n\ 00742 ================================================================================\n\ 00743 MSG: geometry_msgs/Quaternion\n\ 00744 # This represents an orientation in free space in quaternion form.\n\ 00745 \n\ 00746 float64 x\n\ 00747 float64 y\n\ 00748 float64 z\n\ 00749 float64 w\n\ 00750 \n\ 00751 ================================================================================\n\ 00752 MSG: object_manipulation_msgs/GraspableObject\n\ 00753 # an object that the object_manipulator can work on\n\ 00754 \n\ 00755 # a graspable object can be represented in multiple ways. This message\n\ 00756 # can contain all of them. Which one is actually used is up to the receiver\n\ 00757 # of this message. When adding new representations, one must be careful that\n\ 00758 # they have reasonable lightweight defaults indicating that that particular\n\ 00759 # representation is not available.\n\ 00760 \n\ 00761 # the tf frame to be used as a reference frame when combining information from\n\ 00762 # the different representations below\n\ 00763 string reference_frame_id\n\ 00764 \n\ 00765 # potential recognition results from a database of models\n\ 00766 # all poses are relative to the object reference pose\n\ 00767 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00768 \n\ 00769 # the point cloud itself\n\ 00770 sensor_msgs/PointCloud cluster\n\ 00771 \n\ 00772 # a region of a PointCloud2 of interest\n\ 00773 object_manipulation_msgs/SceneRegion region\n\ 00774 \n\ 00775 # the name that this object has in the collision environment\n\ 00776 string collision_name\n\ 00777 ================================================================================\n\ 00778 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00779 # Informs that a specific model from the Model Database has been \n\ 00780 # identified at a certain location\n\ 00781 \n\ 00782 # the database id of the model\n\ 00783 int32 model_id\n\ 00784 \n\ 00785 # the pose that it can be found in\n\ 00786 geometry_msgs/PoseStamped pose\n\ 00787 \n\ 00788 # a measure of the confidence level in this detection result\n\ 00789 float32 confidence\n\ 00790 \n\ 00791 # the name of the object detector that generated this detection result\n\ 00792 string detector_name\n\ 00793 \n\ 00794 ================================================================================\n\ 00795 MSG: geometry_msgs/PoseStamped\n\ 00796 # A Pose with reference coordinate frame and timestamp\n\ 00797 Header header\n\ 00798 Pose pose\n\ 00799 \n\ 00800 ================================================================================\n\ 00801 MSG: sensor_msgs/PointCloud\n\ 00802 # This message holds a collection of 3d points, plus optional additional\n\ 00803 # information about each point.\n\ 00804 \n\ 00805 # Time of sensor data acquisition, coordinate frame ID.\n\ 00806 Header header\n\ 00807 \n\ 00808 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00809 # in the frame given in the header.\n\ 00810 geometry_msgs/Point32[] points\n\ 00811 \n\ 00812 # Each channel should have the same number of elements as points array,\n\ 00813 # and the data in each channel should correspond 1:1 with each point.\n\ 00814 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00815 ChannelFloat32[] channels\n\ 00816 \n\ 00817 ================================================================================\n\ 00818 MSG: geometry_msgs/Point32\n\ 00819 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00820 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00821 # \n\ 00822 # This recommendation is to promote interoperability. \n\ 00823 #\n\ 00824 # This message is designed to take up less space when sending\n\ 00825 # lots of points at once, as in the case of a PointCloud. \n\ 00826 \n\ 00827 float32 x\n\ 00828 float32 y\n\ 00829 float32 z\n\ 00830 ================================================================================\n\ 00831 MSG: sensor_msgs/ChannelFloat32\n\ 00832 # This message is used by the PointCloud message to hold optional data\n\ 00833 # associated with each point in the cloud. The length of the values\n\ 00834 # array should be the same as the length of the points array in the\n\ 00835 # PointCloud, and each value should be associated with the corresponding\n\ 00836 # point.\n\ 00837 \n\ 00838 # Channel names in existing practice include:\n\ 00839 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00840 # This is opposite to usual conventions but remains for\n\ 00841 # historical reasons. The newer PointCloud2 message has no\n\ 00842 # such problem.\n\ 00843 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00844 # (R,G,B) values packed into the least significant 24 bits,\n\ 00845 # in order.\n\ 00846 # \"intensity\" - laser or pixel intensity.\n\ 00847 # \"distance\"\n\ 00848 \n\ 00849 # The channel name should give semantics of the channel (e.g.\n\ 00850 # \"intensity\" instead of \"value\").\n\ 00851 string name\n\ 00852 \n\ 00853 # The values array should be 1-1 with the elements of the associated\n\ 00854 # PointCloud.\n\ 00855 float32[] values\n\ 00856 \n\ 00857 ================================================================================\n\ 00858 MSG: object_manipulation_msgs/SceneRegion\n\ 00859 # Point cloud\n\ 00860 sensor_msgs/PointCloud2 cloud\n\ 00861 \n\ 00862 # Indices for the region of interest\n\ 00863 int32[] mask\n\ 00864 \n\ 00865 # One of the corresponding 2D images, if applicable\n\ 00866 sensor_msgs/Image image\n\ 00867 \n\ 00868 # The disparity image, if applicable\n\ 00869 sensor_msgs/Image disparity_image\n\ 00870 \n\ 00871 # Camera info for the camera that took the image\n\ 00872 sensor_msgs/CameraInfo cam_info\n\ 00873 \n\ 00874 # a 3D region of interest for grasp planning\n\ 00875 geometry_msgs/PoseStamped roi_box_pose\n\ 00876 geometry_msgs/Vector3 roi_box_dims\n\ 00877 \n\ 00878 ================================================================================\n\ 00879 MSG: sensor_msgs/PointCloud2\n\ 00880 # This message holds a collection of N-dimensional points, which may\n\ 00881 # contain additional information such as normals, intensity, etc. The\n\ 00882 # point data is stored as a binary blob, its layout described by the\n\ 00883 # contents of the \"fields\" array.\n\ 00884 \n\ 00885 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00886 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00887 # camera depth sensors such as stereo or time-of-flight.\n\ 00888 \n\ 00889 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00890 # points).\n\ 00891 Header header\n\ 00892 \n\ 00893 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00894 # 1 and width is the length of the point cloud.\n\ 00895 uint32 height\n\ 00896 uint32 width\n\ 00897 \n\ 00898 # Describes the channels and their layout in the binary data blob.\n\ 00899 PointField[] fields\n\ 00900 \n\ 00901 bool is_bigendian # Is this data bigendian?\n\ 00902 uint32 point_step # Length of a point in bytes\n\ 00903 uint32 row_step # Length of a row in bytes\n\ 00904 uint8[] data # Actual point data, size is (row_step*height)\n\ 00905 \n\ 00906 bool is_dense # True if there are no invalid points\n\ 00907 \n\ 00908 ================================================================================\n\ 00909 MSG: sensor_msgs/PointField\n\ 00910 # This message holds the description of one point entry in the\n\ 00911 # PointCloud2 message format.\n\ 00912 uint8 INT8 = 1\n\ 00913 uint8 UINT8 = 2\n\ 00914 uint8 INT16 = 3\n\ 00915 uint8 UINT16 = 4\n\ 00916 uint8 INT32 = 5\n\ 00917 uint8 UINT32 = 6\n\ 00918 uint8 FLOAT32 = 7\n\ 00919 uint8 FLOAT64 = 8\n\ 00920 \n\ 00921 string name # Name of field\n\ 00922 uint32 offset # Offset from start of point struct\n\ 00923 uint8 datatype # Datatype enumeration, see above\n\ 00924 uint32 count # How many elements in the field\n\ 00925 \n\ 00926 ================================================================================\n\ 00927 MSG: sensor_msgs/Image\n\ 00928 # This message contains an uncompressed image\n\ 00929 # (0, 0) is at top-left corner of image\n\ 00930 #\n\ 00931 \n\ 00932 Header header # Header timestamp should be acquisition time of image\n\ 00933 # Header frame_id should be optical frame of camera\n\ 00934 # origin of frame should be optical center of cameara\n\ 00935 # +x should point to the right in the image\n\ 00936 # +y should point down in the image\n\ 00937 # +z should point into to plane of the image\n\ 00938 # If the frame_id here and the frame_id of the CameraInfo\n\ 00939 # message associated with the image conflict\n\ 00940 # the behavior is undefined\n\ 00941 \n\ 00942 uint32 height # image height, that is, number of rows\n\ 00943 uint32 width # image width, that is, number of columns\n\ 00944 \n\ 00945 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00946 # If you want to standardize a new string format, join\n\ 00947 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00948 \n\ 00949 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00950 # taken from the list of strings in src/image_encodings.cpp\n\ 00951 \n\ 00952 uint8 is_bigendian # is this data bigendian?\n\ 00953 uint32 step # Full row length in bytes\n\ 00954 uint8[] data # actual matrix data, size is (step * rows)\n\ 00955 \n\ 00956 ================================================================================\n\ 00957 MSG: sensor_msgs/CameraInfo\n\ 00958 # This message defines meta information for a camera. It should be in a\n\ 00959 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00960 # image topics named:\n\ 00961 #\n\ 00962 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00963 # image - monochrome, distorted\n\ 00964 # image_color - color, distorted\n\ 00965 # image_rect - monochrome, rectified\n\ 00966 # image_rect_color - color, rectified\n\ 00967 #\n\ 00968 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00969 # for producing the four processed image topics from image_raw and\n\ 00970 # camera_info. The meaning of the camera parameters are described in\n\ 00971 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00972 #\n\ 00973 # The image_geometry package provides a user-friendly interface to\n\ 00974 # common operations using this meta information. If you want to, e.g.,\n\ 00975 # project a 3d point into image coordinates, we strongly recommend\n\ 00976 # using image_geometry.\n\ 00977 #\n\ 00978 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00979 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00980 # indicates an uncalibrated camera.\n\ 00981 \n\ 00982 #######################################################################\n\ 00983 # Image acquisition info #\n\ 00984 #######################################################################\n\ 00985 \n\ 00986 # Time of image acquisition, camera coordinate frame ID\n\ 00987 Header header # Header timestamp should be acquisition time of image\n\ 00988 # Header frame_id should be optical frame of camera\n\ 00989 # origin of frame should be optical center of camera\n\ 00990 # +x should point to the right in the image\n\ 00991 # +y should point down in the image\n\ 00992 # +z should point into the plane of the image\n\ 00993 \n\ 00994 \n\ 00995 #######################################################################\n\ 00996 # Calibration Parameters #\n\ 00997 #######################################################################\n\ 00998 # These are fixed during camera calibration. Their values will be the #\n\ 00999 # same in all messages until the camera is recalibrated. Note that #\n\ 01000 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01001 # #\n\ 01002 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01003 # to: #\n\ 01004 # 1. An undistorted image (requires D and K) #\n\ 01005 # 2. A rectified image (requires D, K, R) #\n\ 01006 # The projection matrix P projects 3D points into the rectified image.#\n\ 01007 #######################################################################\n\ 01008 \n\ 01009 # The image dimensions with which the camera was calibrated. Normally\n\ 01010 # this will be the full camera resolution in pixels.\n\ 01011 uint32 height\n\ 01012 uint32 width\n\ 01013 \n\ 01014 # The distortion model used. Supported models are listed in\n\ 01015 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01016 # simple model of radial and tangential distortion - is sufficent.\n\ 01017 string distortion_model\n\ 01018 \n\ 01019 # The distortion parameters, size depending on the distortion model.\n\ 01020 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01021 float64[] D\n\ 01022 \n\ 01023 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01024 # [fx 0 cx]\n\ 01025 # K = [ 0 fy cy]\n\ 01026 # [ 0 0 1]\n\ 01027 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01028 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01029 # (cx, cy).\n\ 01030 float64[9] K # 3x3 row-major matrix\n\ 01031 \n\ 01032 # Rectification matrix (stereo cameras only)\n\ 01033 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01034 # stereo image plane so that epipolar lines in both stereo images are\n\ 01035 # parallel.\n\ 01036 float64[9] R # 3x3 row-major matrix\n\ 01037 \n\ 01038 # Projection/camera matrix\n\ 01039 # [fx' 0 cx' Tx]\n\ 01040 # P = [ 0 fy' cy' Ty]\n\ 01041 # [ 0 0 1 0]\n\ 01042 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01043 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01044 # is the normal camera intrinsic matrix for the rectified image.\n\ 01045 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01046 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01047 # (cx', cy') - these may differ from the values in K.\n\ 01048 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01049 # also have R = the identity and P[1:3,1:3] = K.\n\ 01050 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01051 # position of the optical center of the second camera in the first\n\ 01052 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01053 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01054 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01055 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01056 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01057 # the rectified image is given by:\n\ 01058 # [u v w]' = P * [X Y Z 1]'\n\ 01059 # x = u / w\n\ 01060 # y = v / w\n\ 01061 # This holds for both images of a stereo pair.\n\ 01062 float64[12] P # 3x4 row-major matrix\n\ 01063 \n\ 01064 \n\ 01065 #######################################################################\n\ 01066 # Operational Parameters #\n\ 01067 #######################################################################\n\ 01068 # These define the image region actually captured by the camera #\n\ 01069 # driver. Although they affect the geometry of the output image, they #\n\ 01070 # may be changed freely without recalibrating the camera. #\n\ 01071 #######################################################################\n\ 01072 \n\ 01073 # Binning refers here to any camera setting which combines rectangular\n\ 01074 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01075 # resolution of the output image to\n\ 01076 # (width / binning_x) x (height / binning_y).\n\ 01077 # The default values binning_x = binning_y = 0 is considered the same\n\ 01078 # as binning_x = binning_y = 1 (no subsampling).\n\ 01079 uint32 binning_x\n\ 01080 uint32 binning_y\n\ 01081 \n\ 01082 # Region of interest (subwindow of full camera resolution), given in\n\ 01083 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01084 # always denotes the same window of pixels on the camera sensor,\n\ 01085 # regardless of binning settings.\n\ 01086 # The default setting of roi (all values 0) is considered the same as\n\ 01087 # full resolution (roi.width = width, roi.height = height).\n\ 01088 RegionOfInterest roi\n\ 01089 \n\ 01090 ================================================================================\n\ 01091 MSG: sensor_msgs/RegionOfInterest\n\ 01092 # This message is used to specify a region of interest within an image.\n\ 01093 #\n\ 01094 # When used to specify the ROI setting of the camera when the image was\n\ 01095 # taken, the height and width fields should either match the height and\n\ 01096 # width fields for the associated image; or height = width = 0\n\ 01097 # indicates that the full resolution image was captured.\n\ 01098 \n\ 01099 uint32 x_offset # Leftmost pixel of the ROI\n\ 01100 # (0 if the ROI includes the left edge of the image)\n\ 01101 uint32 y_offset # Topmost pixel of the ROI\n\ 01102 # (0 if the ROI includes the top edge of the image)\n\ 01103 uint32 height # Height of ROI\n\ 01104 uint32 width # Width of ROI\n\ 01105 \n\ 01106 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01107 # ROI in this message. Typically this should be False if the full image\n\ 01108 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01109 # used).\n\ 01110 bool do_rectify\n\ 01111 \n\ 01112 ================================================================================\n\ 01113 MSG: geometry_msgs/Vector3\n\ 01114 # This represents a vector in free space. \n\ 01115 \n\ 01116 float64 x\n\ 01117 float64 y\n\ 01118 float64 z\n\ 01119 ================================================================================\n\ 01120 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01121 # Error codes for grasp and place planning\n\ 01122 \n\ 01123 # plan completed as expected\n\ 01124 int32 SUCCESS = 0\n\ 01125 \n\ 01126 # tf error encountered while transforming\n\ 01127 int32 TF_ERROR = 1 \n\ 01128 \n\ 01129 # some other error\n\ 01130 int32 OTHER_ERROR = 2\n\ 01131 \n\ 01132 # the actual value of this error code\n\ 01133 int32 value\n\ 01134 "; 01135 } 01136 01137 static const char* value(const ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> &) { return value(); } 01138 }; 01139 01140 } // namespace message_traits 01141 } // namespace ros 01142 01143 namespace ros 01144 { 01145 namespace serialization 01146 { 01147 01148 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > 01149 { 01150 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01151 { 01152 stream.next(m.grasps); 01153 stream.next(m.error_code); 01154 } 01155 01156 ROS_DECLARE_ALLINONE_SERIALIZER; 01157 }; // struct GraspPlanningResult_ 01158 } // namespace serialization 01159 } // namespace ros 01160 01161 namespace ros 01162 { 01163 namespace message_operations 01164 { 01165 01166 template<class ContainerAllocator> 01167 struct Printer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> > 01168 { 01169 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> & v) 01170 { 01171 s << indent << "grasps[]" << std::endl; 01172 for (size_t i = 0; i < v.grasps.size(); ++i) 01173 { 01174 s << indent << " grasps[" << i << "]: "; 01175 s << std::endl; 01176 s << indent; 01177 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasps[i]); 01178 } 01179 s << indent << "error_code: "; 01180 s << std::endl; 01181 Printer< ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> >::stream(s, indent + " ", v.error_code); 01182 } 01183 }; 01184 01185 01186 } // namespace message_operations 01187 } // namespace ros 01188 01189 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGRESULT_H 01190