$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspHandPostureExecutionGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/Grasp.h" 00018 00019 namespace object_manipulation_msgs 00020 { 00021 template <class ContainerAllocator> 00022 struct GraspHandPostureExecutionGoal_ { 00023 typedef GraspHandPostureExecutionGoal_<ContainerAllocator> Type; 00024 00025 GraspHandPostureExecutionGoal_() 00026 : grasp() 00027 , goal(0) 00028 , max_contact_force(0.0) 00029 { 00030 } 00031 00032 GraspHandPostureExecutionGoal_(const ContainerAllocator& _alloc) 00033 : grasp(_alloc) 00034 , goal(0) 00035 , max_contact_force(0.0) 00036 { 00037 } 00038 00039 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type; 00040 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp; 00041 00042 typedef int32_t _goal_type; 00043 int32_t goal; 00044 00045 typedef float _max_contact_force_type; 00046 float max_contact_force; 00047 00048 enum { PRE_GRASP = 1 }; 00049 enum { GRASP = 2 }; 00050 enum { RELEASE = 3 }; 00051 00052 private: 00053 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspHandPostureExecutionGoal"; } 00054 public: 00055 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00056 00057 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00058 00059 private: 00060 static const char* __s_getMD5Sum_() { return "6ada8d960f08b75285553cba8883055e"; } 00061 public: 00062 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00063 00064 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00065 00066 private: 00067 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00068 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\ 00069 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\ 00070 # for each arm\n\ 00071 \n\ 00072 # the grasp to be executed\n\ 00073 Grasp grasp\n\ 00074 \n\ 00075 # the goal of this action\n\ 00076 # requests that the hand be set in the pre-grasp posture\n\ 00077 int32 PRE_GRASP=1\n\ 00078 # requests that the hand execute the actual grasp\n\ 00079 int32 GRASP=2\n\ 00080 # requests that the hand open to release the object\n\ 00081 int32 RELEASE=3\n\ 00082 int32 goal\n\ 00083 \n\ 00084 # the max contact force to use (<=0 if no desired max)\n\ 00085 float32 max_contact_force\n\ 00086 \n\ 00087 \n\ 00088 ================================================================================\n\ 00089 MSG: object_manipulation_msgs/Grasp\n\ 00090 \n\ 00091 # The internal posture of the hand for the pre-grasp\n\ 00092 # only positions are used\n\ 00093 sensor_msgs/JointState pre_grasp_posture\n\ 00094 \n\ 00095 # The internal posture of the hand for the grasp\n\ 00096 # positions and efforts are used\n\ 00097 sensor_msgs/JointState grasp_posture\n\ 00098 \n\ 00099 # The position of the end-effector for the grasp relative to a reference frame \n\ 00100 # (that is always specified elsewhere, not in this message)\n\ 00101 geometry_msgs/Pose grasp_pose\n\ 00102 \n\ 00103 # The estimated probability of success for this grasp\n\ 00104 float64 success_probability\n\ 00105 \n\ 00106 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00107 bool cluster_rep\n\ 00108 \n\ 00109 # how far the pre-grasp should ideally be away from the grasp\n\ 00110 float32 desired_approach_distance\n\ 00111 \n\ 00112 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00113 # for the grasp not to be rejected\n\ 00114 float32 min_approach_distance\n\ 00115 \n\ 00116 # an optional list of obstacles that we have semantic information about\n\ 00117 # and that we expect might move in the course of executing this grasp\n\ 00118 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00119 # execution, grasp executors will not check for collisions against these objects\n\ 00120 GraspableObject[] moved_obstacles\n\ 00121 \n\ 00122 ================================================================================\n\ 00123 MSG: sensor_msgs/JointState\n\ 00124 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00125 #\n\ 00126 # The state of each joint (revolute or prismatic) is defined by:\n\ 00127 # * the position of the joint (rad or m),\n\ 00128 # * the velocity of the joint (rad/s or m/s) and \n\ 00129 # * the effort that is applied in the joint (Nm or N).\n\ 00130 #\n\ 00131 # Each joint is uniquely identified by its name\n\ 00132 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00133 # in one message have to be recorded at the same time.\n\ 00134 #\n\ 00135 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00136 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00137 # effort associated with them, you can leave the effort array empty. \n\ 00138 #\n\ 00139 # All arrays in this message should have the same size, or be empty.\n\ 00140 # This is the only way to uniquely associate the joint name with the correct\n\ 00141 # states.\n\ 00142 \n\ 00143 \n\ 00144 Header header\n\ 00145 \n\ 00146 string[] name\n\ 00147 float64[] position\n\ 00148 float64[] velocity\n\ 00149 float64[] effort\n\ 00150 \n\ 00151 ================================================================================\n\ 00152 MSG: std_msgs/Header\n\ 00153 # Standard metadata for higher-level stamped data types.\n\ 00154 # This is generally used to communicate timestamped data \n\ 00155 # in a particular coordinate frame.\n\ 00156 # \n\ 00157 # sequence ID: consecutively increasing ID \n\ 00158 uint32 seq\n\ 00159 #Two-integer timestamp that is expressed as:\n\ 00160 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00161 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00162 # time-handling sugar is provided by the client library\n\ 00163 time stamp\n\ 00164 #Frame this data is associated with\n\ 00165 # 0: no frame\n\ 00166 # 1: global frame\n\ 00167 string frame_id\n\ 00168 \n\ 00169 ================================================================================\n\ 00170 MSG: geometry_msgs/Pose\n\ 00171 # A representation of pose in free space, composed of postion and orientation. \n\ 00172 Point position\n\ 00173 Quaternion orientation\n\ 00174 \n\ 00175 ================================================================================\n\ 00176 MSG: geometry_msgs/Point\n\ 00177 # This contains the position of a point in free space\n\ 00178 float64 x\n\ 00179 float64 y\n\ 00180 float64 z\n\ 00181 \n\ 00182 ================================================================================\n\ 00183 MSG: geometry_msgs/Quaternion\n\ 00184 # This represents an orientation in free space in quaternion form.\n\ 00185 \n\ 00186 float64 x\n\ 00187 float64 y\n\ 00188 float64 z\n\ 00189 float64 w\n\ 00190 \n\ 00191 ================================================================================\n\ 00192 MSG: object_manipulation_msgs/GraspableObject\n\ 00193 # an object that the object_manipulator can work on\n\ 00194 \n\ 00195 # a graspable object can be represented in multiple ways. This message\n\ 00196 # can contain all of them. Which one is actually used is up to the receiver\n\ 00197 # of this message. When adding new representations, one must be careful that\n\ 00198 # they have reasonable lightweight defaults indicating that that particular\n\ 00199 # representation is not available.\n\ 00200 \n\ 00201 # the tf frame to be used as a reference frame when combining information from\n\ 00202 # the different representations below\n\ 00203 string reference_frame_id\n\ 00204 \n\ 00205 # potential recognition results from a database of models\n\ 00206 # all poses are relative to the object reference pose\n\ 00207 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00208 \n\ 00209 # the point cloud itself\n\ 00210 sensor_msgs/PointCloud cluster\n\ 00211 \n\ 00212 # a region of a PointCloud2 of interest\n\ 00213 object_manipulation_msgs/SceneRegion region\n\ 00214 \n\ 00215 # the name that this object has in the collision environment\n\ 00216 string collision_name\n\ 00217 ================================================================================\n\ 00218 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00219 # Informs that a specific model from the Model Database has been \n\ 00220 # identified at a certain location\n\ 00221 \n\ 00222 # the database id of the model\n\ 00223 int32 model_id\n\ 00224 \n\ 00225 # the pose that it can be found in\n\ 00226 geometry_msgs/PoseStamped pose\n\ 00227 \n\ 00228 # a measure of the confidence level in this detection result\n\ 00229 float32 confidence\n\ 00230 \n\ 00231 # the name of the object detector that generated this detection result\n\ 00232 string detector_name\n\ 00233 \n\ 00234 ================================================================================\n\ 00235 MSG: geometry_msgs/PoseStamped\n\ 00236 # A Pose with reference coordinate frame and timestamp\n\ 00237 Header header\n\ 00238 Pose pose\n\ 00239 \n\ 00240 ================================================================================\n\ 00241 MSG: sensor_msgs/PointCloud\n\ 00242 # This message holds a collection of 3d points, plus optional additional\n\ 00243 # information about each point.\n\ 00244 \n\ 00245 # Time of sensor data acquisition, coordinate frame ID.\n\ 00246 Header header\n\ 00247 \n\ 00248 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00249 # in the frame given in the header.\n\ 00250 geometry_msgs/Point32[] points\n\ 00251 \n\ 00252 # Each channel should have the same number of elements as points array,\n\ 00253 # and the data in each channel should correspond 1:1 with each point.\n\ 00254 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00255 ChannelFloat32[] channels\n\ 00256 \n\ 00257 ================================================================================\n\ 00258 MSG: geometry_msgs/Point32\n\ 00259 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00260 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00261 # \n\ 00262 # This recommendation is to promote interoperability. \n\ 00263 #\n\ 00264 # This message is designed to take up less space when sending\n\ 00265 # lots of points at once, as in the case of a PointCloud. \n\ 00266 \n\ 00267 float32 x\n\ 00268 float32 y\n\ 00269 float32 z\n\ 00270 ================================================================================\n\ 00271 MSG: sensor_msgs/ChannelFloat32\n\ 00272 # This message is used by the PointCloud message to hold optional data\n\ 00273 # associated with each point in the cloud. The length of the values\n\ 00274 # array should be the same as the length of the points array in the\n\ 00275 # PointCloud, and each value should be associated with the corresponding\n\ 00276 # point.\n\ 00277 \n\ 00278 # Channel names in existing practice include:\n\ 00279 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00280 # This is opposite to usual conventions but remains for\n\ 00281 # historical reasons. The newer PointCloud2 message has no\n\ 00282 # such problem.\n\ 00283 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00284 # (R,G,B) values packed into the least significant 24 bits,\n\ 00285 # in order.\n\ 00286 # \"intensity\" - laser or pixel intensity.\n\ 00287 # \"distance\"\n\ 00288 \n\ 00289 # The channel name should give semantics of the channel (e.g.\n\ 00290 # \"intensity\" instead of \"value\").\n\ 00291 string name\n\ 00292 \n\ 00293 # The values array should be 1-1 with the elements of the associated\n\ 00294 # PointCloud.\n\ 00295 float32[] values\n\ 00296 \n\ 00297 ================================================================================\n\ 00298 MSG: object_manipulation_msgs/SceneRegion\n\ 00299 # Point cloud\n\ 00300 sensor_msgs/PointCloud2 cloud\n\ 00301 \n\ 00302 # Indices for the region of interest\n\ 00303 int32[] mask\n\ 00304 \n\ 00305 # One of the corresponding 2D images, if applicable\n\ 00306 sensor_msgs/Image image\n\ 00307 \n\ 00308 # The disparity image, if applicable\n\ 00309 sensor_msgs/Image disparity_image\n\ 00310 \n\ 00311 # Camera info for the camera that took the image\n\ 00312 sensor_msgs/CameraInfo cam_info\n\ 00313 \n\ 00314 # a 3D region of interest for grasp planning\n\ 00315 geometry_msgs/PoseStamped roi_box_pose\n\ 00316 geometry_msgs/Vector3 roi_box_dims\n\ 00317 \n\ 00318 ================================================================================\n\ 00319 MSG: sensor_msgs/PointCloud2\n\ 00320 # This message holds a collection of N-dimensional points, which may\n\ 00321 # contain additional information such as normals, intensity, etc. The\n\ 00322 # point data is stored as a binary blob, its layout described by the\n\ 00323 # contents of the \"fields\" array.\n\ 00324 \n\ 00325 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00326 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00327 # camera depth sensors such as stereo or time-of-flight.\n\ 00328 \n\ 00329 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00330 # points).\n\ 00331 Header header\n\ 00332 \n\ 00333 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00334 # 1 and width is the length of the point cloud.\n\ 00335 uint32 height\n\ 00336 uint32 width\n\ 00337 \n\ 00338 # Describes the channels and their layout in the binary data blob.\n\ 00339 PointField[] fields\n\ 00340 \n\ 00341 bool is_bigendian # Is this data bigendian?\n\ 00342 uint32 point_step # Length of a point in bytes\n\ 00343 uint32 row_step # Length of a row in bytes\n\ 00344 uint8[] data # Actual point data, size is (row_step*height)\n\ 00345 \n\ 00346 bool is_dense # True if there are no invalid points\n\ 00347 \n\ 00348 ================================================================================\n\ 00349 MSG: sensor_msgs/PointField\n\ 00350 # This message holds the description of one point entry in the\n\ 00351 # PointCloud2 message format.\n\ 00352 uint8 INT8 = 1\n\ 00353 uint8 UINT8 = 2\n\ 00354 uint8 INT16 = 3\n\ 00355 uint8 UINT16 = 4\n\ 00356 uint8 INT32 = 5\n\ 00357 uint8 UINT32 = 6\n\ 00358 uint8 FLOAT32 = 7\n\ 00359 uint8 FLOAT64 = 8\n\ 00360 \n\ 00361 string name # Name of field\n\ 00362 uint32 offset # Offset from start of point struct\n\ 00363 uint8 datatype # Datatype enumeration, see above\n\ 00364 uint32 count # How many elements in the field\n\ 00365 \n\ 00366 ================================================================================\n\ 00367 MSG: sensor_msgs/Image\n\ 00368 # This message contains an uncompressed image\n\ 00369 # (0, 0) is at top-left corner of image\n\ 00370 #\n\ 00371 \n\ 00372 Header header # Header timestamp should be acquisition time of image\n\ 00373 # Header frame_id should be optical frame of camera\n\ 00374 # origin of frame should be optical center of cameara\n\ 00375 # +x should point to the right in the image\n\ 00376 # +y should point down in the image\n\ 00377 # +z should point into to plane of the image\n\ 00378 # If the frame_id here and the frame_id of the CameraInfo\n\ 00379 # message associated with the image conflict\n\ 00380 # the behavior is undefined\n\ 00381 \n\ 00382 uint32 height # image height, that is, number of rows\n\ 00383 uint32 width # image width, that is, number of columns\n\ 00384 \n\ 00385 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00386 # If you want to standardize a new string format, join\n\ 00387 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00388 \n\ 00389 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00390 # taken from the list of strings in src/image_encodings.cpp\n\ 00391 \n\ 00392 uint8 is_bigendian # is this data bigendian?\n\ 00393 uint32 step # Full row length in bytes\n\ 00394 uint8[] data # actual matrix data, size is (step * rows)\n\ 00395 \n\ 00396 ================================================================================\n\ 00397 MSG: sensor_msgs/CameraInfo\n\ 00398 # This message defines meta information for a camera. It should be in a\n\ 00399 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00400 # image topics named:\n\ 00401 #\n\ 00402 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00403 # image - monochrome, distorted\n\ 00404 # image_color - color, distorted\n\ 00405 # image_rect - monochrome, rectified\n\ 00406 # image_rect_color - color, rectified\n\ 00407 #\n\ 00408 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00409 # for producing the four processed image topics from image_raw and\n\ 00410 # camera_info. The meaning of the camera parameters are described in\n\ 00411 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00412 #\n\ 00413 # The image_geometry package provides a user-friendly interface to\n\ 00414 # common operations using this meta information. If you want to, e.g.,\n\ 00415 # project a 3d point into image coordinates, we strongly recommend\n\ 00416 # using image_geometry.\n\ 00417 #\n\ 00418 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00419 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00420 # indicates an uncalibrated camera.\n\ 00421 \n\ 00422 #######################################################################\n\ 00423 # Image acquisition info #\n\ 00424 #######################################################################\n\ 00425 \n\ 00426 # Time of image acquisition, camera coordinate frame ID\n\ 00427 Header header # Header timestamp should be acquisition time of image\n\ 00428 # Header frame_id should be optical frame of camera\n\ 00429 # origin of frame should be optical center of camera\n\ 00430 # +x should point to the right in the image\n\ 00431 # +y should point down in the image\n\ 00432 # +z should point into the plane of the image\n\ 00433 \n\ 00434 \n\ 00435 #######################################################################\n\ 00436 # Calibration Parameters #\n\ 00437 #######################################################################\n\ 00438 # These are fixed during camera calibration. Their values will be the #\n\ 00439 # same in all messages until the camera is recalibrated. Note that #\n\ 00440 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00441 # #\n\ 00442 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00443 # to: #\n\ 00444 # 1. An undistorted image (requires D and K) #\n\ 00445 # 2. A rectified image (requires D, K, R) #\n\ 00446 # The projection matrix P projects 3D points into the rectified image.#\n\ 00447 #######################################################################\n\ 00448 \n\ 00449 # The image dimensions with which the camera was calibrated. Normally\n\ 00450 # this will be the full camera resolution in pixels.\n\ 00451 uint32 height\n\ 00452 uint32 width\n\ 00453 \n\ 00454 # The distortion model used. Supported models are listed in\n\ 00455 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00456 # simple model of radial and tangential distortion - is sufficent.\n\ 00457 string distortion_model\n\ 00458 \n\ 00459 # The distortion parameters, size depending on the distortion model.\n\ 00460 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00461 float64[] D\n\ 00462 \n\ 00463 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00464 # [fx 0 cx]\n\ 00465 # K = [ 0 fy cy]\n\ 00466 # [ 0 0 1]\n\ 00467 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00468 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00469 # (cx, cy).\n\ 00470 float64[9] K # 3x3 row-major matrix\n\ 00471 \n\ 00472 # Rectification matrix (stereo cameras only)\n\ 00473 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00474 # stereo image plane so that epipolar lines in both stereo images are\n\ 00475 # parallel.\n\ 00476 float64[9] R # 3x3 row-major matrix\n\ 00477 \n\ 00478 # Projection/camera matrix\n\ 00479 # [fx' 0 cx' Tx]\n\ 00480 # P = [ 0 fy' cy' Ty]\n\ 00481 # [ 0 0 1 0]\n\ 00482 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00483 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00484 # is the normal camera intrinsic matrix for the rectified image.\n\ 00485 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00486 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00487 # (cx', cy') - these may differ from the values in K.\n\ 00488 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00489 # also have R = the identity and P[1:3,1:3] = K.\n\ 00490 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00491 # position of the optical center of the second camera in the first\n\ 00492 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00493 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00494 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00495 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00496 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00497 # the rectified image is given by:\n\ 00498 # [u v w]' = P * [X Y Z 1]'\n\ 00499 # x = u / w\n\ 00500 # y = v / w\n\ 00501 # This holds for both images of a stereo pair.\n\ 00502 float64[12] P # 3x4 row-major matrix\n\ 00503 \n\ 00504 \n\ 00505 #######################################################################\n\ 00506 # Operational Parameters #\n\ 00507 #######################################################################\n\ 00508 # These define the image region actually captured by the camera #\n\ 00509 # driver. Although they affect the geometry of the output image, they #\n\ 00510 # may be changed freely without recalibrating the camera. #\n\ 00511 #######################################################################\n\ 00512 \n\ 00513 # Binning refers here to any camera setting which combines rectangular\n\ 00514 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00515 # resolution of the output image to\n\ 00516 # (width / binning_x) x (height / binning_y).\n\ 00517 # The default values binning_x = binning_y = 0 is considered the same\n\ 00518 # as binning_x = binning_y = 1 (no subsampling).\n\ 00519 uint32 binning_x\n\ 00520 uint32 binning_y\n\ 00521 \n\ 00522 # Region of interest (subwindow of full camera resolution), given in\n\ 00523 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00524 # always denotes the same window of pixels on the camera sensor,\n\ 00525 # regardless of binning settings.\n\ 00526 # The default setting of roi (all values 0) is considered the same as\n\ 00527 # full resolution (roi.width = width, roi.height = height).\n\ 00528 RegionOfInterest roi\n\ 00529 \n\ 00530 ================================================================================\n\ 00531 MSG: sensor_msgs/RegionOfInterest\n\ 00532 # This message is used to specify a region of interest within an image.\n\ 00533 #\n\ 00534 # When used to specify the ROI setting of the camera when the image was\n\ 00535 # taken, the height and width fields should either match the height and\n\ 00536 # width fields for the associated image; or height = width = 0\n\ 00537 # indicates that the full resolution image was captured.\n\ 00538 \n\ 00539 uint32 x_offset # Leftmost pixel of the ROI\n\ 00540 # (0 if the ROI includes the left edge of the image)\n\ 00541 uint32 y_offset # Topmost pixel of the ROI\n\ 00542 # (0 if the ROI includes the top edge of the image)\n\ 00543 uint32 height # Height of ROI\n\ 00544 uint32 width # Width of ROI\n\ 00545 \n\ 00546 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00547 # ROI in this message. Typically this should be False if the full image\n\ 00548 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00549 # used).\n\ 00550 bool do_rectify\n\ 00551 \n\ 00552 ================================================================================\n\ 00553 MSG: geometry_msgs/Vector3\n\ 00554 # This represents a vector in free space. \n\ 00555 \n\ 00556 float64 x\n\ 00557 float64 y\n\ 00558 float64 z\n\ 00559 "; } 00560 public: 00561 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00562 00563 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00564 00565 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00566 { 00567 ros::serialization::OStream stream(write_ptr, 1000000000); 00568 ros::serialization::serialize(stream, grasp); 00569 ros::serialization::serialize(stream, goal); 00570 ros::serialization::serialize(stream, max_contact_force); 00571 return stream.getData(); 00572 } 00573 00574 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00575 { 00576 ros::serialization::IStream stream(read_ptr, 1000000000); 00577 ros::serialization::deserialize(stream, grasp); 00578 ros::serialization::deserialize(stream, goal); 00579 ros::serialization::deserialize(stream, max_contact_force); 00580 return stream.getData(); 00581 } 00582 00583 ROS_DEPRECATED virtual uint32_t serializationLength() const 00584 { 00585 uint32_t size = 0; 00586 size += ros::serialization::serializationLength(grasp); 00587 size += ros::serialization::serializationLength(goal); 00588 size += ros::serialization::serializationLength(max_contact_force); 00589 return size; 00590 } 00591 00592 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > Ptr; 00593 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> const> ConstPtr; 00594 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00595 }; // struct GraspHandPostureExecutionGoal 00596 typedef ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<std::allocator<void> > GraspHandPostureExecutionGoal; 00597 00598 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal> GraspHandPostureExecutionGoalPtr; 00599 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal const> GraspHandPostureExecutionGoalConstPtr; 00600 00601 00602 template<typename ContainerAllocator> 00603 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> & v) 00604 { 00605 ros::message_operations::Printer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> >::stream(s, "", v); 00606 return s;} 00607 00608 } // namespace object_manipulation_msgs 00609 00610 namespace ros 00611 { 00612 namespace message_traits 00613 { 00614 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > : public TrueType {}; 00615 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> const> : public TrueType {}; 00616 template<class ContainerAllocator> 00617 struct MD5Sum< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > { 00618 static const char* value() 00619 { 00620 return "6ada8d960f08b75285553cba8883055e"; 00621 } 00622 00623 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> &) { return value(); } 00624 static const uint64_t static_value1 = 0x6ada8d960f08b752ULL; 00625 static const uint64_t static_value2 = 0x85553cba8883055eULL; 00626 }; 00627 00628 template<class ContainerAllocator> 00629 struct DataType< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > { 00630 static const char* value() 00631 { 00632 return "object_manipulation_msgs/GraspHandPostureExecutionGoal"; 00633 } 00634 00635 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> &) { return value(); } 00636 }; 00637 00638 template<class ContainerAllocator> 00639 struct Definition< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > { 00640 static const char* value() 00641 { 00642 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00643 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\ 00644 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\ 00645 # for each arm\n\ 00646 \n\ 00647 # the grasp to be executed\n\ 00648 Grasp grasp\n\ 00649 \n\ 00650 # the goal of this action\n\ 00651 # requests that the hand be set in the pre-grasp posture\n\ 00652 int32 PRE_GRASP=1\n\ 00653 # requests that the hand execute the actual grasp\n\ 00654 int32 GRASP=2\n\ 00655 # requests that the hand open to release the object\n\ 00656 int32 RELEASE=3\n\ 00657 int32 goal\n\ 00658 \n\ 00659 # the max contact force to use (<=0 if no desired max)\n\ 00660 float32 max_contact_force\n\ 00661 \n\ 00662 \n\ 00663 ================================================================================\n\ 00664 MSG: object_manipulation_msgs/Grasp\n\ 00665 \n\ 00666 # The internal posture of the hand for the pre-grasp\n\ 00667 # only positions are used\n\ 00668 sensor_msgs/JointState pre_grasp_posture\n\ 00669 \n\ 00670 # The internal posture of the hand for the grasp\n\ 00671 # positions and efforts are used\n\ 00672 sensor_msgs/JointState grasp_posture\n\ 00673 \n\ 00674 # The position of the end-effector for the grasp relative to a reference frame \n\ 00675 # (that is always specified elsewhere, not in this message)\n\ 00676 geometry_msgs/Pose grasp_pose\n\ 00677 \n\ 00678 # The estimated probability of success for this grasp\n\ 00679 float64 success_probability\n\ 00680 \n\ 00681 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00682 bool cluster_rep\n\ 00683 \n\ 00684 # how far the pre-grasp should ideally be away from the grasp\n\ 00685 float32 desired_approach_distance\n\ 00686 \n\ 00687 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00688 # for the grasp not to be rejected\n\ 00689 float32 min_approach_distance\n\ 00690 \n\ 00691 # an optional list of obstacles that we have semantic information about\n\ 00692 # and that we expect might move in the course of executing this grasp\n\ 00693 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00694 # execution, grasp executors will not check for collisions against these objects\n\ 00695 GraspableObject[] moved_obstacles\n\ 00696 \n\ 00697 ================================================================================\n\ 00698 MSG: sensor_msgs/JointState\n\ 00699 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00700 #\n\ 00701 # The state of each joint (revolute or prismatic) is defined by:\n\ 00702 # * the position of the joint (rad or m),\n\ 00703 # * the velocity of the joint (rad/s or m/s) and \n\ 00704 # * the effort that is applied in the joint (Nm or N).\n\ 00705 #\n\ 00706 # Each joint is uniquely identified by its name\n\ 00707 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00708 # in one message have to be recorded at the same time.\n\ 00709 #\n\ 00710 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00711 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00712 # effort associated with them, you can leave the effort array empty. \n\ 00713 #\n\ 00714 # All arrays in this message should have the same size, or be empty.\n\ 00715 # This is the only way to uniquely associate the joint name with the correct\n\ 00716 # states.\n\ 00717 \n\ 00718 \n\ 00719 Header header\n\ 00720 \n\ 00721 string[] name\n\ 00722 float64[] position\n\ 00723 float64[] velocity\n\ 00724 float64[] effort\n\ 00725 \n\ 00726 ================================================================================\n\ 00727 MSG: std_msgs/Header\n\ 00728 # Standard metadata for higher-level stamped data types.\n\ 00729 # This is generally used to communicate timestamped data \n\ 00730 # in a particular coordinate frame.\n\ 00731 # \n\ 00732 # sequence ID: consecutively increasing ID \n\ 00733 uint32 seq\n\ 00734 #Two-integer timestamp that is expressed as:\n\ 00735 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00736 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00737 # time-handling sugar is provided by the client library\n\ 00738 time stamp\n\ 00739 #Frame this data is associated with\n\ 00740 # 0: no frame\n\ 00741 # 1: global frame\n\ 00742 string frame_id\n\ 00743 \n\ 00744 ================================================================================\n\ 00745 MSG: geometry_msgs/Pose\n\ 00746 # A representation of pose in free space, composed of postion and orientation. \n\ 00747 Point position\n\ 00748 Quaternion orientation\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: geometry_msgs/Point\n\ 00752 # This contains the position of a point in free space\n\ 00753 float64 x\n\ 00754 float64 y\n\ 00755 float64 z\n\ 00756 \n\ 00757 ================================================================================\n\ 00758 MSG: geometry_msgs/Quaternion\n\ 00759 # This represents an orientation in free space in quaternion form.\n\ 00760 \n\ 00761 float64 x\n\ 00762 float64 y\n\ 00763 float64 z\n\ 00764 float64 w\n\ 00765 \n\ 00766 ================================================================================\n\ 00767 MSG: object_manipulation_msgs/GraspableObject\n\ 00768 # an object that the object_manipulator can work on\n\ 00769 \n\ 00770 # a graspable object can be represented in multiple ways. This message\n\ 00771 # can contain all of them. Which one is actually used is up to the receiver\n\ 00772 # of this message. When adding new representations, one must be careful that\n\ 00773 # they have reasonable lightweight defaults indicating that that particular\n\ 00774 # representation is not available.\n\ 00775 \n\ 00776 # the tf frame to be used as a reference frame when combining information from\n\ 00777 # the different representations below\n\ 00778 string reference_frame_id\n\ 00779 \n\ 00780 # potential recognition results from a database of models\n\ 00781 # all poses are relative to the object reference pose\n\ 00782 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00783 \n\ 00784 # the point cloud itself\n\ 00785 sensor_msgs/PointCloud cluster\n\ 00786 \n\ 00787 # a region of a PointCloud2 of interest\n\ 00788 object_manipulation_msgs/SceneRegion region\n\ 00789 \n\ 00790 # the name that this object has in the collision environment\n\ 00791 string collision_name\n\ 00792 ================================================================================\n\ 00793 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00794 # Informs that a specific model from the Model Database has been \n\ 00795 # identified at a certain location\n\ 00796 \n\ 00797 # the database id of the model\n\ 00798 int32 model_id\n\ 00799 \n\ 00800 # the pose that it can be found in\n\ 00801 geometry_msgs/PoseStamped pose\n\ 00802 \n\ 00803 # a measure of the confidence level in this detection result\n\ 00804 float32 confidence\n\ 00805 \n\ 00806 # the name of the object detector that generated this detection result\n\ 00807 string detector_name\n\ 00808 \n\ 00809 ================================================================================\n\ 00810 MSG: geometry_msgs/PoseStamped\n\ 00811 # A Pose with reference coordinate frame and timestamp\n\ 00812 Header header\n\ 00813 Pose pose\n\ 00814 \n\ 00815 ================================================================================\n\ 00816 MSG: sensor_msgs/PointCloud\n\ 00817 # This message holds a collection of 3d points, plus optional additional\n\ 00818 # information about each point.\n\ 00819 \n\ 00820 # Time of sensor data acquisition, coordinate frame ID.\n\ 00821 Header header\n\ 00822 \n\ 00823 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00824 # in the frame given in the header.\n\ 00825 geometry_msgs/Point32[] points\n\ 00826 \n\ 00827 # Each channel should have the same number of elements as points array,\n\ 00828 # and the data in each channel should correspond 1:1 with each point.\n\ 00829 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00830 ChannelFloat32[] channels\n\ 00831 \n\ 00832 ================================================================================\n\ 00833 MSG: geometry_msgs/Point32\n\ 00834 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00835 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00836 # \n\ 00837 # This recommendation is to promote interoperability. \n\ 00838 #\n\ 00839 # This message is designed to take up less space when sending\n\ 00840 # lots of points at once, as in the case of a PointCloud. \n\ 00841 \n\ 00842 float32 x\n\ 00843 float32 y\n\ 00844 float32 z\n\ 00845 ================================================================================\n\ 00846 MSG: sensor_msgs/ChannelFloat32\n\ 00847 # This message is used by the PointCloud message to hold optional data\n\ 00848 # associated with each point in the cloud. The length of the values\n\ 00849 # array should be the same as the length of the points array in the\n\ 00850 # PointCloud, and each value should be associated with the corresponding\n\ 00851 # point.\n\ 00852 \n\ 00853 # Channel names in existing practice include:\n\ 00854 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00855 # This is opposite to usual conventions but remains for\n\ 00856 # historical reasons. The newer PointCloud2 message has no\n\ 00857 # such problem.\n\ 00858 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00859 # (R,G,B) values packed into the least significant 24 bits,\n\ 00860 # in order.\n\ 00861 # \"intensity\" - laser or pixel intensity.\n\ 00862 # \"distance\"\n\ 00863 \n\ 00864 # The channel name should give semantics of the channel (e.g.\n\ 00865 # \"intensity\" instead of \"value\").\n\ 00866 string name\n\ 00867 \n\ 00868 # The values array should be 1-1 with the elements of the associated\n\ 00869 # PointCloud.\n\ 00870 float32[] values\n\ 00871 \n\ 00872 ================================================================================\n\ 00873 MSG: object_manipulation_msgs/SceneRegion\n\ 00874 # Point cloud\n\ 00875 sensor_msgs/PointCloud2 cloud\n\ 00876 \n\ 00877 # Indices for the region of interest\n\ 00878 int32[] mask\n\ 00879 \n\ 00880 # One of the corresponding 2D images, if applicable\n\ 00881 sensor_msgs/Image image\n\ 00882 \n\ 00883 # The disparity image, if applicable\n\ 00884 sensor_msgs/Image disparity_image\n\ 00885 \n\ 00886 # Camera info for the camera that took the image\n\ 00887 sensor_msgs/CameraInfo cam_info\n\ 00888 \n\ 00889 # a 3D region of interest for grasp planning\n\ 00890 geometry_msgs/PoseStamped roi_box_pose\n\ 00891 geometry_msgs/Vector3 roi_box_dims\n\ 00892 \n\ 00893 ================================================================================\n\ 00894 MSG: sensor_msgs/PointCloud2\n\ 00895 # This message holds a collection of N-dimensional points, which may\n\ 00896 # contain additional information such as normals, intensity, etc. The\n\ 00897 # point data is stored as a binary blob, its layout described by the\n\ 00898 # contents of the \"fields\" array.\n\ 00899 \n\ 00900 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00901 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00902 # camera depth sensors such as stereo or time-of-flight.\n\ 00903 \n\ 00904 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00905 # points).\n\ 00906 Header header\n\ 00907 \n\ 00908 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00909 # 1 and width is the length of the point cloud.\n\ 00910 uint32 height\n\ 00911 uint32 width\n\ 00912 \n\ 00913 # Describes the channels and their layout in the binary data blob.\n\ 00914 PointField[] fields\n\ 00915 \n\ 00916 bool is_bigendian # Is this data bigendian?\n\ 00917 uint32 point_step # Length of a point in bytes\n\ 00918 uint32 row_step # Length of a row in bytes\n\ 00919 uint8[] data # Actual point data, size is (row_step*height)\n\ 00920 \n\ 00921 bool is_dense # True if there are no invalid points\n\ 00922 \n\ 00923 ================================================================================\n\ 00924 MSG: sensor_msgs/PointField\n\ 00925 # This message holds the description of one point entry in the\n\ 00926 # PointCloud2 message format.\n\ 00927 uint8 INT8 = 1\n\ 00928 uint8 UINT8 = 2\n\ 00929 uint8 INT16 = 3\n\ 00930 uint8 UINT16 = 4\n\ 00931 uint8 INT32 = 5\n\ 00932 uint8 UINT32 = 6\n\ 00933 uint8 FLOAT32 = 7\n\ 00934 uint8 FLOAT64 = 8\n\ 00935 \n\ 00936 string name # Name of field\n\ 00937 uint32 offset # Offset from start of point struct\n\ 00938 uint8 datatype # Datatype enumeration, see above\n\ 00939 uint32 count # How many elements in the field\n\ 00940 \n\ 00941 ================================================================================\n\ 00942 MSG: sensor_msgs/Image\n\ 00943 # This message contains an uncompressed image\n\ 00944 # (0, 0) is at top-left corner of image\n\ 00945 #\n\ 00946 \n\ 00947 Header header # Header timestamp should be acquisition time of image\n\ 00948 # Header frame_id should be optical frame of camera\n\ 00949 # origin of frame should be optical center of cameara\n\ 00950 # +x should point to the right in the image\n\ 00951 # +y should point down in the image\n\ 00952 # +z should point into to plane of the image\n\ 00953 # If the frame_id here and the frame_id of the CameraInfo\n\ 00954 # message associated with the image conflict\n\ 00955 # the behavior is undefined\n\ 00956 \n\ 00957 uint32 height # image height, that is, number of rows\n\ 00958 uint32 width # image width, that is, number of columns\n\ 00959 \n\ 00960 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00961 # If you want to standardize a new string format, join\n\ 00962 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00963 \n\ 00964 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00965 # taken from the list of strings in src/image_encodings.cpp\n\ 00966 \n\ 00967 uint8 is_bigendian # is this data bigendian?\n\ 00968 uint32 step # Full row length in bytes\n\ 00969 uint8[] data # actual matrix data, size is (step * rows)\n\ 00970 \n\ 00971 ================================================================================\n\ 00972 MSG: sensor_msgs/CameraInfo\n\ 00973 # This message defines meta information for a camera. It should be in a\n\ 00974 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00975 # image topics named:\n\ 00976 #\n\ 00977 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00978 # image - monochrome, distorted\n\ 00979 # image_color - color, distorted\n\ 00980 # image_rect - monochrome, rectified\n\ 00981 # image_rect_color - color, rectified\n\ 00982 #\n\ 00983 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00984 # for producing the four processed image topics from image_raw and\n\ 00985 # camera_info. The meaning of the camera parameters are described in\n\ 00986 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00987 #\n\ 00988 # The image_geometry package provides a user-friendly interface to\n\ 00989 # common operations using this meta information. If you want to, e.g.,\n\ 00990 # project a 3d point into image coordinates, we strongly recommend\n\ 00991 # using image_geometry.\n\ 00992 #\n\ 00993 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00994 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00995 # indicates an uncalibrated camera.\n\ 00996 \n\ 00997 #######################################################################\n\ 00998 # Image acquisition info #\n\ 00999 #######################################################################\n\ 01000 \n\ 01001 # Time of image acquisition, camera coordinate frame ID\n\ 01002 Header header # Header timestamp should be acquisition time of image\n\ 01003 # Header frame_id should be optical frame of camera\n\ 01004 # origin of frame should be optical center of camera\n\ 01005 # +x should point to the right in the image\n\ 01006 # +y should point down in the image\n\ 01007 # +z should point into the plane of the image\n\ 01008 \n\ 01009 \n\ 01010 #######################################################################\n\ 01011 # Calibration Parameters #\n\ 01012 #######################################################################\n\ 01013 # These are fixed during camera calibration. Their values will be the #\n\ 01014 # same in all messages until the camera is recalibrated. Note that #\n\ 01015 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01016 # #\n\ 01017 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01018 # to: #\n\ 01019 # 1. An undistorted image (requires D and K) #\n\ 01020 # 2. A rectified image (requires D, K, R) #\n\ 01021 # The projection matrix P projects 3D points into the rectified image.#\n\ 01022 #######################################################################\n\ 01023 \n\ 01024 # The image dimensions with which the camera was calibrated. Normally\n\ 01025 # this will be the full camera resolution in pixels.\n\ 01026 uint32 height\n\ 01027 uint32 width\n\ 01028 \n\ 01029 # The distortion model used. Supported models are listed in\n\ 01030 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01031 # simple model of radial and tangential distortion - is sufficent.\n\ 01032 string distortion_model\n\ 01033 \n\ 01034 # The distortion parameters, size depending on the distortion model.\n\ 01035 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01036 float64[] D\n\ 01037 \n\ 01038 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01039 # [fx 0 cx]\n\ 01040 # K = [ 0 fy cy]\n\ 01041 # [ 0 0 1]\n\ 01042 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01043 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01044 # (cx, cy).\n\ 01045 float64[9] K # 3x3 row-major matrix\n\ 01046 \n\ 01047 # Rectification matrix (stereo cameras only)\n\ 01048 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01049 # stereo image plane so that epipolar lines in both stereo images are\n\ 01050 # parallel.\n\ 01051 float64[9] R # 3x3 row-major matrix\n\ 01052 \n\ 01053 # Projection/camera matrix\n\ 01054 # [fx' 0 cx' Tx]\n\ 01055 # P = [ 0 fy' cy' Ty]\n\ 01056 # [ 0 0 1 0]\n\ 01057 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01058 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01059 # is the normal camera intrinsic matrix for the rectified image.\n\ 01060 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01061 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01062 # (cx', cy') - these may differ from the values in K.\n\ 01063 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01064 # also have R = the identity and P[1:3,1:3] = K.\n\ 01065 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01066 # position of the optical center of the second camera in the first\n\ 01067 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01068 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01069 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01070 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01071 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01072 # the rectified image is given by:\n\ 01073 # [u v w]' = P * [X Y Z 1]'\n\ 01074 # x = u / w\n\ 01075 # y = v / w\n\ 01076 # This holds for both images of a stereo pair.\n\ 01077 float64[12] P # 3x4 row-major matrix\n\ 01078 \n\ 01079 \n\ 01080 #######################################################################\n\ 01081 # Operational Parameters #\n\ 01082 #######################################################################\n\ 01083 # These define the image region actually captured by the camera #\n\ 01084 # driver. Although they affect the geometry of the output image, they #\n\ 01085 # may be changed freely without recalibrating the camera. #\n\ 01086 #######################################################################\n\ 01087 \n\ 01088 # Binning refers here to any camera setting which combines rectangular\n\ 01089 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01090 # resolution of the output image to\n\ 01091 # (width / binning_x) x (height / binning_y).\n\ 01092 # The default values binning_x = binning_y = 0 is considered the same\n\ 01093 # as binning_x = binning_y = 1 (no subsampling).\n\ 01094 uint32 binning_x\n\ 01095 uint32 binning_y\n\ 01096 \n\ 01097 # Region of interest (subwindow of full camera resolution), given in\n\ 01098 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01099 # always denotes the same window of pixels on the camera sensor,\n\ 01100 # regardless of binning settings.\n\ 01101 # The default setting of roi (all values 0) is considered the same as\n\ 01102 # full resolution (roi.width = width, roi.height = height).\n\ 01103 RegionOfInterest roi\n\ 01104 \n\ 01105 ================================================================================\n\ 01106 MSG: sensor_msgs/RegionOfInterest\n\ 01107 # This message is used to specify a region of interest within an image.\n\ 01108 #\n\ 01109 # When used to specify the ROI setting of the camera when the image was\n\ 01110 # taken, the height and width fields should either match the height and\n\ 01111 # width fields for the associated image; or height = width = 0\n\ 01112 # indicates that the full resolution image was captured.\n\ 01113 \n\ 01114 uint32 x_offset # Leftmost pixel of the ROI\n\ 01115 # (0 if the ROI includes the left edge of the image)\n\ 01116 uint32 y_offset # Topmost pixel of the ROI\n\ 01117 # (0 if the ROI includes the top edge of the image)\n\ 01118 uint32 height # Height of ROI\n\ 01119 uint32 width # Width of ROI\n\ 01120 \n\ 01121 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01122 # ROI in this message. Typically this should be False if the full image\n\ 01123 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01124 # used).\n\ 01125 bool do_rectify\n\ 01126 \n\ 01127 ================================================================================\n\ 01128 MSG: geometry_msgs/Vector3\n\ 01129 # This represents a vector in free space. \n\ 01130 \n\ 01131 float64 x\n\ 01132 float64 y\n\ 01133 float64 z\n\ 01134 "; 01135 } 01136 01137 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> &) { return value(); } 01138 }; 01139 01140 } // namespace message_traits 01141 } // namespace ros 01142 01143 namespace ros 01144 { 01145 namespace serialization 01146 { 01147 01148 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > 01149 { 01150 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01151 { 01152 stream.next(m.grasp); 01153 stream.next(m.goal); 01154 stream.next(m.max_contact_force); 01155 } 01156 01157 ROS_DECLARE_ALLINONE_SERIALIZER; 01158 }; // struct GraspHandPostureExecutionGoal_ 01159 } // namespace serialization 01160 } // namespace ros 01161 01162 namespace ros 01163 { 01164 namespace message_operations 01165 { 01166 01167 template<class ContainerAllocator> 01168 struct Printer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > 01169 { 01170 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> & v) 01171 { 01172 s << indent << "grasp: "; 01173 s << std::endl; 01174 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp); 01175 s << indent << "goal: "; 01176 Printer<int32_t>::stream(s, indent + " ", v.goal); 01177 s << indent << "max_contact_force: "; 01178 Printer<float>::stream(s, indent + " ", v.max_contact_force); 01179 } 01180 }; 01181 01182 01183 } // namespace message_operations 01184 } // namespace ros 01185 01186 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONGOAL_H 01187