rko_lio.lio_pipeline module¶
Equivalent logic to the ros wrapper’s message buffering. A convenience class to buffer IMU and LiDAR messages to ensure the core cpp implementation always gets the data in sync. The difference is this is not multi-threaded, therefore is a bit slower.
- class rko_lio.lio_pipeline.LIOPipeline(config: PipelineConfig)¶
Bases:
objectMinimal sequential pipeline for LIO processing with out-of-sync IMU/lidar. Buffers are managed internally; data is added via add_imu and add_lidar. When IMU data covers an already available lidar frame, registration is triggered.
- add_imu(time: float, acceleration: numpy.ndarray, angular_velocity: numpy.ndarray)¶
Add IMU measurement to pipeline (will be buffered until processed by lidar).
- Parameters:
time (float) – Measurement timestamp in seconds.
acceleration (array of float, shape (3,)) – Acceleration vector in m/s^2.
angular_velocity (array of float, shape (3,)) – Angular velocity in rad/s.
- add_lidar(scan: numpy.ndarray, timestamps: numpy.ndarray)¶
Add a lidar point cloud and absolute timestamps. Scan start and end times are inferred from the timestamps vector.
- Parameters:
scan (array of float, shape (N,3)) – Point cloud.
timestamps (array of float, shape (N,)) – Absolute timestamps (seconds) for each point.
- dump_results_to_disk()¶
Write LIO results to disk under LIOPipeline.output_dir.
Writes: - Trajectory (timestamps and poses) in TUM format text file. - Configuration as YAML file.
- property output_dir: Path¶
The directory used for file logging if enabled. Folder is {log_dir}/{run_name}_{index}. Automatically bumps the index (from 0) if similar names exist, to avoid overwriting.
- rko_lio.lio_pipeline.log_vector(rerun, entity_path_prefix: str, vector)¶
Logs a vector as three scalar time-series in rerun.
- Parameters:
rerun – rerun module
entity_path_prefix – Base path for scalar logs (e.g. “imu/avg_acceleration”)
vector – Iterable or np.ndarray with 3 elements (x, y, z)
- rko_lio.lio_pipeline.log_vector_columns(rerun, entity_path_prefix: str, times: numpy.ndarray, vectors: numpy.ndarray)¶
Log a batch of 3D vectors over multiple timestamps in rerun, sending one column batch per vector axis.
- Parameters:
rerun – rerun module or rerun instance.
entity_path_prefix – base path e.g. ‘imu/acceleration’.
times – 1D np.ndarray of timestamps (float64).
vectors – 2D np.ndarray, shape (N, 3) where columns are x,y,z.