37 #include <opencv2/calib3d/calib3d.hpp>
38 #include <opencv2/imgproc/imgproc.hpp>
39 #include <opencv2/video/tracking.hpp>
40 #include <opencv2/highgui/highgui.hpp>
41 #include <opencv2/imgproc/types_c.h>
45 #if CV_MAJOR_VERSION >= 3
46 #include <opencv2/photo/photo.hpp>
56 float ssd(
const cv::Mat & windowLeft,
const cv::Mat & windowRight)
58 UASSERT_MSG(windowLeft.type() == CV_8UC1 || windowLeft.type() == CV_32FC1 || windowLeft.type() == CV_16SC2,
uFormat(
"Type=%d", windowLeft.type()).c_str());
59 UASSERT(windowLeft.type() == windowRight.type());
60 UASSERT_MSG(windowLeft.rows == windowRight.rows,
uFormat(
"%d vs %d", windowLeft.rows, windowRight.rows).c_str());
61 UASSERT_MSG(windowLeft.cols == windowRight.cols,
uFormat(
"%d vs %d", windowLeft.cols, windowRight.cols).c_str());
64 for(
int v=0;
v<windowLeft.rows; ++
v)
66 for(
int u=0; u<windowLeft.cols; ++u)
69 if(windowLeft.type() == CV_8UC1)
71 s =
float(windowLeft.at<
unsigned char>(
v,u))-
float(windowRight.at<
unsigned char>(
v,u));
73 else if(windowLeft.type() == CV_32FC1)
75 s = windowLeft.at<
float>(
v,u)-windowRight.at<
float>(
v,u);
77 else if(windowLeft.type() == CV_16SC2)
79 float sL =
float(windowLeft.at<cv::Vec2s>(
v,u)[0])*0.5f+
float(windowLeft.at<cv::Vec2s>(
v,u)[1])*0.5f;
80 float sR =
float(windowRight.at<cv::Vec2s>(
v,u)[0])*0.5f+
float(windowRight.at<cv::Vec2s>(
v,u)[1])*0.5f;
91 float sad(
const cv::Mat & windowLeft,
const cv::Mat & windowRight)
93 UASSERT_MSG(windowLeft.type() == CV_8UC1 || windowLeft.type() == CV_32FC1 || windowLeft.type() == CV_16SC2,
uFormat(
"Type=%d", windowLeft.type()).c_str());
94 UASSERT(windowLeft.type() == windowRight.type());
95 UASSERT_MSG(windowLeft.rows == windowRight.rows,
uFormat(
"%d vs %d", windowLeft.rows, windowRight.rows).c_str());
96 UASSERT_MSG(windowLeft.cols == windowRight.cols,
uFormat(
"%d vs %d", windowLeft.cols, windowRight.cols).c_str());
99 for(
int v=0;
v<windowLeft.rows; ++
v)
101 for(
int u=0; u<windowLeft.cols; ++u)
103 if(windowLeft.type() == CV_8UC1)
105 score +=
fabs(
float(windowLeft.at<
unsigned char>(
v,u))-
float(windowRight.at<
unsigned char>(
v,u)));
107 else if(windowLeft.type() == CV_32FC1)
109 score +=
fabs(windowLeft.at<
float>(
v,u)-windowRight.at<
float>(
v,u));
111 else if(windowLeft.type() == CV_16SC2)
113 float sL =
float(windowLeft.at<cv::Vec2s>(
v,u)[0])*0.5f+
float(windowLeft.at<cv::Vec2s>(
v,u)[1])*0.5f;
114 float sR =
float(windowRight.at<cv::Vec2s>(
v,u)[0])*0.5f+
float(windowRight.at<cv::Vec2s>(
v,u)[1])*0.5f;
115 score +=
fabs(sL - sR);
123 const cv::Mat & leftImage,
124 const cv::Mat & rightImage,
125 const std::vector<cv::Point2f> & leftCorners,
126 std::vector<unsigned char> & status,
134 UDEBUG(
"winSize=(%d,%d)", winSize.width, winSize.height);
135 UDEBUG(
"maxLevel=%d", maxLevel);
136 UDEBUG(
"minDisparity=%f", minDisparityF);
137 UDEBUG(
"maxDisparity=%f", maxDisparityF);
138 UDEBUG(
"iterations=%d", iterations);
139 UDEBUG(
"ssdApproach=%d", ssdApproach?1:0);
140 UASSERT(minDisparityF >= 0.0
f && minDisparityF <= maxDisparityF);
143 if(winSize.width%2 == 0)
147 if(winSize.height%2 == 0)
152 cv::Size halfWin((winSize.width-1)/2, (winSize.height-1)/2);
155 double pyramidTime = 0.0;
156 double disparityTime = 0.0;
157 double subpixelTime = 0.0;
159 std::vector<cv::Point2f> rightCorners(leftCorners.size());
160 std::vector<cv::Mat> leftPyramid, rightPyramid;
161 maxLevel = cv::buildOpticalFlowPyramid( leftImage, leftPyramid, winSize, maxLevel,
false);
162 maxLevel = cv::buildOpticalFlowPyramid( rightImage, rightPyramid, winSize, maxLevel,
false);
163 pyramidTime =
timer.ticks();
165 status = std::vector<unsigned char>(leftCorners.size(), 0);
166 int totalIterations = 0;
171 for(
unsigned int i=0;
i<leftCorners.size(); ++
i)
174 float bestScore = -1.0f;
175 int bestScoreIndex = -1;
176 int tmpMinDisparity = minDisparity;
177 int tmpMaxDisparity = maxDisparity;
179 int iterationsDone = 0;
184 cv::Point2i center(
int(leftCorners[
i].
x/
float(1<<
level)),
int(leftCorners[
i].
y/
float(1<<
level)));
189 int localMaxDisparity = -tmpMaxDisparity / (1<<
level);
190 int localMinDisparity = -tmpMinDisparity / (1<<
level);
192 if(center.x-halfWin.width-(
level==0?1:0) >=0 && center.x+halfWin.width+(
level==0?1:0) < leftPyramid[
level].
cols &&
193 center.y-halfWin.height >=0 && center.y+halfWin.height < leftPyramid[
level].rows)
195 cv::Mat windowLeft(leftPyramid[
level],
196 cv::Range(center.y-halfWin.height,center.y+halfWin.height+1),
197 cv::Range(center.x-halfWin.width,center.x+halfWin.width+1));
198 int minCol = center.x+localMaxDisparity-halfWin.width;
201 localMaxDisparity -= minCol;
204 if(localMinDisparity > localMaxDisparity)
206 int length = localMinDisparity-localMaxDisparity+1;
207 std::vector<float> scores = std::vector<float>(
length, 0.0
f);
209 for(
int d=localMinDisparity;
d>localMaxDisparity; --
d)
212 cv::Mat windowRight(rightPyramid[
level],
213 cv::Range(center.y-halfWin.height,center.y+halfWin.height+1),
214 cv::Range(center.x+
d-halfWin.width,center.x+
d+halfWin.width+1));
215 scores[oi] = ssdApproach?
ssd(windowLeft, windowRight):
sad(windowLeft, windowRight);
216 if(scores[oi] > 0 && (bestScore < 0.0
f || scores[oi] < bestScore))
219 bestScore = scores[oi];
234 if(bestScoreIndex>=0)
236 if(bestScoreIndex>=0 &&
level>0)
238 tmpMaxDisparity = tmpMinDisparity+(bestScoreIndex+1)*(1<<
level);
239 tmpMaxDisparity+=tmpMaxDisparity%
level;
240 if(tmpMaxDisparity > maxDisparity)
242 tmpMaxDisparity = maxDisparity;
244 tmpMinDisparity = tmpMinDisparity+(bestScoreIndex-1)*(1<<
level);
245 tmpMinDisparity -= tmpMinDisparity%
level;
246 if(tmpMinDisparity < minDisparity)
248 tmpMinDisparity = minDisparity;
255 disparityTime+=
timer.ticks();
256 totalIterations+=iterationsDone;
258 if(bestScoreIndex>=0)
261 int d = -(tmpMinDisparity+bestScoreIndex);
263 cv::Mat windowLeft(winSize, CV_32FC1);
264 cv::Mat windowRight(winSize, CV_32FC1);
265 cv::getRectSubPix(leftPyramid[0],
270 if(leftCorners[
i].
x !=
float(
int(leftCorners[
i].
x)))
273 cv::getRectSubPix(rightPyramid[0],
275 cv::Point2f(leftCorners[
i].
x+
float(
d), leftCorners[
i].
y),
278 bestScore = ssdApproach?
ssd(windowLeft, windowRight):
sad(windowLeft, windowRight);
281 float xc = leftCorners[
i].x+
float(
d);
282 float vc = bestScore;
284 std::map<float, float> cache;
286 for(
int it=0; it<iterations; ++it)
294 cv::getRectSubPix(rightPyramid[0],
296 cv::Point2f(
x1, leftCorners[
i].
y),
299 v1 = ssdApproach?
ssd(windowLeft, windowRight):
sad(windowLeft, windowRight);
303 cv::getRectSubPix(rightPyramid[0],
305 cv::Point2f(
x2, leftCorners[
i].
y),
308 v2 = ssdApproach?
ssd(windowLeft, windowRight):
sad(windowLeft, windowRight);
311 float previousXc = xc;
312 float previousVc = vc;
323 cache.insert(std::make_pair(previousXc, previousVc));
327 float(leftCorners[
i].
x - xc) <= minDisparityF)
334 rightCorners[
i] = cv::Point2f(xc, leftCorners[
i].
y);
335 status[
i] = reject?0:1;
338 if(leftCorners[
i].
x+
float(
d) != xc)
345 subpixelTime+=
timer.ticks();
347 UDEBUG(
"SubPixel=%d/%d added (total=%d)", noSubPixel, added, (
int)status.size());
348 UDEBUG(
"totalIterations=%d", totalIterations);
349 UDEBUG(
"Time pyramid = %f s", pyramidTime);
350 UDEBUG(
"Time disparity = %f s", disparityTime);
351 UDEBUG(
"Time sub-pixel = %f s", subpixelTime);
358 #define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
372 cv::InputArray _prevPts, cv::InputOutputArray _nextPts,
373 cv::OutputArray _status, cv::OutputArray _err,
374 cv::Size winSize,
int maxLevel,
375 cv::TermCriteria criteria,
376 int flags,
double minEigThreshold )
378 cv::Mat prevPtsMat = _prevPts.getMat();
379 const int derivDepth = cv::DataType<short>::depth;
381 CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
384 CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F,
true)) >= 0 );
394 if( !(flags & cv::OPTFLOW_USE_INITIAL_FLOW) )
395 _nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1,
true);
397 cv::Mat nextPtsMat = _nextPts.getMat();
398 CV_Assert( nextPtsMat.checkVector(2, CV_32F,
true) == npoints );
400 const cv::Point2f* prevPts = prevPtsMat.ptr<cv::Point2f>();
401 cv::Point2f* nextPts = nextPtsMat.ptr<cv::Point2f>();
403 _status.create((
int)npoints, 1, CV_8U, -1,
true);
404 cv::Mat statusMat = _status.getMat(), errMat;
405 CV_Assert( statusMat.isContinuous() );
406 uchar* status = statusMat.ptr();
409 for(
i = 0;
i < npoints;
i++ )
414 _err.create((
int)npoints, 1, CV_32F, -1,
true);
415 errMat = _err.getMat();
416 CV_Assert( errMat.isContinuous() );
417 err = errMat.ptr<
float>();
420 std::vector<cv::Mat> prevPyr, nextPyr;
427 if(_prevImg.kind() != cv::_InputArray::STD_VECTOR_MAT)
430 maxLevel = cv::buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel,
true);
432 else if(_prevImg.kind() == cv::_InputArray::STD_VECTOR_MAT)
434 _prevImg.getMatVector(prevPyr);
437 levels1 =
int(prevPyr.size()) - 1;
438 CV_Assert(levels1 >= 0);
440 if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
451 prevPyr[lvlStep1].locateROI(fullSize, ofs);
452 CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
453 && ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
454 && ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
457 if(levels1 < maxLevel)
460 if(_nextImg.kind() != cv::_InputArray::STD_VECTOR_MAT)
463 maxLevel = cv::buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel,
false);
465 else if(_nextImg.kind() == cv::_InputArray::STD_VECTOR_MAT)
467 _nextImg.getMatVector(nextPyr);
470 levels2 =
int(nextPyr.size()) - 1;
471 CV_Assert(levels2 >= 0);
473 if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
484 nextPyr[lvlStep2].locateROI(fullSize, ofs);
485 CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
486 && ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
487 && ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
490 if(levels2 < maxLevel)
493 if( (criteria.type & cv::TermCriteria::COUNT) == 0 )
494 criteria.maxCount = 30;
497 if( (criteria.type & cv::TermCriteria::EPS) == 0 )
498 criteria.epsilon = 0.01;
501 criteria.epsilon *= criteria.epsilon;
506 cv::Mat derivI = prevPyr[
level * lvlStep1 + 1];
511 const cv::Mat & prevImg = prevPyr[
level * lvlStep1];
512 const cv::Mat & prevDeriv = derivI;
513 const cv::Mat & nextImg = nextPyr[
level * lvlStep2];
517 cv::Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
518 const cv::Mat&
I = prevImg;
519 const cv::Mat&
J = nextImg;
520 const cv::Mat& derivI = prevDeriv;
522 int j, cn =
I.channels(), cn2 = cn*2;
523 cv::AutoBuffer<short> _buf(winSize.area()*(cn + cn2));
524 int derivDepth = cv::DataType<short>::depth;
526 cv::Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (
short*)_buf);
527 cv::Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (
short*)_buf + winSize.area()*cn);
529 for(
int ptidx = 0; ptidx < npoints; ptidx++ )
531 cv::Point2f prevPt = prevPts[ptidx]*(
float)(1./(1 <<
level));
533 if(
level == maxLevel )
535 if( flags & cv::OPTFLOW_USE_INITIAL_FLOW )
536 nextPt = nextPts[ptidx]*(
float)(1./(1 <<
level));
541 nextPt = nextPts[ptidx]*2.f;
542 nextPts[ptidx] = nextPt;
544 cv::Point2i iprevPt, inextPt;
546 iprevPt.x = cvFloor(prevPt.x);
547 iprevPt.y = cvFloor(prevPt.y);
549 if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
550 iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
555 status[ptidx] =
false;
562 float a = prevPt.x - iprevPt.x;
563 float b = prevPt.y - iprevPt.y;
564 const int W_BITS = 14, W_BITS1 = 14;
565 const float FLT_SCALE = 1.f/(1 << 20);
566 int iw00 = cvRound((1.
f -
a)*(1.
f -
b)*(1 << W_BITS));
567 int iw01 = cvRound(
a*(1.
f -
b)*(1 << W_BITS));
568 int iw10 = cvRound((1.
f -
a)*
b*(1 << W_BITS));
569 int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
571 int dstep = (
int)(derivI.step/derivI.elemSize1());
572 int stepI = (
int)(
I.step/
I.elemSize1());
573 int stepJ = (
int)(
J.step/
J.elemSize1());
574 acctype iA11 = 0, iA12 = 0, iA22 = 0;
579 for(
y = 0;
y < winSize.height;
y++ )
581 const uchar* src =
I.ptr() + (
y + iprevPt.y)*stepI + iprevPt.x*cn;
582 const short* dsrc = derivI.ptr<
short>() + (
y + iprevPt.y)*dstep + iprevPt.x*cn2;
584 short* Iptr = IWinBuf.ptr<
short>(
y);
585 short* dIptr = derivIWinBuf.ptr<
short>(
y);
589 for( ;
x < winSize.width*cn;
x++, dsrc += 2, dIptr += 2 )
592 src[
x+stepI]*iw10 + src[
x+stepI+cn]*iw11, W_BITS1-5);
593 int ixval =
CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
594 dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
595 int iyval =
CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
596 dsrc[dstep+cn2+1]*iw11, W_BITS1);
598 Iptr[
x] = (short)ival;
599 dIptr[0] = (short)ixval;
600 dIptr[1] = (short)iyval;
608 A11 = iA11*FLT_SCALE;
609 A12 = iA12*FLT_SCALE;
610 A22 = iA22*FLT_SCALE;
614 4.
f*A12*A12))/(2*winSize.width*winSize.height);
616 if( err && (flags & cv::OPTFLOW_LK_GET_MIN_EIGENVALS) != 0 )
617 err[ptidx] = (
float)minEig;
619 if( minEig < minEigThreshold ||
D < FLT_EPSILON )
621 if(
level == 0 && status )
622 status[ptidx] =
false;
629 cv::Point2f prevDelta;
631 for(
j = 0;
j < criteria.maxCount;
j++ )
633 inextPt.x = cvFloor(nextPt.x);
634 inextPt.y = cvFloor(nextPt.y);
636 if( inextPt.x < -winSize.width || inextPt.x >=
J.cols ||
637 inextPt.y < -winSize.height || inextPt.y >=
J.rows )
639 if(
level == 0 && status )
640 status[ptidx] =
false;
644 a = nextPt.x - inextPt.x;
645 b = nextPt.y - inextPt.y;
646 iw00 = cvRound((1.
f -
a)*(1.
f -
b)*(1 << W_BITS));
647 iw01 = cvRound(
a*(1.
f -
b)*(1 << W_BITS));
648 iw10 = cvRound((1.
f -
a)*
b*(1 << W_BITS));
649 iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
653 for(
y = 0;
y < winSize.height;
y++ )
655 const uchar* Jptr =
J.ptr() + (
y + inextPt.y)*stepJ + inextPt.x*cn;
656 const short* Iptr = IWinBuf.ptr<
short>(
y);
657 const short* dIptr = derivIWinBuf.ptr<
short>(
y);
661 for( ;
x < winSize.width*cn;
x++, dIptr += 2 )
664 Jptr[
x+stepJ]*iw10 + Jptr[
x+stepJ+cn]*iw11,
665 W_BITS1-5) - Iptr[
x];
679 nextPts[ptidx] = nextPt + halfWin;
687 nextPts[ptidx] -=
delta*0.5f;
693 if( status[ptidx] && err &&
level == 0 && (flags & cv::OPTFLOW_LK_GET_MIN_EIGENVALS) == 0 )
695 cv::Point2f nextPoint = nextPts[ptidx] - halfWin;
696 cv::Point inextPoint;
698 inextPoint.x = cvFloor(nextPoint.x);
699 inextPoint.y = cvFloor(nextPoint.y);
701 if( inextPoint.x < -winSize.width || inextPoint.x >=
J.cols ||
702 inextPoint.y < -winSize.height || inextPoint.y >=
J.rows )
705 status[ptidx] =
false;
709 float aa = nextPoint.x - inextPoint.x;
710 float bb = nextPoint.y - inextPoint.y;
711 iw00 = cvRound((1.
f - aa)*(1.
f - bb)*(1 << W_BITS));
712 iw01 = cvRound(aa*(1.
f - bb)*(1 << W_BITS));
713 iw10 = cvRound((1.
f - aa)*bb*(1 << W_BITS));
714 iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
717 for(
y = 0;
y < winSize.height;
y++ )
719 const uchar* Jptr =
J.ptr() + (
y + inextPoint.y)*stepJ + inextPoint.x*cn;
720 const short* Iptr = IWinBuf.ptr<
short>(
y);
722 for(
x = 0;
x < winSize.width*cn;
x++ )
725 Jptr[
x+stepJ]*iw10 + Jptr[
x+stepJ+cn]*iw11,
726 W_BITS1-5) - Iptr[
x];
730 err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
739 const cv::Mat & leftImage,
740 const cv::Mat & rightImage,
743 UASSERT(!leftImage.empty() && !rightImage.empty());
744 UASSERT(leftImage.cols == rightImage.cols && leftImage.rows == rightImage.rows);
745 UASSERT((leftImage.type() == CV_8UC1 || leftImage.type() == CV_8UC3) && rightImage.type() == CV_8UC1);
748 if(leftImage.channels() == 3)
750 cv::cvtColor(leftImage, leftMono, CV_BGR2GRAY);
754 leftMono = leftImage;
764 float fx,
float baseline,
767 UASSERT(!disparity.empty() && (disparity.type() == CV_32FC1 || disparity.type() == CV_16SC1));
769 cv::Mat depth = cv::Mat::zeros(disparity.rows, disparity.cols,
type);
770 int countOverMax = 0;
771 for (
int i = 0;
i < disparity.rows;
i++)
773 for (
int j = 0;
j < disparity.cols;
j++)
775 float disparity_value = disparity.type() == CV_16SC1?
float(disparity.at<
short>(
i,
j))/16.0f:disparity.at<
float>(
i,
j);
776 if (disparity_value > 0.0
f)
782 if(depth.type() == CV_32FC1)
784 depth.at<
float>(
i,
j) =
d;
788 if(
d*1000.0
f <= (
float)USHRT_MAX)
790 depth.at<
unsigned short>(
i,
j) = (
unsigned short)(
d*1000.0f);
803 UWARN(
"Depth conversion error, %d depth values ignored because they are over the maximum depth allowed (65535 mm).", countOverMax);
809 const cv::Mat & leftImage,
810 const cv::Mat & rightImage,
811 const std::vector<cv::Point2f> & leftCorners,
819 UASSERT(!leftImage.empty() && !rightImage.empty() &&
820 leftImage.type() == CV_8UC1 && rightImage.type() == CV_8UC1 &&
821 leftImage.cols == rightImage.cols &&
822 leftImage.rows == rightImage.rows);
826 std::vector<unsigned char> status;
827 std::vector<float> err;
828 std::vector<cv::Point2f> rightCorners;
829 UDEBUG(
"cv::calcOpticalFlowPyrLK() begin");
830 cv::calcOpticalFlowPyrLK(
837 cv::Size(flowWinSize, flowWinSize), flowMaxLevel,
838 cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, flowIterations, flowEps),
839 cv::OPTFLOW_LK_GET_MIN_EIGENVALS, 1
e-4);
840 UDEBUG(
"cv::calcOpticalFlowPyrLK() end");
846 const cv::Size & disparitySize,
847 const std::vector<cv::Point2f> & leftCorners,
848 const std::vector<cv::Point2f> & rightCorners,
849 const std::vector<unsigned char> &
mask)
851 UASSERT(leftCorners.size() == rightCorners.size());
853 cv::Mat disparity = cv::Mat::zeros(disparitySize, CV_32FC1);
854 for(
unsigned int i=0;
i<leftCorners.size(); ++
i)
858 cv::Point2i dispPt(
int(leftCorners[
i].
y+0.5
f),
int(leftCorners[
i].
x+0.5
f));
859 UASSERT(dispPt.x >= 0 && dispPt.x < disparitySize.width);
860 UASSERT(dispPt.y >= 0 && dispPt.y < disparitySize.height);
861 disparity.at<
float>(dispPt.y, dispPt.x) = leftCorners[
i].
x - rightCorners[
i].
x;
868 const cv::Mat & leftImage,
869 const std::vector<cv::Point2f> & leftCorners,
870 const std::vector<cv::Point2f> & rightCorners,
871 const std::vector<unsigned char> &
mask,
872 float fx,
float baseline)
874 UASSERT(!leftImage.empty() && leftCorners.size() == rightCorners.size());
876 cv::Mat depth = cv::Mat::zeros(leftImage.rows, leftImage.cols, CV_32FC1);
877 for(
unsigned int i=0;
i<leftCorners.size(); ++
i)
881 float disparity = leftCorners[
i].x - rightCorners[
i].x;
885 depth.at<
float>(
int(leftCorners[
i].
y+0.5
f),
int(leftCorners[
i].
x+0.5
f)) =
d;
894 UASSERT(depth32F.empty() || depth32F.type() == CV_32FC1);
896 if(!depth32F.empty())
898 depth16U = cv::Mat(depth32F.rows, depth32F.cols, CV_16UC1);
899 int countOverMax = 0;
900 for(
int i=0;
i<depth32F.rows; ++
i)
902 for(
int j=0;
j<depth32F.cols; ++
j)
904 float depth = (depth32F.at<
float>(
i,
j)*1000.0
f);
905 unsigned short depthMM = 0;
906 if(depth > 0 && depth <= (
float)USHRT_MAX)
908 depthMM = (
unsigned short)depth;
910 else if(depth > (
float)USHRT_MAX)
914 depth16U.at<
unsigned short>(
i,
j) = depthMM;
919 UWARN(
"Depth conversion error, %d depth values ignored because "
920 "they are over the maximum depth allowed (65535 mm). Is the depth "
921 "image really in meters? 32 bits images should be in meters, "
922 "and 16 bits should be in mm.", countOverMax);
930 UASSERT(depth16U.empty() || depth16U.type() == CV_16UC1);
932 if(!depth16U.empty())
934 depth32F = cv::Mat(depth16U.rows, depth16U.cols, CV_32FC1);
935 for(
int i=0;
i<depth16U.rows; ++
i)
937 for(
int j=0;
j<depth16U.cols; ++
j)
939 float depth =
float(depth16U.at<
unsigned short>(
i,
j))/1000.0f;
940 depth32F.at<
float>(
i,
j) = depth;
948 const cv::Mat & depthImage,
951 float depthErrorRatio,
952 bool estWithNeighborsIfNull)
955 UASSERT(depthImage.type() == CV_16UC1 || depthImage.type() == CV_32FC1);
959 if(u == depthImage.cols &&
x<
float(depthImage.cols))
961 u = depthImage.cols - 1;
963 if(
v == depthImage.rows &&
y<
float(depthImage.rows))
965 v = depthImage.rows - 1;
968 if(!(u >=0 && u<depthImage.cols && v >=0 &&
v<depthImage.rows))
970 UDEBUG(
"!(x >=0 && x<depthImage.cols && y >=0 && y<depthImage.rows) cond failed! returning bad point. (x=%f (u=%d), y=%f (v=%d), cols=%d, rows=%d)",
971 x,u,
y,
v,depthImage.cols, depthImage.rows);
975 bool isInMM = depthImage.type() == CV_16UC1;
985 int u_end =
std::min(u+1, depthImage.cols-1);
986 int v_end =
std::min(
v+1, depthImage.rows-1);
991 if(depthImage.at<
unsigned short>(
v,u) > 0 &&
994 depth =
float(depthImage.at<
unsigned short>(
v,u))*0.001f;
999 depth = depthImage.at<
float>(
v,u);
1002 if((depth==0.0
f || !
uIsFinite(depth)) && estWithNeighborsIfNull)
1007 for(
int uu = u_start; uu <= u_end; ++uu)
1009 for(
int vv = v_start; vv <= v_end; ++vv)
1011 if((uu == u && vv!=
v) || (uu != u && vv==
v))
1016 if(depthImage.at<
unsigned short>(vv,uu) > 0 &&
1019 d =
float(depthImage.at<
unsigned short>(vv,uu))*0.001f;
1024 d = depthImage.at<
float>(vv,uu);
1035 float depthError = depthErrorRatio * tmp;
1057 float sumWeights = 0.0f;
1058 float sumDepths = 0.0f;
1059 for(
int uu = u_start; uu <= u_end; ++uu)
1061 for(
int vv = v_start; vv <= v_end; ++vv)
1063 if(!(uu == u && vv ==
v))
1068 if(depthImage.at<
unsigned short>(vv,uu) > 0 &&
1071 d =
float(depthImage.at<
unsigned short>(vv,uu))*0.001f;
1076 d = depthImage.at<
float>(vv,uu);
1079 float depthError = depthErrorRatio * depth;
1084 if(uu == u || vv ==
v)
1103 depth = (depth+sumDepths)/sumWeights;
1113 cv::Rect
computeRoi(
const cv::Mat & image,
const std::string & roiRatios)
1118 cv::Rect
computeRoi(
const cv::Size & imageSize,
const std::string & roiRatios)
1120 std::list<std::string> strValues =
uSplit(roiRatios,
' ');
1121 if(strValues.size() != 4)
1123 UERROR(
"The number of values must be 4 (roi=\"%s\")", roiRatios.c_str());
1127 std::vector<float>
values(4);
1129 for(std::list<std::string>::iterator
iter = strValues.begin();
iter!=strValues.end(); ++
iter)
1144 UERROR(
"The roi ratios are not valid (roi=\"%s\")", roiRatios.c_str());
1150 cv::Rect
computeRoi(
const cv::Mat & image,
const std::vector<float> & roiRatios)
1155 cv::Rect
computeRoi(
const cv::Size & imageSize,
const std::vector<float> & roiRatios)
1157 if(imageSize.height!=0 && imageSize.width!= 0 && roiRatios.size() == 4)
1159 float width = imageSize.width;
1160 float height = imageSize.height;
1161 cv::Rect roi(0, 0, width, height);
1162 UDEBUG(
"roi ratios = %f, %f, %f, %f", roiRatios[0],roiRatios[1],roiRatios[2],roiRatios[3]);
1163 UDEBUG(
"roi = %d, %d, %d, %d", roi.x, roi.y, roi.width, roi.height);
1166 if(roiRatios[0] > 0 && roiRatios[0] < 1.0
f - roiRatios[1])
1168 roi.x = width * roiRatios[0];
1172 if(roiRatios[1] > 0 && roiRatios[1] < 1.0
f - roiRatios[0])
1174 roi.width -= width * roiRatios[1];
1179 if(roiRatios[2] > 0 && roiRatios[2] < 1.0
f - roiRatios[3])
1181 roi.y = height * roiRatios[2];
1185 if(roiRatios[3] > 0 && roiRatios[3] < 1.0
f - roiRatios[2])
1187 roi.height -= height * roiRatios[3];
1189 roi.height -= roi.y;
1190 UDEBUG(
"roi = %d, %d, %d, %d", roi.x, roi.y, roi.width, roi.height);
1196 UERROR(
"Image is null or _roiRatios(=%d) != 4", roiRatios.size());
1201 cv::Mat
decimate(
const cv::Mat & image,
int decimation)
1209 if((image.type() == CV_32FC1 || image.type()==CV_16UC1))
1211 UASSERT_MSG(image.rows % decimation == 0 && image.cols % decimation == 0,
1212 uFormat(
"Decimation of depth images should be exact! (decimation=%d, size=%dx%d)",
1213 decimation, image.cols, image.rows).c_str());
1215 out = cv::Mat(image.rows/decimation, image.cols/decimation, image.type());
1216 if(image.type() == CV_32FC1)
1218 for(
int j=0;
j<
out.rows; ++
j)
1220 for(
int i=0;
i<
out.cols; ++
i)
1222 out.at<
float>(
j,
i) = image.at<
float>(
j*decimation,
i*decimation);
1228 for(
int j=0;
j<
out.rows; ++
j)
1230 for(
int i=0;
i<
out.cols; ++
i)
1232 out.at<
unsigned short>(
j,
i) = image.at<
unsigned short>(
j*decimation,
i*decimation);
1239 cv::resize(image,
out, cv::Size(), 1.0
f/
float(decimation), 1.0
f/
float(decimation), cv::INTER_AREA);
1250 cv::Mat
interpolate(
const cv::Mat & image,
int factor,
float depthErrorRatio)
1258 if((image.type() == CV_32FC1 || image.type()==CV_16UC1))
1261 out = cv::Mat::zeros(image.rows*factor, image.cols*factor, image.type());
1262 for(
int j=0;
j<
out.rows;
j+=factor)
1264 for(
int i=0;
i<
out.cols;
i+=factor)
1272 if(image.type() == CV_32FC1)
1274 dTopLeft = image.at<
float>(
j/factor-1,
i/factor-1);
1275 dTopRight = image.at<
float>(
j/factor-1,
i/factor);
1276 dBottomLeft = image.at<
float>(
j/factor,
i/factor-1);
1277 dBottomRight = image.at<
float>(
j/factor,
i/factor);
1281 dTopLeft = image.at<
unsigned short>(
j/factor-1,
i/factor-1);
1282 dTopRight = image.at<
unsigned short>(
j/factor-1,
i/factor);
1283 dBottomLeft = image.at<
unsigned short>(
j/factor,
i/factor-1);
1284 dBottomRight = image.at<
unsigned short>(
j/factor,
i/factor);
1287 if(dTopLeft>0 && dTopRight>0 && dBottomLeft>0 && dBottomRight > 0)
1289 float depthError = depthErrorRatio*(dTopLeft+dTopRight+dBottomLeft+dBottomRight)/4.0
f;
1290 if(
fabs(dTopLeft-dTopRight) <= depthError &&
1291 fabs(dTopLeft-dBottomLeft) <= depthError &&
1292 fabs(dTopLeft-dBottomRight) <= depthError)
1296 float slopeTop = (dTopRight-dTopLeft)/
float(factor);
1297 float slopeBottom = (dBottomRight-dBottomLeft)/
float(factor);
1298 if(image.type() == CV_32FC1)
1300 for(
int z=
i-factor;
z<=
i; ++
z)
1302 out.at<
float>(
j-factor,
z) = dTopLeft+(slopeTop*
float(
z-(
i-factor)));
1303 out.at<
float>(
j,
z) = dBottomLeft+(slopeBottom*
float(
z-(
i-factor)));
1308 for(
int z=
i-factor;
z<=
i; ++
z)
1310 out.at<
unsigned short>(
j-factor,
z) = (
unsigned short)(dTopLeft+(slopeTop*
float(
z-(
i-factor))));
1311 out.at<
unsigned short>(
j,
z) = (
unsigned short)(dBottomLeft+(slopeBottom*
float(
z-(
i-factor))));
1316 if(image.type() == CV_32FC1)
1318 for(
int z=
i-factor;
z<=
i; ++
z)
1320 float top =
out.at<
float>(
j-factor,
z);
1321 float bottom =
out.at<
float>(
j,
z);
1322 float slope = (bottom-top)/
float(factor);
1323 for(
int d=
j-factor+1;
d<
j; ++
d)
1325 out.at<
float>(
d,
z) = top+(slope*
float(
d-(
j-factor)));
1331 for(
int z=
i-factor;
z<=
i; ++
z)
1333 float top =
out.at<
unsigned short>(
j-factor,
z);
1334 float bottom =
out.at<
unsigned short>(
j,
z);
1335 float slope = (bottom-top)/
float(factor);
1336 for(
int d=
j-factor+1;
d<
j; ++
d)
1338 out.at<
unsigned short>(
d,
z) = (
unsigned short)(top+(slope*
float(
d-(
j-factor))));
1350 cv::resize(image,
out, cv::Size(),
float(factor),
float(factor));
1363 const cv::Mat & depth,
1364 const cv::Mat & depthK,
1365 const cv::Size & colorSize,
1366 const cv::Mat & colorK,
1371 UASSERT(depth.type() == CV_16UC1 || depth.type() == CV_32FC1);
1372 UASSERT(depthK.type() == CV_64FC1 && depthK.cols == 3 && depthK.cols == 3);
1373 UASSERT(colorK.type() == CV_64FC1 && colorK.cols == 3 && colorK.cols == 3);
1375 float fx = depthK.at<
double>(0,0);
1376 float fy = depthK.at<
double>(1,1);
1377 float cx = depthK.at<
double>(0,2);
1378 float cy = depthK.at<
double>(1,2);
1380 float rfx = colorK.at<
double>(0,0);
1381 float rfy = colorK.at<
double>(1,1);
1382 float rcx = colorK.at<
double>(0,2);
1383 float rcy = colorK.at<
double>(1,2);
1389 Eigen::Vector4f P4,P3;
1391 cv::Mat registered = cv::Mat::zeros(colorSize, depth.type());
1393 bool depthInMM = depth.type() == CV_16UC1;
1394 for(
int y=0;
y<depth.rows; ++
y)
1396 for(
int x=0;
x<depth.cols; ++
x)
1399 float dz = depthInMM?
float(depth.at<
unsigned short>(
y,
x))*0.001f:depth.at<
float>(
y,
x);
1403 P4[0] = (
x -
cx) * dz /
fx;
1404 P4[1] = (
y -
cy) * dz /
fy;
1409 float invZ = 1.0f/
z;
1410 int dx = (rfx*P3[0])*invZ + rcx;
1411 int dy = (rfy*P3[1])*invZ + rcy;
1417 unsigned short z16 =
z * 1000;
1418 unsigned short &zReg = registered.at<
unsigned short>(dy, dx);
1419 if(zReg == 0 || z16 < zReg)
1426 float &zReg = registered.at<
float>(dy, dx);
1427 if(zReg == 0 ||
z < zReg)
1441 UASSERT(depth.type() == CV_16UC1 || depth.type() == CV_32FC1);
1443 cv::Mat output = depth.clone();
1444 bool isMM = depth.type() == CV_16UC1;
1445 for(
int y=0;
y<depth.rows-2; ++
y)
1447 for(
int x=0;
x<depth.cols-2; ++
x)
1449 float a, bRight, bDown;
1452 a = depth.at<
unsigned short>(
y,
x);
1453 bRight = depth.at<
unsigned short>(
y,
x+1);
1454 bDown = depth.at<
unsigned short>(
y+1,
x);
1458 a = depth.at<
float>(
y,
x);
1459 bRight = depth.at<
float>(
y,
x+1);
1460 bDown = depth.at<
float>(
y+1,
x);
1463 if(
a > 0.0
f && (bRight == 0.0
f || bDown == 0.0
f))
1465 bool horizontalSet = bRight != 0.0f;
1466 bool verticalSet = bDown != 0.0f;
1468 for(
int h=1;
h<=maximumHoleSize && (!horizontalSet || !verticalSet); ++
h)
1473 if(
x+1+
h >= depth.cols)
1475 horizontalSet =
true;
1479 float c = isMM?depth.at<
unsigned short>(
y,
x+1+
h):depth.at<
float>(
y,
x+1+
h);
1487 float depthError = errorRatio*
float(
a+
c)/2.0f;
1488 if(
fabs(
a-
c) <= depthError)
1491 float slope = (
c-
a)/
float(
h+1);
1494 for(
int z=
x+1;
z<
x+1+
h; ++
z)
1496 unsigned short &
value = output.at<
unsigned short>(
y,
z);
1499 value = (
unsigned short)(
a+(slope*
float(
z-
x)));
1510 for(
int z=
x+1;
z<
x+1+
h; ++
z)
1512 float &
value = output.at<
float>(
y,
z);
1525 horizontalSet =
true;
1534 if(
y+1+
h >= depth.rows)
1540 float c = isMM?depth.at<
unsigned short>(
y+1+
h,
x):depth.at<
float>(
y+1+
h,
x);
1548 float depthError = errorRatio*
float(
a+
c)/2.0f;
1549 if(
fabs(
a-
c) <= depthError)
1552 float slope = (
c-
a)/
float(
h+1);
1555 for(
int z=
y+1;
z<
y+1+
h; ++
z)
1557 unsigned short &
value = output.at<
unsigned short>(
z,
x);
1560 value = (
unsigned short)(
a+(slope*
float(
z-
y)));
1571 for(
int z=
y+1;
z<
y+1+
h; ++
z)
1573 float &
value = output.at<
float>(
z,
x);
1600 UASSERT(registeredDepth.type() == CV_16UC1);
1601 int margin = fillDoubleHoles?2:1;
1602 for(
int x=1;
x<registeredDepth.cols-margin; ++
x)
1604 for(
int y=1;
y<registeredDepth.rows-margin; ++
y)
1606 unsigned short &
b = registeredDepth.at<
unsigned short>(
y,
x);
1610 const unsigned short &
a = registeredDepth.at<
unsigned short>(
y-1,
x);
1611 unsigned short &
c = registeredDepth.at<
unsigned short>(
y+1,
x);
1614 unsigned short error = 0.01*((
a+
c)/2);
1626 if(!
set && fillDoubleHoles)
1628 const unsigned short &
d = registeredDepth.at<
unsigned short>(
y+2,
x);
1629 if(
a &&
d && (
b==0 ||
c==0))
1631 unsigned short error = 0.01*((
a+
d)/2);
1638 unsigned short tmp = (
a-
d)/4;
1644 unsigned short tmp = (
d-
a)/4;
1657 if(!
set && horizontal)
1659 const unsigned short &
a = registeredDepth.at<
unsigned short>(
y,
x-1);
1660 unsigned short &
c = registeredDepth.at<
unsigned short>(
y,
x+1);
1663 unsigned short error = 0.01*((
a+
c)/2);
1671 if(!
set && fillDoubleHoles)
1673 const unsigned short &
d = registeredDepth.at<
unsigned short>(
y,
x+2);
1674 if(
a &&
d && (
b==0 ||
c==0))
1676 unsigned short error = 0.01*((
a+
d)/2);
1683 unsigned short tmp = (
a-
d)/4;
1689 unsigned short tmp = (
d-
a)/4;
1705 Array3D (
const size_t width,
const size_t height,
const size_t depth)
1710 v_ = std::vector<Eigen::Vector2f> (width*height*depth, Eigen::Vector2f (0.0
f, 0.0
f));
1713 inline Eigen::Vector2f&
1717 inline const Eigen::Vector2f&
1722 resize (
const size_t width,
const size_t height,
const size_t depth)
1735 const size_t x_index =
clamp (0,
x_dim_ - 1,
static_cast<size_t> (
x));
1736 const size_t xx_index =
clamp (0,
x_dim_ - 1, x_index + 1);
1738 const size_t y_index =
clamp (0,
y_dim_ - 1,
static_cast<size_t> (
y));
1739 const size_t yy_index =
clamp (0,
y_dim_ - 1, y_index + 1);
1741 const size_t z_index =
clamp (0,
z_dim_ - 1,
static_cast<size_t> (
z));
1742 const size_t zz_index =
clamp (0,
z_dim_ - 1, z_index + 1);
1744 const float x_alpha =
x -
static_cast<float> (x_index);
1745 const float y_alpha =
y -
static_cast<float> (y_index);
1746 const float z_alpha =
z -
static_cast<float> (z_index);
1749 (1.0
f-x_alpha) * (1.0f-y_alpha) * (1.0
f-z_alpha) * (*this)(x_index, y_index, z_index) +
1750 x_alpha * (1.0
f-y_alpha) * (1.0f-z_alpha) * (*
this)(xx_index, y_index, z_index) +
1751 (1.0
f-x_alpha) * y_alpha * (1.0f-z_alpha) * (*
this)(x_index, yy_index, z_index) +
1752 x_alpha * y_alpha * (1.0
f-z_alpha) * (*this)(xx_index, yy_index, z_index) +
1753 (1.0
f-x_alpha) * (1.0f-y_alpha) * z_alpha * (*
this)(x_index, y_index, zz_index) +
1754 x_alpha * (1.0
f-y_alpha) * z_alpha * (*this)(xx_index, y_index, zz_index) +
1755 (1.0
f-x_alpha) * y_alpha * z_alpha * (*this)(x_index, yy_index, zz_index) +
1756 x_alpha * y_alpha * z_alpha * (*
this)(xx_index, yy_index, zz_index);
1759 static inline size_t
1761 const size_t max_value,
1764 if (
x >= min_value &&
x <= max_value)
1768 else if (
x < min_value)
1790 inline std::vector<Eigen::Vector2f >::iterator
1792 {
return v_.begin (); }
1794 inline std::vector<Eigen::Vector2f >::iterator
1796 {
return v_.end (); }
1798 inline std::vector<Eigen::Vector2f >::const_iterator
1800 {
return v_.begin (); }
1802 inline std::vector<Eigen::Vector2f >::const_iterator
1804 {
return v_.end (); }
1807 std::vector<Eigen::Vector2f >
v_;
1816 UASSERT(!depth.empty() && (depth.type() == CV_32FC1 || depth.type() == CV_16UC1));
1817 UDEBUG(
"Begin: depth float=%d %dx%d sigmaS=%f sigmaR=%f earlDivision=%d",
1818 depth.type()==CV_32FC1?1:0, depth.cols, depth.rows, sigmaS, sigmaR, earlyDivision?1:0);
1820 cv::Mat output = cv::Mat::zeros(depth.size(), CV_32FC1);
1824 bool found_finite =
false;
1825 for (
int x = 0;
x < depth.cols; ++
x)
1826 for (
int y = 0;
y < depth.rows; ++
y)
1828 float z = depth.type()==CV_32FC1?depth.at<
float>(
y,
x):
float(depth.at<
unsigned short>(
y,
x))/1000.0
f;
1835 found_finite =
true;
1840 UWARN(
"Given an empty depth image. Doing nothing.");
1843 UDEBUG(
"base_min=%f base_max=%f", base_min, base_max);
1845 const float base_delta = base_max - base_min;
1847 const size_t padding_xy = 2;
1848 const size_t padding_z = 2;
1850 const size_t small_width =
static_cast<size_t> (
static_cast<float> (depth.cols - 1) / sigmaS) + 1 + 2 * padding_xy;
1851 const size_t small_height =
static_cast<size_t> (
static_cast<float> (depth.rows - 1) / sigmaS) + 1 + 2 * padding_xy;
1852 const size_t small_depth =
static_cast<size_t> (base_delta / sigmaR) + 1 + 2 * padding_z;
1854 UDEBUG(
"small_width=%d small_height=%d small_depth=%d", (
int)small_width, (
int)small_height, (
int)small_depth);
1855 Array3D data (small_width, small_height, small_depth);
1856 for (
int x = 0;
x < depth.cols; ++
x)
1858 const size_t small_x =
static_cast<size_t> (
static_cast<float> (
x) / sigmaS + 0.5
f) + padding_xy;
1859 for (
int y = 0;
y < depth.rows; ++
y)
1861 float v = depth.type()==CV_32FC1?depth.at<
float>(
y,
x):
float(depth.at<
unsigned short>(
y,
x))/1000.0
f;
1864 float z =
v - base_min;
1866 const size_t small_y =
static_cast<size_t> (
static_cast<float> (
y) / sigmaS + 0.5
f) + padding_xy;
1867 const size_t small_z =
static_cast<size_t> (
static_cast<float> (
z) / sigmaR + 0.5
f) + padding_z;
1869 Eigen::Vector2f&
d =
data (small_x, small_y, small_z);
1876 std::vector<long int>
offset (3);
1886 for (
size_t n_iter = 0; n_iter < 2; ++n_iter)
1889 for(
size_t x = 1;
x < small_width - 1; ++
x)
1890 for(
size_t y = 1;
y < small_height - 1; ++
y)
1892 Eigen::Vector2f* d_ptr = &(
data (
x,
y,1));
1893 Eigen::Vector2f* b_ptr = &(
buffer (
x,
y,1));
1895 for(
size_t z = 1;
z < small_depth - 1; ++
z, ++d_ptr, ++b_ptr)
1896 *d_ptr = (*(b_ptr - off) + *(b_ptr + off) + 2.0 * (*b_ptr)) / 4.0;
1903 for (std::vector<Eigen::Vector2f>::iterator
d =
data.begin ();
d !=
data.end (); ++
d)
1904 *
d /= ((*
d)[0] != 0) ? (*
d)[1] : 1;
1907 for (
int x = 0;
x < depth.cols; ++
x)
1908 for (
int y = 0;
y < depth.rows; ++
y)
1910 float z = depth.type()==CV_32FC1?depth.at<
float>(
y,
x):
float(depth.at<
unsigned short>(
y,
x))/1000.0
f;
1914 const Eigen::Vector2f
D =
data.trilinear_interpolation (
static_cast<float> (
x) / sigmaS + padding_xy,
1915 static_cast<float> (
y) / sigmaS + padding_xy,
1916 z / sigmaR + padding_z);
1917 float v = earlyDivision ?
D[0] :
D[0] /
D[1];
1918 if(v < base_min || v >= base_max)
1922 if(depth.type()==CV_16UC1 &&
v>65.5350f)
1926 output.at<
float>(
y,
x) =
v;
1942 cv::Mat
brightnessAndContrastAuto(
const cv::Mat &src,
const cv::Mat &
mask,
float clipLowHistPercent,
float clipHighHistPercent,
float * alphaOut,
float * betaOut)
1945 CV_Assert(clipLowHistPercent >= 0 && clipHighHistPercent>=0);
1946 CV_Assert((src.type() == CV_8UC1) || (src.type() == CV_8UC3) || (src.type() == CV_8UC4));
1950 double minGray = 0, maxGray = 0;
1954 if (src.type() == CV_8UC1) gray = src;
1955 else if (src.type() == CV_8UC3)
cvtColor(src, gray, CV_BGR2GRAY);
1956 else if (src.type() == CV_8UC4)
cvtColor(src, gray, CV_BGRA2GRAY);
1957 if (clipLowHistPercent == 0 && clipHighHistPercent == 0)
1960 cv::minMaxLoc(gray, &minGray, &maxGray, 0, 0,
mask);
1966 float range[] = { 0, 256 };
1967 const float* histRange = {
range };
1968 bool uniform =
true;
1969 bool accumulate =
false;
1970 calcHist(&gray, 1, 0,
mask, hist, 1, &histSize, &histRange, uniform, accumulate);
1973 std::vector<float> accumulator(histSize);
1974 accumulator[0] = hist.at<
float>(0);
1975 for (
int i = 1;
i < histSize;
i++)
1977 accumulator[
i] = accumulator[
i - 1] + hist.at<
float>(
i);
1981 float max = accumulator.back();
1982 clipLowHistPercent *= (
max / 100.0);
1983 clipHighHistPercent *= (
max / 100.0);
1986 while (accumulator[minGray] < clipLowHistPercent)
1990 maxGray = histSize - 1;
1991 while (accumulator[maxGray] >= (
max - clipHighHistPercent))
1996 float inputRange = maxGray - minGray;
1998 alpha = (histSize - 1) / inputRange;
2001 UINFO(
"minGray=%f maxGray=%f alpha=%f beta=%f", minGray, maxGray,
alpha,
beta);
2009 if (
dst.type() == CV_8UC4)
2011 int from_to[] = { 3, 3};
2012 cv::mixChannels(&src, 4, &
dst,1, from_to, 1);
2031 #if CV_MAJOR_VERSION >= 3
2032 cv::createMergeMertens()->process(images, fusion);
2034 UASSERT(fusion.channels() == 3);
2035 fusion.convertTo(rgb8, CV_8UC3, 255.0);
2038 UWARN(
"Exposure fusion is only available when rtabmap is built with OpenCV3.");
2041 fusion = images[0].clone();
2047 void HSVtoRGB(
float *r,
float *g,
float *b,
float h,
float s,
float v )
2060 q =
v * ( 1 -
s *
f );
2061 t =
v * ( 1 -
s * ( 1 -
f ) );
2097 const std::vector<cv::KeyPoint> & ptsIn,
2098 const cv::Mat & descriptorsIn,
2099 std::vector<cv::KeyPoint> & ptsOut,
2100 cv::Mat & descriptorsOut,
2101 int border,
int dist_thresh,
int img_width,
int img_height)
2103 std::vector<cv::Point2f> pts_raw;
2105 for (
size_t i = 0;
i < ptsIn.size();
i++)
2107 int u = (
int) ptsIn[
i].pt.x;
2108 int v = (
int) ptsIn[
i].pt.y;
2110 pts_raw.emplace_back(cv::Point2f(u,
v));
2117 cv::Mat grid = cv::Mat(cv::Size(img_width, img_height), CV_8UC1);
2118 cv::Mat inds = cv::Mat(cv::Size(img_width, img_height), CV_16UC1);
2120 cv::Mat confidence = cv::Mat(cv::Size(img_width, img_height), CV_32FC1);
2121 cv::Mat dilated_conf = cv::Mat(cv::Size(img_width, img_height), CV_32FC1);
2125 confidence.setTo(0);
2127 for (
size_t i = 0;
i < pts_raw.size();
i++)
2129 int uu = (
int) pts_raw[
i].
x;
2130 int vv = (
int) pts_raw[
i].
y;
2132 grid.at<
unsigned char>(vv, uu) = 100;
2133 inds.at<
unsigned short>(vv, uu) =
i;
2135 confidence.at<
float>(vv, uu) = ptsIn[
i].response;
2138 cv::dilate(confidence, dilated_conf, cv::Mat());
2139 cv::Mat peaks = confidence == dilated_conf;
2141 cv::copyMakeBorder(grid, grid, dist_thresh, dist_thresh, dist_thresh, dist_thresh, cv::BORDER_CONSTANT, 0);
2143 for (
size_t i = 0;
i < pts_raw.size();
i++)
2146 int uu = (
int) pts_raw[
i].
x + dist_thresh;
2147 int vv = (
int) pts_raw[
i].
y + dist_thresh;
2148 float c = confidence.at<
float>(vv-dist_thresh, uu-dist_thresh);
2150 if (grid.at<
unsigned char>(vv, uu) == 100)
2152 if (peaks.at<
unsigned char>(vv-dist_thresh, uu-dist_thresh) == 255)
2154 for(
int k = -dist_thresh; k < (dist_thresh+1); k++)
2156 for(
int j = -dist_thresh;
j < (dist_thresh+1);
j++)
2158 if ((
j==0 && k==0) || grid.at<
unsigned char>(vv + k, uu +
j) == 0)
2161 if (confidence.at<
float>(vv + k - dist_thresh, uu +
j - dist_thresh) <=
c)
2162 grid.at<
unsigned char>(vv + k, uu +
j) = 0;
2165 grid.at<
unsigned char>(vv, uu) = 255;
2169 grid.at<
unsigned char>(vv, uu) = 0;
2174 size_t valid_cnt = 0;
2175 std::vector<int> select_indice;
2177 grid = cv::Mat(grid, cv::Rect(dist_thresh, dist_thresh, img_width, img_height));
2179 for (
int v = 0;
v < img_height;
v++)
2181 for (
int u = 0; u < img_width; u++)
2183 if (grid.at<
unsigned char>(
v,u) == 255)
2185 int select_ind = (
int) inds.at<
unsigned short>(
v, u);
2186 ptsOut.emplace_back(ptsIn[select_ind]);
2187 select_indice.emplace_back(select_ind);
2193 if(!descriptorsIn.empty())
2195 UASSERT(descriptorsIn.rows == (
int)ptsIn.size());
2196 descriptorsOut.create(select_indice.size(), 256, CV_32F);
2198 for (
size_t i=0;
i<select_indice.size();
i++)
2200 descriptorsIn.row(select_indice[
i]).copyTo(descriptorsOut.row(
i));
2206 const std::vector<cv::KeyPoint> & keypoints,
int maxKeypoints,
float tolerance,
int cols,
int rows,
const std::vector<int> & indx)
2208 bool useIndx = keypoints.size() == indx.size();
2211 int exp1 =
rows +
cols + 2*maxKeypoints;
2214 double exp4 = maxKeypoints - 1;
2216 double sol1 = -
round((exp1 + exp3) / exp4);
2217 double sol2 = -
round((exp1 - exp3) / exp4);
2220 int high = (sol1 > sol2) ? sol1 : sol2;
2221 int low =
floor(
sqrt((
double)keypoints.size() / maxKeypoints));
2227 unsigned int Kmin =
round(maxKeypoints - (maxKeypoints * tolerance));
2228 unsigned int Kmax =
round(maxKeypoints + (maxKeypoints * tolerance));
2230 std::vector<int> ResultVec,
result;
2231 result.reserve(keypoints.size());
2233 bool complete =
false;
2236 width = low + (high - low) / 2;
2237 if(width==prevWidth || low>high)
2243 double c = (double)width / 2.0;
2246 cv::Mat coveredMask = cv::Mat::zeros(numCellRows + 1, numCellCols + 1, CV_8UC1);
2248 for(
unsigned int i=0;
i<keypoints.size(); ++
i)
2250 int row =
floor(keypoints[useIndx?indx[
i]:
i].pt.y /
c);
2251 int col =
floor(keypoints[useIndx?indx[
i]:
i].pt.x /
c);
2254 result.push_back(useIndx?indx[
i]:
i);
2256 int rowMax = ((
row +
floor(width /
c)) <= numCellRows) ? (
row +
floor(width /
c)) : numCellRows;
2258 int colMax = ((
col +
floor(width /
c)) <= numCellCols) ? (
col +
floor(width /
c)) : numCellCols;
2259 coveredMask(cv::Range(rowMin, rowMax + 1), cv::Range(colMin, colMax + 1)) = 255;
2268 else if(
result.size() < Kmin)
2290 UDEBUG(
"Ignoring image rotation as pitch(%f)>Pi/4",
pitch);
2302 cv::flip(rgb,rgb,1);
2303 cv::transpose(rgb,rgb);
2307 cv::flip(depth,depth,1);
2308 cv::transpose(depth,depth);
2310 cv::Size sizet(
model.imageHeight(),
model.imageWidth());
2316 model.localTransform()*
rtabmap::Transform(0,-1,0,0, 1,0,0,0, 0,0,1,0));
2317 model.setImageSize(sizet);
2324 cv::flip(rgb,rgb,1);
2325 cv::flip(rgb,rgb,0);
2329 cv::flip(depth,depth,1);
2330 cv::flip(depth,depth,0);
2332 cv::Size sizet(
model.imageWidth(),
model.imageHeight());
2339 model.setImageSize(sizet);
2346 cv::transpose(rgb,rgb);
2347 cv::flip(rgb,rgb,1);
2351 cv::transpose(depth,depth);
2352 cv::flip(depth,depth,1);
2354 cv::Size sizet(
model.imageHeight(),
model.imageWidth());
2360 model.localTransform()*
rtabmap::Transform(0,1,0,0, -1,0,0,0, 0,0,1,0));
2361 model.setImageSize(sizet);