Orb.cpp
Go to the documentation of this file.
1 /*********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2009, Willow Garage, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the Willow Garage nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *********************************************************************/
34 
39 #include <rtabmap/utilite/UStl.h>
40 
41 #include "opencv2/features2d/features2d.hpp"
42 #include "opencv2/imgproc/imgproc.hpp"
43 #include "opencv2/imgproc/imgproc_c.h"
44 #include <algorithm>
45 #include <iterator>
46 
47 #include "Orb.h"
49 
50 using namespace cv;
51 
52 namespace rtabmap
53 {
54 
55 const float HARRIS_K = 0.04f;
56 
61 static void
62 HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float harris_k)
63 {
64  CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 );
65 
66  size_t ptidx, ptsize = pts.size();
67 
68  const uchar* ptr00 = img.ptr<uchar>();
69  int step = (int)(img.step/img.elemSize1());
70  int r = blockSize/2;
71 
72  float scale = (1 << 2) * blockSize * 255.0f;
73  scale = 1.0f / scale;
74  float scale_sq_sq = scale * scale * scale * scale;
75 
76  AutoBuffer<int> ofsbuf(blockSize*blockSize);
77  int* ofs = ofsbuf;
78  for( int i = 0; i < blockSize; i++ )
79  for( int j = 0; j < blockSize; j++ )
80  ofs[i*blockSize + j] = (int)(i*step + j);
81 
82  for( ptidx = 0; ptidx < ptsize; ptidx++ )
83  {
84  int x0 = cvRound(pts[ptidx].pt.x - r);
85  int y0 = cvRound(pts[ptidx].pt.y - r);
86 
87  const uchar* ptr0 = ptr00 + y0*step + x0;
88  int a = 0, b = 0, c = 0;
89 
90  for( int k = 0; k < blockSize*blockSize; k++ )
91  {
92  const uchar* ptr = ptr0 + ofs[k];
93  int Ix = (ptr[1] - ptr[-1])*2 + (ptr[-step+1] - ptr[-step-1]) + (ptr[step+1] - ptr[step-1]);
94  int Iy = (ptr[step] - ptr[-step])*2 + (ptr[step-1] - ptr[-step-1]) + (ptr[step+1] - ptr[-step+1]);
95  a += Ix*Ix;
96  b += Iy*Iy;
97  c += Ix*Iy;
98  }
99  pts[ptidx].response = ((float)a * b - (float)c * c -
100  harris_k * ((float)a + b) * ((float)a + b))*scale_sq_sq;
101  }
102 }
103 
105 
106 static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
107  const std::vector<int> & u_max)
108 {
109  int m_01 = 0, m_10 = 0;
110 
111  const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));
112 
113  // Treat the center line differently, v=0
114  for (int u = -half_k; u <= half_k; ++u)
115  m_10 += u * center[u];
116 
117  // Go line by line in the circular patch
118  int step = (int)image.step1();
119  for (int v = 1; v <= half_k; ++v)
120  {
121  // Proceed over the two lines
122  int v_sum = 0;
123  int d = u_max[v];
124  for (int u = -d; u <= d; ++u)
125  {
126  int val_plus = center[u + v*step], val_minus = center[u - v*step];
127  v_sum += (val_plus - val_minus);
128  m_10 += u * (val_plus + val_minus);
129  }
130  m_01 += v * v_sum;
131  }
132 
133  return fastAtan2((float)m_01, (float)m_10);
134 }
135 
137 
138 static void computeOrbDescriptor(const KeyPoint& kpt,
139  const Mat& img, const Point* pattern,
140  uchar* desc, int dsize, int WTA_K)
141 {
142  float angle = kpt.angle;
143  //angle = cvFloor(angle/12)*12.f;
144  angle *= (float)(CV_PI/180.f);
145  float a = (float)cos(angle), b = (float)sin(angle);
146 
147  const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
148  int step = (int)img.step;
149 
150  float x, y;
151  int ix, iy;
152 #if 1
153  #define GET_VALUE(idx) \
154  (x = pattern[idx].x*a - pattern[idx].y*b, \
155  y = pattern[idx].x*b + pattern[idx].y*a, \
156  ix = cvRound(x), \
157  iy = cvRound(y), \
158  *(center + iy*step + ix) )
159 #else
160  #define GET_VALUE(idx) \
161  (x = pattern[idx].x*a - pattern[idx].y*b, \
162  y = pattern[idx].x*b + pattern[idx].y*a, \
163  ix = cvFloor(x), iy = cvFloor(y), \
164  x -= ix, y -= iy, \
165  cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
166  center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
167 #endif
168 
169  if( WTA_K == 2 )
170  {
171  for (int i = 0; i < dsize; ++i, pattern += 16)
172  {
173  int t0, t1, val;
174  t0 = GET_VALUE(0); t1 = GET_VALUE(1);
175  val = t0 < t1;
176  t0 = GET_VALUE(2); t1 = GET_VALUE(3);
177  val |= (t0 < t1) << 1;
178  t0 = GET_VALUE(4); t1 = GET_VALUE(5);
179  val |= (t0 < t1) << 2;
180  t0 = GET_VALUE(6); t1 = GET_VALUE(7);
181  val |= (t0 < t1) << 3;
182  t0 = GET_VALUE(8); t1 = GET_VALUE(9);
183  val |= (t0 < t1) << 4;
184  t0 = GET_VALUE(10); t1 = GET_VALUE(11);
185  val |= (t0 < t1) << 5;
186  t0 = GET_VALUE(12); t1 = GET_VALUE(13);
187  val |= (t0 < t1) << 6;
188  t0 = GET_VALUE(14); t1 = GET_VALUE(15);
189  val |= (t0 < t1) << 7;
190 
191  desc[i] = (uchar)val;
192  }
193  }
194  else if( WTA_K == 3 )
195  {
196  for (int i = 0; i < dsize; ++i, pattern += 12)
197  {
198  int t0, t1, t2, val;
199  t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
200  val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
201 
202  t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
203  val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
204 
205  t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
206  val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
207 
208  t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
209  val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
210 
211  desc[i] = (uchar)val;
212  }
213  }
214  else if( WTA_K == 4 )
215  {
216  for (int i = 0; i < dsize; ++i, pattern += 16)
217  {
218  int t0, t1, t2, t3, u, v, k, val;
219  t0 = GET_VALUE(0); t1 = GET_VALUE(1);
220  t2 = GET_VALUE(2); t3 = GET_VALUE(3);
221  u = 0, v = 2;
222  if( t1 > t0 ) t0 = t1, u = 1;
223  if( t3 > t2 ) t2 = t3, v = 3;
224  k = t0 > t2 ? u : v;
225  val = k;
226 
227  t0 = GET_VALUE(4); t1 = GET_VALUE(5);
228  t2 = GET_VALUE(6); t3 = GET_VALUE(7);
229  u = 0, v = 2;
230  if( t1 > t0 ) t0 = t1, u = 1;
231  if( t3 > t2 ) t2 = t3, v = 3;
232  k = t0 > t2 ? u : v;
233  val |= k << 2;
234 
235  t0 = GET_VALUE(8); t1 = GET_VALUE(9);
236  t2 = GET_VALUE(10); t3 = GET_VALUE(11);
237  u = 0, v = 2;
238  if( t1 > t0 ) t0 = t1, u = 1;
239  if( t3 > t2 ) t2 = t3, v = 3;
240  k = t0 > t2 ? u : v;
241  val |= k << 4;
242 
243  t0 = GET_VALUE(12); t1 = GET_VALUE(13);
244  t2 = GET_VALUE(14); t3 = GET_VALUE(15);
245  u = 0, v = 2;
246  if( t1 > t0 ) t0 = t1, u = 1;
247  if( t3 > t2 ) t2 = t3, v = 3;
248  k = t0 > t2 ? u : v;
249  val |= k << 6;
250 
251  desc[i] = (uchar)val;
252  }
253  }
254  else
255  CV_Error( CV_StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );
256 
257  #undef GET_VALUE
258 }
259 
260 
261 static void initializeOrbPattern( const Point* pattern0, std::vector<Point>& pattern, int ntuples, int tupleSize, int poolSize )
262 {
263  RNG rng(0x12345678);
264  int i, k, k1;
265  pattern.resize(ntuples*tupleSize);
266 
267  for( i = 0; i < ntuples; i++ )
268  {
269  for( k = 0; k < tupleSize; k++ )
270  {
271  for(;;)
272  {
273  int idx = rng.uniform(0, poolSize);
274  Point pt = pattern0[idx];
275  for( k1 = 0; k1 < k; k1++ )
276  if( pattern[tupleSize*i + k1] == pt )
277  break;
278  if( k1 == k )
279  {
280  pattern[tupleSize*i + k] = pt;
281  break;
282  }
283  }
284  }
285  }
286 }
287 
288 static int bit_pattern_31_[256*4] =
289 {
290  8,-3, 9,5/*mean (0), correlation (0)*/,
291  4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
292  -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
293  7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
294  2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
295  1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
296  -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
297  -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
298  -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
299  10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
300  -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
301  -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
302  7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
303  -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
304  -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
305  -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
306  12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
307  -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
308  -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
309  11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
310  4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
311  5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
312  3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
313  -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
314  -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
315  -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
316  -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
317  -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
318  -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
319  5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
320  5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
321  1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
322  9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
323  4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
324  2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
325  -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
326  -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
327  4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
328  0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
329  -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
330  -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
331  -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
332  8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
333  0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
334  7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
335  -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
336  10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
337  -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
338  10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
339  -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
340  -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
341  3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
342  5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
343  -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
344  3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
345  2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
346  -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
347  -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
348  -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
349  -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
350  6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
351  -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
352  -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
353  -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
354  3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
355  -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
356  -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
357  2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
358  -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
359  -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
360  5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
361  -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
362  -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
363  -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
364  10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
365  7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
366  -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
367  -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
368  7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
369  -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
370  -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
371  -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
372  7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
373  -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
374  1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
375  2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
376  -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
377  -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
378  7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
379  1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
380  9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
381  -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
382  -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
383  7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
384  12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
385  6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
386  5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
387  2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
388  3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
389  2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
390  9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
391  -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
392  -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
393  1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
394  6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
395  2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
396  6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
397  3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
398  7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
399  -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
400  -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
401  -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
402  -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
403  8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
404  4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
405  -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
406  4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
407  -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
408  -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
409  7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
410  -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
411  -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
412  8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
413  -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
414  1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
415  7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
416  -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
417  11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
418  -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
419  3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
420  5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
421  0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
422  -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
423  0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
424  -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
425  5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
426  3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
427  -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
428  -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
429  -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
430  6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
431  -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
432  -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
433  1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
434  4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
435  -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
436  2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
437  -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
438  4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
439  -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
440  -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
441  7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
442  4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
443  -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
444  7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
445  7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
446  -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
447  -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
448  -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
449  2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
450  10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
451  -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
452  8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
453  2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
454  -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
455  -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
456  -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
457  5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
458  -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
459  -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
460  -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
461  -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
462  -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
463  2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
464  -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
465  -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
466  -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
467  -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
468  6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
469  -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
470  11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
471  7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
472  -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
473  -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
474  -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
475  -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
476  -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
477  -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
478  -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
479  -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
480  1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
481  1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
482  9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
483  5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
484  -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
485  -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
486  -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
487  -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
488  8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
489  2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
490  7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
491  -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
492  -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
493  4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
494  3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
495  -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
496  5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
497  4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
498  -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
499  0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
500  -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
501  3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
502  -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
503  8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
504  -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
505  2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
506  10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
507  6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
508  -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
509  -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
510  -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
511  -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
512  -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
513  4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
514  2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
515  6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
516  3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
517  11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
518  -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
519  4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
520  2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
521  -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
522  -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
523  -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
524  6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
525  0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
526  -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
527  -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
528  -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
529  5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
530  2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
531  -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
532  9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
533  11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
534  3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
535  -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
536  3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
537  -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
538  5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
539  8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
540  7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
541  -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
542  7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
543  9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
544  7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
545  -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
546 };
547 
548 
549 static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
550 {
551  RNG rng(0x34985739); // we always start with a fixed seed,
552  // to make patterns the same on each run
553  for( int i = 0; i < npoints; i++ )
554  {
555  pattern[i].x = rng.uniform(-patchSize/2, patchSize/2+1);
556  pattern[i].y = rng.uniform(-patchSize/2, patchSize/2+1);
557  }
558 }
559 
560 
561 static inline float getScale(int level, int firstLevel, double scaleFactor)
562 {
563  return (float)std::pow(scaleFactor, (double)(level - firstLevel));
564 }
565 
569 CV_ORB::CV_ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold,
570  int _firstLevel, int _WTA_K, int _scoreType, int _patchSize, const ParametersMap & _fastParameters) :
571  nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
572  edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K),
573  scoreType(_scoreType), patchSize(_patchSize), fastParameters(_fastParameters)
574 {}
575 
576 
578 {
579  return kBytes;
580 }
581 
583 {
584  return CV_8U;
585 }
586 
592 void CV_ORB::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const
593 {
594  (*this)(image, mask, keypoints, noArray(), false);
595 }
596 
597 
604 static void computeOrientation(const Mat& image, std::vector<KeyPoint>& keypoints,
605  int halfPatchSize, const std::vector<int>& umax)
606 {
607  // Process each keypoint
608  for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
609  keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
610  {
611  keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
612  }
613 }
614 
615 
621 static void computeKeyPoints(const std::vector<Mat>& imagePyramid,
622  const std::vector<Mat>& maskPyramid,
623  std::vector<std::vector<KeyPoint> >& allKeypoints,
624  int nfeatures, int firstLevel, double scaleFactor,
625  int edgeThreshold, int patchSize, int scoreType,
626  ParametersMap fastParameters)
627 {
628  int nlevels = (int)imagePyramid.size();
629  std::vector<int> nfeaturesPerLevel(nlevels);
630 
631  // fill the extractors and descriptors for the corresponding scales
632  float factor = (float)(1.0 / scaleFactor);
633  float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
634 
635  int sumFeatures = 0;
636  for( int level = 0; level < nlevels-1; level++ )
637  {
638  nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
639  sumFeatures += nfeaturesPerLevel[level];
640  ndesiredFeaturesPerScale *= factor;
641  }
642  nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);
643 
644  // Make sure we forget about what is too close to the boundary
645  //edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2);
646 
647  // pre-compute the end of a row in a circular patch
648  int halfPatchSize = patchSize / 2;
649  std::vector<int> umax(halfPatchSize + 2);
650 
651  int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
652  int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
653  for (v = 0; v <= vmax; ++v)
654  umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v));
655 
656  // Make sure we are symmetric
657  for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
658  {
659  while (umax[v0] == umax[v0 + 1])
660  ++v0;
661  umax[v] = v0;
662  ++v0;
663  }
664 
665  allKeypoints.resize(nlevels);
666 
667  for (int level = 0; level < nlevels; ++level)
668  {
669  int featuresNum = nfeaturesPerLevel[level];
670  allKeypoints[level].reserve(featuresNum*2);
671 
672  std::vector<KeyPoint> & keypoints = allKeypoints[level];
673 
674  // Detect FAST features, maxFeatures is used by the GridAdaptor of FAST
675  uInsert(fastParameters, ParametersPair(Parameters::kKpMaxFeatures(), uNumber2Str(scoreType == CV_ORB::HARRIS_SCORE?2*featuresNum:featuresNum)));
676  FAST fast(fastParameters);
677  keypoints = fast.generateKeypoints(imagePyramid[level], maskPyramid[level]);
678 
679  // Remove keypoints very close to the border
680  KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);
681 
682  if( scoreType == CV_ORB::HARRIS_SCORE )
683  {
684  // Keep more points than necessary as FAST does not give amazing corners
685  KeyPointsFilter::retainBest(keypoints, 2 * featuresNum);
686 
687  // Compute the Harris cornerness (better scoring than FAST)
688  HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K);
689  }
690 
691  //cull to the final desired level, using the new Harris scores or the original FAST scores.
692  KeyPointsFilter::retainBest(keypoints, featuresNum);
693 
694  float sf = getScale(level, firstLevel, scaleFactor);
695 
696  // Set the level of the coordinates
697  for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
698  keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
699  {
700  keypoint->octave = level;
701  keypoint->size = patchSize*sf;
702  }
703 
704  computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax);
705  }
706 }
707 
708 
716 static void computeDescriptors(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors,
717  const std::vector<Point>& pattern, int dsize, int WTA_K)
718 {
719  //convert to grayscale if more than one color
720  CV_Assert(image.type() == CV_8UC1);
721  //create the descriptor mat, keypoints.size() rows, BYTES cols
722  descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);
723 
724  for (size_t i = 0; i < keypoints.size(); i++)
725  computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
726 }
727 
728 
737 void CV_ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& _keypoints,
738  OutputArray _descriptors, bool useProvidedKeypoints) const
739 {
740  CV_Assert(patchSize >= 2);
741 
742  bool do_keypoints = !useProvidedKeypoints;
743  bool do_descriptors = _descriptors.needed();
744 
745  if( (!do_keypoints && !do_descriptors) || _image.empty() )
746  return;
747 
748  //ROI handling
749  const int HARRIS_BLOCK_SIZE = 9;
750  int halfPatchSize = patchSize / 2;
751  int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1;
752 
753  Mat image = _image.getMat(), mask = _mask.getMat();
754  if( image.type() != CV_8UC1 )
755  cvtColor(_image, image, CV_BGR2GRAY);
756 
757  int levelsNum = this->nlevels;
758 
759  if( !do_keypoints )
760  {
761  // if we have pre-computed keypoints, they may use more levels than it is set in parameters
762  // !!!TODO!!! implement more correct method, independent from the used keypoint detector.
763  // Namely, the detector should provide correct size of each keypoint. Based on the keypoint size
764  // and the algorithm used (i.e. BRIEF, running on 31x31 patches) we should compute the approximate
765  // scale-factor that we need to apply. Then we should cluster all the computed scale-factors and
766  // for each cluster compute the corresponding image.
767  //
768  // In short, ultimately the descriptor should
769  // ignore octave parameter and deal only with the keypoint size.
770  levelsNum = 0;
771  for( size_t i = 0; i < _keypoints.size(); i++ )
772  levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0));
773  levelsNum++;
774  }
775 
776  // Pre-compute the scale pyramids
777  std::vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);
778  for (int level = 0; level < levelsNum; ++level)
779  {
780  float scale = 1/getScale(level, firstLevel, scaleFactor);
781  Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale));
782  Size wholeSize(sz.width + border*2, sz.height + border*2);
783  Mat temp(wholeSize, image.type()), masktemp;
784  imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));
785 
786  if( !mask.empty() )
787  {
788  masktemp = Mat(wholeSize, mask.type());
789  maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
790  }
791 
792  // Compute the resized image
793  if( level != firstLevel )
794  {
795  if( level < firstLevel )
796  {
797  resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR);
798  if (!mask.empty())
799  resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR);
800  }
801  else
802  {
803  resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR);
804  if (!mask.empty())
805  {
806  resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR);
807  threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO);
808  }
809  }
810 
811  copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
812  BORDER_REFLECT_101+BORDER_ISOLATED);
813  if (!mask.empty())
814  copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
815  BORDER_CONSTANT+BORDER_ISOLATED);
816  }
817  else
818  {
819  copyMakeBorder(image, temp, border, border, border, border,
820  BORDER_REFLECT_101);
821  if( !mask.empty() )
822  copyMakeBorder(mask, masktemp, border, border, border, border,
823  BORDER_CONSTANT+BORDER_ISOLATED);
824  }
825  }
826 
827  // Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
828  std::vector < std::vector<KeyPoint> > allKeypoints;
829  if( do_keypoints )
830  {
831  // Get keypoints, those will be far enough from the border that no check will be required for the descriptor
832  computeKeyPoints(imagePyramid, maskPyramid, allKeypoints,
836 
837  // make sure we have the right number of keypoints keypoints
838  /*vector<KeyPoint> temp;
839 
840  for (int level = 0; level < n_levels; ++level)
841  {
842  vector<KeyPoint>& keypoints = all_keypoints[level];
843  temp.insert(temp.end(), keypoints.begin(), keypoints.end());
844  keypoints.clear();
845  }
846 
847  KeyPoint::retainBest(temp, n_features_);
848 
849  for (vector<KeyPoint>::iterator keypoint = temp.begin(),
850  keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
851  all_keypoints[keypoint->octave].push_back(*keypoint);*/
852  }
853  else
854  {
855  // Remove keypoints very close to the border
856  KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);
857 
858  // Cluster the input keypoints depending on the level they were computed at
859  allKeypoints.resize(levelsNum);
860  for (std::vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
861  keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
862  allKeypoints[keypoint->octave].push_back(*keypoint);
863 
864  // Make sure we rescale the coordinates
865  for (int level = 0; level < levelsNum; ++level)
866  {
867  if (level == firstLevel)
868  continue;
869 
870  std::vector<KeyPoint> & keypoints = allKeypoints[level];
871  float scale = 1/getScale(level, firstLevel, scaleFactor);
872  for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
873  keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
874  keypoint->pt *= scale;
875  }
876  }
877 
878  Mat descriptors;
879  std::vector<Point> pattern;
880 
881  if( do_descriptors )
882  {
883  int nkeypoints = 0;
884  for (int level = 0; level < levelsNum; ++level)
885  nkeypoints += (int)allKeypoints[level].size();
886  if( nkeypoints == 0 )
887  _descriptors.release();
888  else
889  {
890  _descriptors.create(nkeypoints, descriptorSize(), CV_8U);
891  descriptors = _descriptors.getMat();
892  }
893 
894  const int npoints = 512;
895  Point patternbuf[npoints];
896  const Point* pattern0 = (const Point*)bit_pattern_31_;
897 
898  if( patchSize != 31 )
899  {
900  pattern0 = patternbuf;
901  makeRandomPattern(patchSize, patternbuf, npoints);
902  }
903 
904  CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 );
905 
906  if( WTA_K == 2 )
907  std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
908  else
909  {
910  int ntuples = descriptorSize()*4;
911  initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
912  }
913  }
914 
915  _keypoints.clear();
916  int offset = 0;
917  for (int level = 0; level < levelsNum; ++level)
918  {
919  // Get the features and compute their orientation
920  std::vector<KeyPoint>& keypoints = allKeypoints[level];
921  int nkeypoints = (int)keypoints.size();
922 
923  // Compute the descriptors
924  if (do_descriptors)
925  {
926  Mat desc;
927  if (!descriptors.empty())
928  {
929  desc = descriptors.rowRange(offset, offset + nkeypoints);
930  }
931 
932  offset += nkeypoints;
933  // preprocess the resized image
934  Mat& workingMat = imagePyramid[level];
935  //boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
936  GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
937  computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);
938  }
939 
940  // Copy to the output data
941  if (level != firstLevel)
942  {
943  float scale = getScale(level, firstLevel, scaleFactor);
944  for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
945  keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
946  keypoint->pt *= scale;
947  }
948  // And add the keypoints to the output
949  _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
950  }
951 }
952 
953 void CV_ORB::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
954 {
955  (*this)(image, mask, keypoints, noArray(), false);
956 }
957 
958 void CV_ORB::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
959 {
960  (*this)(image, Mat(), keypoints, descriptors, true);
961 }
962 
963 }
rtabmap::ParametersPair
std::pair< std::string, std::string > ParametersPair
Definition: Parameters.h:44
int
int
rtabmap::getScale
static float getScale(int level, int firstLevel, double scaleFactor)
Definition: Orb.cpp:561
rtabmap::CV_ORB::scaleFactor
CV_PROP_RW double scaleFactor
Definition: Orb.h:85
glm::mask
GLM_FUNC_DECL genIType mask(genIType const &count)
rtabmap::computeDescriptors
static void computeDescriptors(const Mat &image, std::vector< KeyPoint > &keypoints, Mat &descriptors, const std::vector< Point > &pattern, int dsize, int WTA_K)
Definition: Orb.cpp:716
rtabmap::CV_ORB::descriptorType
int descriptorType() const
Definition: Orb.cpp:582
rtabmap::CV_ORB::scoreType
CV_PROP_RW int scoreType
Definition: Orb.h:90
b
Array< int, 3, 1 > b
rtabmap::FAST
Definition: Features2d.h:351
rtflann::uchar
unsigned char uchar
Definition: matrix.h:69
c
Scalar Scalar * c
rtabmap::bit_pattern_31_
static int bit_pattern_31_[256 *4]
Definition: Orb.cpp:288
rtabmap::HarrisResponses
static void HarrisResponses(const Mat &img, std::vector< KeyPoint > &pts, int blockSize, float harris_k)
Definition: Orb.cpp:62
size
Index size
rtabmap::CV_ORB::descriptorSize
int descriptorSize() const
Definition: Orb.cpp:577
rtabmap_netvlad.img
img
Definition: rtabmap_netvlad.py:78
rtabmap::CV_ORB::fastParameters
ParametersMap fastParameters
Definition: Orb.h:93
rtabmap::CV_ORB::patchSize
CV_PROP_RW int patchSize
Definition: Orb.h:91
y
Matrix3f y
k1
CEPHES_EXTERN_EXPORT double k1(double x)
rtabmap::ParametersMap
std::map< std::string, std::string > ParametersMap
Definition: Parameters.h:43
rtabmap::initializeOrbPattern
static void initializeOrbPattern(const Point *pattern0, std::vector< Point > &pattern, int ntuples, int tupleSize, int poolSize)
Definition: Orb.cpp:261
glm::pow
GLM_FUNC_DECL genType pow(genType const &base, genType const &exponent)
desc
desc
uInsert
void uInsert(std::map< K, V > &map, const std::pair< K, V > &pair)
Definition: UStl.h:441
Orb.h
rtabmap::HARRIS_K
const float HARRIS_K
Definition: Orb.cpp:55
Features2d.h
scale
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics scale
j
std::ptrdiff_t j
uNumber2Str
std::string UTILITE_EXPORT uNumber2Str(unsigned int number)
Definition: UConversion.cpp:91
UConversion.h
Some conversion functions.
glm::sqrt
GLM_FUNC_DECL vecType< T, P > sqrt(vecType< T, P > const &x)
x0
x0
rtabmap::CV_ORB::operator()
void operator()(cv::InputArray image, cv::InputArray mask, std::vector< cv::KeyPoint > &keypoints) const
rtabmap::makeRandomPattern
static void makeRandomPattern(int patchSize, Point *pattern, int npoints)
Definition: Orb.cpp:549
glm::max
GLM_FUNC_DECL genType max(genType const &x, genType const &y)
step
def step(data, isam, result, truth, currPoseIndex, isamArgs=())
d
d
rtabmap::computeKeyPoints
static void computeKeyPoints(const std::vector< Mat > &imagePyramid, const std::vector< Mat > &maskPyramid, std::vector< std::vector< KeyPoint > > &allKeypoints, int nfeatures, int firstLevel, double scaleFactor, int edgeThreshold, int patchSize, int scoreType, ParametersMap fastParameters)
Definition: Orb.cpp:621
level
level
x
x
glm::angle
GLM_FUNC_DECL T angle(detail::tquat< T, P > const &x)
rtabmap::CV_ORB::nfeatures
CV_PROP_RW int nfeatures
Definition: Orb.h:84
rtabmap::CV_ORB::firstLevel
CV_PROP_RW int firstLevel
Definition: Orb.h:88
GET_VALUE
#define GET_VALUE(idx)
anyset::size
size_t size() const
offset
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate offset
f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
rtabmap::CV_ORB::HARRIS_SCORE
@ HARRIS_SCORE
Definition: Orb.h:62
a
ArrayXXi a
rtabmap::computeOrbDescriptor
static void computeOrbDescriptor(const KeyPoint &kpt, const Mat &img, const Point *pattern, uchar *desc, int dsize, int WTA_K)
Definition: Orb.cpp:138
y0
CEPHES_EXTERN_EXPORT double y0(double x)
rtabmap::CV_ORB::computeImpl
void computeImpl(const cv::Mat &image, std::vector< cv::KeyPoint > &keypoints, cv::Mat &descriptors) const
Definition: Orb.cpp:958
rtabmap::CV_ORB::detectImpl
void detectImpl(const cv::Mat &image, std::vector< cv::KeyPoint > &keypoints, const cv::Mat &mask=cv::Mat()) const
Definition: Orb.cpp:953
rtabmap::CV_ORB::edgeThreshold
CV_PROP_RW int edgeThreshold
Definition: Orb.h:87
glm::cos
GLM_FUNC_DECL genType cos(genType const &angle)
UStl.h
Wrappers of STL for convenient functions.
v
Array< int, Dynamic, 1 > v
float
float
Matrix< Scalar, Dynamic, Dynamic >
rtabmap::computeOrientation
static bool computeOrientation(Eigen::Vector3f A, Eigen::Vector3f E, Eigen::Quaternionf &orientation)
Definition: MadgwickFilter.cpp:151
cv
Definition: Features2d.h:42
resize
void resize(const MatrixTraits &t)
rtabmap::CV_ORB::WTA_K
CV_PROP_RW int WTA_K
Definition: Orb.h:89
rtabmap
Definition: CameraARCore.cpp:35
rtabmap::CV_ORB::nlevels
CV_PROP_RW int nlevels
Definition: Orb.h:86
i
int i
rtabmap::IC_Angle
static float IC_Angle(const Mat &image, const int half_k, Point2f pt, const std::vector< int > &u_max)
Definition: Orb.cpp:106
glm::sin
GLM_FUNC_DECL genType sin(genType const &angle)
rtabmap::CV_ORB::kBytes
@ kBytes
Definition: Orb.h:62
cvtColor
CvImagePtr cvtColor(const CvImageConstPtr &source, const std::string &encoding)
glm::fast
@ fast
Definition: type_gentype.hpp:36


rtabmap
Author(s): Mathieu Labbe
autogenerated on Sun Dec 1 2024 03:42:50