Public Member Functions | List of all members
ov_core::CpiV1 Class Reference

Model 1 of continuous preintegration. More...

#include <CpiV1.h>

Inheritance diagram for ov_core::CpiV1:
Inheritance graph
[legend]

Public Member Functions

 CpiV1 (double sigma_w, double sigma_wb, double sigma_a, double sigma_ab, bool imu_avg_=false)
 Default constructor for our Model 1 preintegration (piecewise constant measurement assumption) More...
 
void feed_IMU (double t_0, double t_1, Eigen::Matrix< double, 3, 1 > w_m_0, Eigen::Matrix< double, 3, 1 > a_m_0, Eigen::Matrix< double, 3, 1 > w_m_1=Eigen::Matrix< double, 3, 1 >::Zero(), Eigen::Matrix< double, 3, 1 > a_m_1=Eigen::Matrix< double, 3, 1 >::Zero())
 Our precompound function for Model 1. More...
 
virtual ~CpiV1 ()
 
- Public Member Functions inherited from ov_core::CpiBase
 CpiBase (double sigma_w, double sigma_wb, double sigma_a, double sigma_ab, bool imu_avg_=false)
 Default constructor. More...
 
void setLinearizationPoints (Eigen::Matrix< double, 3, 1 > b_w_lin_, Eigen::Matrix< double, 3, 1 > b_a_lin_, Eigen::Matrix< double, 4, 1 > q_k_lin_=Eigen::Matrix< double, 4, 1 >::Zero(), Eigen::Matrix< double, 3, 1 > grav_=Eigen::Matrix< double, 3, 1 >::Zero())
 Set linearization points of the integration. More...
 
virtual ~CpiBase ()
 

Additional Inherited Members

- Public Attributes inherited from ov_core::CpiBase
Eigen::Matrix< double, 3, 1 > alpha_tau = Eigen::Matrix<double, 3, 1>::Zero()
 alpha measurement mean More...
 
Eigen::Matrix< double, 3, 1 > b_a_lin
 b_a linearization point (accelerometer) More...
 
Eigen::Matrix< double, 3, 1 > b_w_lin
 b_w linearization point (gyroscope) More...
 
Eigen::Matrix< double, 3, 1 > beta_tau = Eigen::Matrix<double, 3, 1>::Zero()
 beta measurement mean More...
 
double DT = 0
 measurement integration time More...
 
Eigen::Matrix< double, 3, 1 > e_1
 
Eigen::Matrix< double, 3, 3 > e_1x
 
Eigen::Matrix< double, 3, 1 > e_2
 
Eigen::Matrix< double, 3, 3 > e_2x
 
Eigen::Matrix< double, 3, 1 > e_3
 
Eigen::Matrix< double, 3, 3 > e_3x
 
Eigen::Matrix< double, 3, 3 > eye3 = Eigen::Matrix<double, 3, 3>::Identity()
 
Eigen::Matrix< double, 3, 1 > grav = Eigen::Matrix<double, 3, 1>::Zero()
 Global gravity. More...
 
Eigen::Matrix< double, 3, 3 > H_a = Eigen::Matrix<double, 3, 3>::Zero()
 alpha Jacobian wrt b_a More...
 
Eigen::Matrix< double, 3, 3 > H_b = Eigen::Matrix<double, 3, 3>::Zero()
 beta Jacobian wrt b_a More...
 
bool imu_avg = false
 
Eigen::Matrix< double, 3, 3 > J_a = Eigen::Matrix<double, 3, 3>::Zero()
 alpha Jacobian wrt b_w More...
 
Eigen::Matrix< double, 3, 3 > J_b = Eigen::Matrix<double, 3, 3>::Zero()
 beta Jacobian wrt b_w More...
 
Eigen::Matrix< double, 3, 3 > J_q = Eigen::Matrix<double, 3, 3>::Zero()
 orientation Jacobian wrt b_w More...
 
Eigen::Matrix< double, 15, 15 > P_meas = Eigen::Matrix<double, 15, 15>::Zero()
 Our final measurement covariance. More...
 
Eigen::Matrix< double, 12, 12 > Q_c = Eigen::Matrix<double, 12, 12>::Zero()
 Our continous-time measurement noise matrix (computed from contructor noise values) More...
 
Eigen::Matrix< double, 4, 1 > q_k2tau
 orientation measurement mean More...
 
Eigen::Matrix< double, 4, 1 > q_k_lin
 q_k linearization point (only model 2 uses) More...
 
Eigen::Matrix< double, 3, 3 > R_k2tau = Eigen::Matrix<double, 3, 3>::Identity()
 orientation measurement mean More...
 

Detailed Description

Model 1 of continuous preintegration.

This model is the "piecewise constant measurement assumption" which was first presented in:

Eckenhoff, Kevin, Patrick Geneva, and Guoquan Huang. "High-accuracy preintegration for visual inertial navigation." International Workshop on the Algorithmic Foundations of Robotics. 2016.

Please see the following publication for details on the theory [Eckenhoff2019IJRR] :

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation Authors: Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang http://udel.edu/~ghuang/papers/tr_cpi.pdf

The steps to use this preintegration class are as follows:

  1. call setLinearizationPoints() to set the bias/orientation linearization point
  2. call feed_IMU() will all IMU measurements you want to precompound over
  3. access public varibles, to get means, Jacobians, and measurement covariance

Definition at line 52 of file CpiV1.h.

Constructor & Destructor Documentation

◆ CpiV1()

ov_core::CpiV1::CpiV1 ( double  sigma_w,
double  sigma_wb,
double  sigma_a,
double  sigma_ab,
bool  imu_avg_ = false 
)
inline

Default constructor for our Model 1 preintegration (piecewise constant measurement assumption)

Parameters
sigma_wgyroscope white noise density (rad/s/sqrt(hz))
sigma_wbgyroscope random walk (rad/s^2/sqrt(hz))
sigma_aaccelerometer white noise density (m/s^2/sqrt(hz))
sigma_abaccelerometer random walk (m/s^3/sqrt(hz))
imu_avg_if we want to average the imu measurements (IJRR paper did not do this)

Definition at line 63 of file CpiV1.h.

◆ ~CpiV1()

virtual ov_core::CpiV1::~CpiV1 ( )
inlinevirtual

Definition at line 66 of file CpiV1.h.

Member Function Documentation

◆ feed_IMU()

void CpiV1::feed_IMU ( double  t_0,
double  t_1,
Eigen::Matrix< double, 3, 1 >  w_m_0,
Eigen::Matrix< double, 3, 1 >  a_m_0,
Eigen::Matrix< double, 3, 1 >  w_m_1 = Eigen::Matrix<double, 3, 1>::Zero(),
Eigen::Matrix< double, 3, 1 >  a_m_1 = Eigen::Matrix<double, 3, 1>::Zero() 
)
virtual

Our precompound function for Model 1.

Parameters
[in]t_0first IMU timestamp
[in]t_1second IMU timestamp
[in]w_m_0first imu gyroscope measurement
[in]a_m_0first imu acceleration measurement
[in]w_m_1second imu gyroscope measurement
[in]a_m_1second imu acceleration measurement

We will first analytically integrate our meansurements and Jacobians. Then we perform numerical integration for our measurement covariance.

Implements ov_core::CpiBase.

Definition at line 33 of file CpiV1.cpp.


The documentation for this class was generated from the following files:


ov_core
Author(s): Patrick Geneva , Kevin Eckenhoff , Guoquan Huang
autogenerated on Mon Dec 16 2024 03:06:46