src/google/protobuf/message.h
Go to the documentation of this file.
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects. Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 // message Foo {
45 // optional string text = 1;
46 // repeated int32 numbers = 2;
47 // }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 // std::string data; // Will store a serialized version of the message.
53 //
54 // {
55 // // Create a message and serialize it.
56 // Foo foo;
57 // foo.set_text("Hello World!");
58 // foo.add_numbers(1);
59 // foo.add_numbers(5);
60 // foo.add_numbers(42);
61 //
62 // foo.SerializeToString(&data);
63 // }
64 //
65 // {
66 // // Parse the serialized message and check that it contains the
67 // // correct data.
68 // Foo foo;
69 // foo.ParseFromString(data);
70 //
71 // assert(foo.text() == "Hello World!");
72 // assert(foo.numbers_size() == 3);
73 // assert(foo.numbers(0) == 1);
74 // assert(foo.numbers(1) == 5);
75 // assert(foo.numbers(2) == 42);
76 // }
77 //
78 // {
79 // // Same as the last block, but do it dynamically via the Message
80 // // reflection interface.
81 // Message* foo = new Foo;
82 // const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 // // Get the descriptors for the fields we're interested in and verify
85 // // their types.
86 // const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 // assert(text_field != nullptr);
88 // assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 // const FieldDescriptor* numbers_field = descriptor->
91 // FindFieldByName("numbers");
92 // assert(numbers_field != nullptr);
93 // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 // // Parse the message.
97 // foo->ParseFromString(data);
98 //
99 // // Use the reflection interface to examine the contents.
100 // const Reflection* reflection = foo->GetReflection();
101 // assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 // assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 // delete foo;
108 // }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <iosfwd>
114 #include <string>
115 #include <type_traits>
116 #include <vector>
117 
120 #include <google/protobuf/arena.h>
124 #include <google/protobuf/port.h>
125 
126 
127 #define GOOGLE_PROTOBUF_HAS_ONEOF
128 #define GOOGLE_PROTOBUF_HAS_ARENAS
129 
130 #include <google/protobuf/port_def.inc>
131 
132 #ifdef SWIG
133 #error "You cannot SWIG proto headers"
134 #endif
135 
136 namespace google {
137 namespace protobuf {
138 
139 // Defined in this file.
140 class Message;
141 class Reflection;
142 class MessageFactory;
143 
144 // Defined in other files.
145 class AssignDescriptorsHelper;
146 class DynamicMessageFactory;
147 class MapKey;
148 class MapValueRef;
149 class MapIterator;
150 class MapReflectionTester;
151 
152 namespace internal {
153 struct DescriptorTable;
154 class MapFieldBase;
155 }
156 class UnknownFieldSet; // unknown_field_set.h
157 namespace io {
158 class ZeroCopyInputStream; // zero_copy_stream.h
159 class ZeroCopyOutputStream; // zero_copy_stream.h
160 class CodedInputStream; // coded_stream.h
161 class CodedOutputStream; // coded_stream.h
162 } // namespace io
163 namespace python {
164 class MapReflectionFriend; // scalar_map_container.h
165 }
166 namespace expr {
167 class CelMapReflectionFriend; // field_backed_map_impl.cc
168 }
169 
170 namespace internal {
171 class MapFieldPrinterHelper; // text_format.cc
172 }
173 
174 
175 namespace internal {
176 class ReflectionAccessor; // message.cc
177 class ReflectionOps; // reflection_ops.h
178 class MapKeySorter; // wire_format.cc
179 class WireFormat; // wire_format.h
180 class MapFieldReflectionTest; // map_test.cc
181 } // namespace internal
182 
183 template <typename T>
184 class RepeatedField; // repeated_field.h
185 
186 template <typename T>
187 class RepeatedPtrField; // repeated_field.h
188 
189 // A container to hold message metadata.
190 struct Metadata {
193 };
194 
195 // Abstract interface for protocol messages.
196 //
197 // See also MessageLite, which contains most every-day operations. Message
198 // adds descriptors and reflection on top of that.
199 //
200 // The methods of this class that are virtual but not pure-virtual have
201 // default implementations based on reflection. Message classes which are
202 // optimized for speed will want to override these with faster implementations,
203 // but classes optimized for code size may be happy with keeping them. See
204 // the optimize_for option in descriptor.proto.
205 class PROTOBUF_EXPORT Message : public MessageLite {
206  public:
207  inline Message() {}
208  ~Message() override {}
209 
210  // Basic Operations ------------------------------------------------
211 
212  // Construct a new instance of the same type. Ownership is passed to the
213  // caller. (This is also defined in MessageLite, but is defined again here
214  // for return-type covariance.)
215  Message* New() const override = 0;
216 
217  // Construct a new instance on the arena. Ownership is passed to the caller
218  // if arena is a nullptr. Default implementation allows for API compatibility
219  // during the Arena transition.
220  Message* New(Arena* arena) const override {
221  Message* message = New();
222  if (arena != nullptr) {
223  arena->Own(message);
224  }
225  return message;
226  }
227 
228  // Make this message into a copy of the given message. The given message
229  // must have the same descriptor, but need not necessarily be the same class.
230  // By default this is just implemented as "Clear(); MergeFrom(from);".
231  virtual void CopyFrom(const Message& from);
232 
233  // Merge the fields from the given message into this message. Singular
234  // fields will be overwritten, if specified in from, except for embedded
235  // messages which will be merged. Repeated fields will be concatenated.
236  // The given message must be of the same type as this message (i.e. the
237  // exact same class).
238  virtual void MergeFrom(const Message& from);
239 
240  // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
241  // a nice error message.
242  void CheckInitialized() const;
243 
244  // Slowly build a list of all required fields that are not set.
245  // This is much, much slower than IsInitialized() as it is implemented
246  // purely via reflection. Generally, you should not call this unless you
247  // have already determined that an error exists by calling IsInitialized().
248  void FindInitializationErrors(std::vector<std::string>* errors) const;
249 
250  // Like FindInitializationErrors, but joins all the strings, delimited by
251  // commas, and returns them.
252  std::string InitializationErrorString() const override;
253 
254  // Clears all unknown fields from this message and all embedded messages.
255  // Normally, if unknown tag numbers are encountered when parsing a message,
256  // the tag and value are stored in the message's UnknownFieldSet and
257  // then written back out when the message is serialized. This allows servers
258  // which simply route messages to other servers to pass through messages
259  // that have new field definitions which they don't yet know about. However,
260  // this behavior can have security implications. To avoid it, call this
261  // method after parsing.
262  //
263  // See Reflection::GetUnknownFields() for more on unknown fields.
264  virtual void DiscardUnknownFields();
265 
266  // Computes (an estimate of) the total number of bytes currently used for
267  // storing the message in memory. The default implementation calls the
268  // Reflection object's SpaceUsed() method.
269  //
270  // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
271  // using reflection (rather than the generated code implementation for
272  // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
273  // fields defined for the proto.
274  virtual size_t SpaceUsedLong() const;
275 
276  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
277  int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
278 
279  // Debugging & Testing----------------------------------------------
280 
281  // Generates a human readable form of this message, useful for debugging
282  // and other purposes.
283  std::string DebugString() const;
284  // Like DebugString(), but with less whitespace.
285  std::string ShortDebugString() const;
286  // Like DebugString(), but do not escape UTF-8 byte sequences.
287  std::string Utf8DebugString() const;
288  // Convenience function useful in GDB. Prints DebugString() to stdout.
289  void PrintDebugString() const;
290 
291  // Reflection-based methods ----------------------------------------
292  // These methods are pure-virtual in MessageLite, but Message provides
293  // reflection-based default implementations.
294 
295  std::string GetTypeName() const override;
296  void Clear() override;
297  bool IsInitialized() const override;
298  void CheckTypeAndMergeFrom(const MessageLite& other) override;
299 #if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
300  // Reflective parser
301  const char* _InternalParse(const char* ptr,
302  internal::ParseContext* ctx) override;
303 #else
305 #endif
306  size_t ByteSizeLong() const override;
307  void SerializeWithCachedSizes(io::CodedOutputStream* output) const override;
308 
309  private:
310  // This is called only by the default implementation of ByteSize(), to
311  // update the cached size. If you override ByteSize(), you do not need
312  // to override this. If you do not override ByteSize(), you MUST override
313  // this; the default implementation will crash.
314  //
315  // The method is private because subclasses should never call it; only
316  // override it. Yes, C++ lets you do that. Crazy, huh?
317  virtual void SetCachedSize(int size) const;
318 
319  public:
320  // Introspection ---------------------------------------------------
321 
322 
323  // Get a non-owning pointer to a Descriptor for this message's type. This
324  // describes what fields the message contains, the types of those fields, etc.
325  // This object remains property of the Message.
326  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
327 
328  // Get a non-owning pointer to the Reflection interface for this Message,
329  // which can be used to read and modify the fields of the Message dynamically
330  // (in other words, without knowing the message type at compile time). This
331  // object remains property of the Message.
332  //
333  // This method remains virtual in case a subclass does not implement
334  // reflection and wants to override the default behavior.
335  const Reflection* GetReflection() const { return GetMetadata().reflection; }
336 
337  protected:
338  // Get a struct containing the metadata for the Message. Most subclasses only
339  // need to implement this method, rather than the GetDescriptor() and
340  // GetReflection() wrappers.
341  virtual Metadata GetMetadata() const = 0;
342 
343 
344  private:
346 };
347 
348 namespace internal {
349 // Forward-declare interfaces used to implement RepeatedFieldRef.
350 // These are protobuf internals that users shouldn't care about.
351 class RepeatedFieldAccessor;
352 } // namespace internal
353 
354 // Forward-declare RepeatedFieldRef templates. The second type parameter is
355 // used for SFINAE tricks. Users should ignore it.
356 template <typename T, typename Enable = void>
358 
359 template <typename T, typename Enable = void>
361 
362 // This interface contains methods that can be used to dynamically access
363 // and modify the fields of a protocol message. Their semantics are
364 // similar to the accessors the protocol compiler generates.
365 //
366 // To get the Reflection for a given Message, call Message::GetReflection().
367 //
368 // This interface is separate from Message only for efficiency reasons;
369 // the vast majority of implementations of Message will share the same
370 // implementation of Reflection (GeneratedMessageReflection,
371 // defined in generated_message.h), and all Messages of a particular class
372 // should share the same Reflection object (though you should not rely on
373 // the latter fact).
374 //
375 // There are several ways that these methods can be used incorrectly. For
376 // example, any of the following conditions will lead to undefined
377 // results (probably assertion failures):
378 // - The FieldDescriptor is not a field of this message type.
379 // - The method called is not appropriate for the field's type. For
380 // each field type in FieldDescriptor::TYPE_*, there is only one
381 // Get*() method, one Set*() method, and one Add*() method that is
382 // valid for that type. It should be obvious which (except maybe
383 // for TYPE_BYTES, which are represented using strings in C++).
384 // - A Get*() or Set*() method for singular fields is called on a repeated
385 // field.
386 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
387 // field.
388 // - The Message object passed to any method is not of the right type for
389 // this Reflection object (i.e. message.GetReflection() != reflection).
390 //
391 // You might wonder why there is not any abstract representation for a field
392 // of arbitrary type. E.g., why isn't there just a "GetField()" method that
393 // returns "const Field&", where "Field" is some class with accessors like
394 // "GetInt32Value()". The problem is that someone would have to deal with
395 // allocating these Field objects. For generated message classes, having to
396 // allocate space for an additional object to wrap every field would at least
397 // double the message's memory footprint, probably worse. Allocating the
398 // objects on-demand, on the other hand, would be expensive and prone to
399 // memory leaks. So, instead we ended up with this flat interface.
400 class PROTOBUF_EXPORT Reflection final {
401  public:
402  // Get the UnknownFieldSet for the message. This contains fields which
403  // were seen when the Message was parsed but were not recognized according
404  // to the Message's definition.
405  const UnknownFieldSet& GetUnknownFields(const Message& message) const;
406  // Get a mutable pointer to the UnknownFieldSet for the message. This
407  // contains fields which were seen when the Message was parsed but were not
408  // recognized according to the Message's definition.
409  UnknownFieldSet* MutableUnknownFields(Message* message) const;
410 
411  // Estimate the amount of memory used by the message object.
412  size_t SpaceUsedLong(const Message& message) const;
413 
414  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
415  int SpaceUsed(const Message& message) const {
416  return internal::ToIntSize(SpaceUsedLong(message));
417  }
418 
419  // Check if the given non-repeated field is set.
420  bool HasField(const Message& message, const FieldDescriptor* field) const;
421 
422  // Get the number of elements of a repeated field.
423  int FieldSize(const Message& message, const FieldDescriptor* field) const;
424 
425  // Clear the value of a field, so that HasField() returns false or
426  // FieldSize() returns zero.
427  void ClearField(Message* message, const FieldDescriptor* field) const;
428 
429  // Check if the oneof is set. Returns true if any field in oneof
430  // is set, false otherwise.
431  bool HasOneof(const Message& message,
432  const OneofDescriptor* oneof_descriptor) const;
433 
434  void ClearOneof(Message* message,
435  const OneofDescriptor* oneof_descriptor) const;
436 
437  // Returns the field descriptor if the oneof is set. nullptr otherwise.
438  const FieldDescriptor* GetOneofFieldDescriptor(
439  const Message& message, const OneofDescriptor* oneof_descriptor) const;
440 
441  // Removes the last element of a repeated field.
442  // We don't provide a way to remove any element other than the last
443  // because it invites inefficient use, such as O(n^2) filtering loops
444  // that should have been O(n). If you want to remove an element other
445  // than the last, the best way to do it is to re-arrange the elements
446  // (using Swap()) so that the one you want removed is at the end, then
447  // call RemoveLast().
448  void RemoveLast(Message* message, const FieldDescriptor* field) const;
449  // Removes the last element of a repeated message field, and returns the
450  // pointer to the caller. Caller takes ownership of the returned pointer.
451  Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
452 
453  // Swap the complete contents of two messages.
454  void Swap(Message* message1, Message* message2) const;
455 
456  // Swap fields listed in fields vector of two messages.
457  void SwapFields(Message* message1, Message* message2,
458  const std::vector<const FieldDescriptor*>& fields) const;
459 
460  // Swap two elements of a repeated field.
461  void SwapElements(Message* message, const FieldDescriptor* field, int index1,
462  int index2) const;
463 
464  // List all fields of the message which are currently set, except for unknown
465  // fields, but including extension known to the parser (i.e. compiled in).
466  // Singular fields will only be listed if HasField(field) would return true
467  // and repeated fields will only be listed if FieldSize(field) would return
468  // non-zero. Fields (both normal fields and extension fields) will be listed
469  // ordered by field number.
470  // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
471  // access to fields/extensions unknown to the parser.
472  void ListFields(const Message& message,
473  std::vector<const FieldDescriptor*>* output) const;
474 
475  // Singular field getters ------------------------------------------
476  // These get the value of a non-repeated field. They return the default
477  // value for fields that aren't set.
478 
479  int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
480  int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
481  uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
482  uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
483  float GetFloat(const Message& message, const FieldDescriptor* field) const;
484  double GetDouble(const Message& message, const FieldDescriptor* field) const;
485  bool GetBool(const Message& message, const FieldDescriptor* field) const;
486  std::string GetString(const Message& message,
487  const FieldDescriptor* field) const;
488  const EnumValueDescriptor* GetEnum(const Message& message,
489  const FieldDescriptor* field) const;
490 
491  // GetEnumValue() returns an enum field's value as an integer rather than
492  // an EnumValueDescriptor*. If the integer value does not correspond to a
493  // known value descriptor, a new value descriptor is created. (Such a value
494  // will only be present when the new unknown-enum-value semantics are enabled
495  // for a message.)
496  int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
497 
498  // See MutableMessage() for the meaning of the "factory" parameter.
499  const Message& GetMessage(const Message& message,
500  const FieldDescriptor* field,
501  MessageFactory* factory = nullptr) const;
502 
503  // Get a string value without copying, if possible.
504  //
505  // GetString() necessarily returns a copy of the string. This can be
506  // inefficient when the std::string is already stored in a std::string object
507  // in the underlying message. GetStringReference() will return a reference to
508  // the underlying std::string in this case. Otherwise, it will copy the
509  // string into *scratch and return that.
510  //
511  // Note: It is perfectly reasonable and useful to write code like:
512  // str = reflection->GetStringReference(message, field, &str);
513  // This line would ensure that only one copy of the string is made
514  // regardless of the field's underlying representation. When initializing
515  // a newly-constructed string, though, it's just as fast and more
516  // readable to use code like:
517  // std::string str = reflection->GetString(message, field);
518  const std::string& GetStringReference(const Message& message,
519  const FieldDescriptor* field,
520  std::string* scratch) const;
521 
522 
523  // Singular field mutators -----------------------------------------
524  // These mutate the value of a non-repeated field.
525 
526  void SetInt32(Message* message, const FieldDescriptor* field,
527  int32 value) const;
528  void SetInt64(Message* message, const FieldDescriptor* field,
529  int64 value) const;
530  void SetUInt32(Message* message, const FieldDescriptor* field,
531  uint32 value) const;
532  void SetUInt64(Message* message, const FieldDescriptor* field,
533  uint64 value) const;
534  void SetFloat(Message* message, const FieldDescriptor* field,
535  float value) const;
536  void SetDouble(Message* message, const FieldDescriptor* field,
537  double value) const;
538  void SetBool(Message* message, const FieldDescriptor* field,
539  bool value) const;
540  void SetString(Message* message, const FieldDescriptor* field,
541  const std::string& value) const;
542  void SetEnum(Message* message, const FieldDescriptor* field,
543  const EnumValueDescriptor* value) const;
544  // Set an enum field's value with an integer rather than EnumValueDescriptor.
545  // For proto3 this is just setting the enum field to the value specified, for
546  // proto2 it's more complicated. If value is a known enum value the field is
547  // set as usual. If the value is unknown then it is added to the unknown field
548  // set. Note this matches the behavior of parsing unknown enum values.
549  // If multiple calls with unknown values happen than they are all added to the
550  // unknown field set in order of the calls.
551  void SetEnumValue(Message* message, const FieldDescriptor* field,
552  int value) const;
553 
554  // Get a mutable pointer to a field with a message type. If a MessageFactory
555  // is provided, it will be used to construct instances of the sub-message;
556  // otherwise, the default factory is used. If the field is an extension that
557  // does not live in the same pool as the containing message's descriptor (e.g.
558  // it lives in an overlay pool), then a MessageFactory must be provided.
559  // If you have no idea what that meant, then you probably don't need to worry
560  // about it (don't provide a MessageFactory). WARNING: If the
561  // FieldDescriptor is for a compiled-in extension, then
562  // factory->GetPrototype(field->message_type()) MUST return an instance of
563  // the compiled-in class for this type, NOT DynamicMessage.
564  Message* MutableMessage(Message* message, const FieldDescriptor* field,
565  MessageFactory* factory = nullptr) const;
566  // Replaces the message specified by 'field' with the already-allocated object
567  // sub_message, passing ownership to the message. If the field contained a
568  // message, that message is deleted. If sub_message is nullptr, the field is
569  // cleared.
570  void SetAllocatedMessage(Message* message, Message* sub_message,
571  const FieldDescriptor* field) const;
572  // Releases the message specified by 'field' and returns the pointer,
573  // ReleaseMessage() will return the message the message object if it exists.
574  // Otherwise, it may or may not return nullptr. In any case, if the return
575  // value is non-null, the caller takes ownership of the pointer.
576  // If the field existed (HasField() is true), then the returned pointer will
577  // be the same as the pointer returned by MutableMessage().
578  // This function has the same effect as ClearField().
579  Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
580  MessageFactory* factory = nullptr) const;
581 
582 
583  // Repeated field getters ------------------------------------------
584  // These get the value of one element of a repeated field.
585 
586  int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
587  int index) const;
588  int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
589  int index) const;
590  uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
591  int index) const;
592  uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
593  int index) const;
594  float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
595  int index) const;
596  double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
597  int index) const;
598  bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
599  int index) const;
600  std::string GetRepeatedString(const Message& message,
601  const FieldDescriptor* field, int index) const;
602  const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
603  const FieldDescriptor* field,
604  int index) const;
605  // GetRepeatedEnumValue() returns an enum field's value as an integer rather
606  // than an EnumValueDescriptor*. If the integer value does not correspond to a
607  // known value descriptor, a new value descriptor is created. (Such a value
608  // will only be present when the new unknown-enum-value semantics are enabled
609  // for a message.)
610  int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
611  int index) const;
612  const Message& GetRepeatedMessage(const Message& message,
613  const FieldDescriptor* field,
614  int index) const;
615 
616  // See GetStringReference(), above.
617  const std::string& GetRepeatedStringReference(const Message& message,
618  const FieldDescriptor* field,
619  int index,
620  std::string* scratch) const;
621 
622 
623  // Repeated field mutators -----------------------------------------
624  // These mutate the value of one element of a repeated field.
625 
626  void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
627  int index, int32 value) const;
628  void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
629  int index, int64 value) const;
630  void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
631  int index, uint32 value) const;
632  void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
633  int index, uint64 value) const;
634  void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
635  int index, float value) const;
636  void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
637  int index, double value) const;
638  void SetRepeatedBool(Message* message, const FieldDescriptor* field,
639  int index, bool value) const;
640  void SetRepeatedString(Message* message, const FieldDescriptor* field,
641  int index, const std::string& value) const;
642  void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
643  int index, const EnumValueDescriptor* value) const;
644  // Set an enum field's value with an integer rather than EnumValueDescriptor.
645  // For proto3 this is just setting the enum field to the value specified, for
646  // proto2 it's more complicated. If value is a known enum value the field is
647  // set as usual. If the value is unknown then it is added to the unknown field
648  // set. Note this matches the behavior of parsing unknown enum values.
649  // If multiple calls with unknown values happen than they are all added to the
650  // unknown field set in order of the calls.
651  void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
652  int index, int value) const;
653  // Get a mutable pointer to an element of a repeated field with a message
654  // type.
655  Message* MutableRepeatedMessage(Message* message,
656  const FieldDescriptor* field,
657  int index) const;
658 
659 
660  // Repeated field adders -------------------------------------------
661  // These add an element to a repeated field.
662 
663  void AddInt32(Message* message, const FieldDescriptor* field,
664  int32 value) const;
665  void AddInt64(Message* message, const FieldDescriptor* field,
666  int64 value) const;
667  void AddUInt32(Message* message, const FieldDescriptor* field,
668  uint32 value) const;
669  void AddUInt64(Message* message, const FieldDescriptor* field,
670  uint64 value) const;
671  void AddFloat(Message* message, const FieldDescriptor* field,
672  float value) const;
673  void AddDouble(Message* message, const FieldDescriptor* field,
674  double value) const;
675  void AddBool(Message* message, const FieldDescriptor* field,
676  bool value) const;
677  void AddString(Message* message, const FieldDescriptor* field,
678  const std::string& value) const;
680  const EnumValueDescriptor* value) const;
681  // Add an integer value to a repeated enum field rather than
682  // EnumValueDescriptor. For proto3 this is just setting the enum field to the
683  // value specified, for proto2 it's more complicated. If value is a known enum
684  // value the field is set as usual. If the value is unknown then it is added
685  // to the unknown field set. Note this matches the behavior of parsing unknown
686  // enum values. If multiple calls with unknown values happen than they are all
687  // added to the unknown field set in order of the calls.
689  int value) const;
690  // See MutableMessage() for comments on the "factory" parameter.
692  MessageFactory* factory = nullptr) const;
693 
694  // Appends an already-allocated object 'new_entry' to the repeated field
695  // specified by 'field' passing ownership to the message.
696  void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
697  Message* new_entry) const;
698 
699 
700  // Get a RepeatedFieldRef object that can be used to read the underlying
701  // repeated field. The type parameter T must be set according to the
702  // field's cpp type. The following table shows the mapping from cpp type
703  // to acceptable T.
704  //
705  // field->cpp_type() T
706  // CPPTYPE_INT32 int32
707  // CPPTYPE_UINT32 uint32
708  // CPPTYPE_INT64 int64
709  // CPPTYPE_UINT64 uint64
710  // CPPTYPE_DOUBLE double
711  // CPPTYPE_FLOAT float
712  // CPPTYPE_BOOL bool
713  // CPPTYPE_ENUM generated enum type or int32
714  // CPPTYPE_STRING std::string
715  // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
716  //
717  // A RepeatedFieldRef object can be copied and the resulted object will point
718  // to the same repeated field in the same message. The object can be used as
719  // long as the message is not destroyed.
720  //
721  // Note that to use this method users need to include the header file
722  // "net/proto2/public/reflection.h" (which defines the RepeatedFieldRef
723  // class templates).
724  template <typename T>
725  RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
726  const FieldDescriptor* field) const;
727 
728  // Like GetRepeatedFieldRef() but return an object that can also be used
729  // manipulate the underlying repeated field.
730  template <typename T>
731  MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
732  Message* message, const FieldDescriptor* field) const;
733 
734  // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
735  // access. The following repeated field accesors will be removed in the
736  // future.
737  //
738  // Repeated field accessors -------------------------------------------------
739  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
740  // access to the data in a RepeatedField. The methods below provide aggregate
741  // access by exposing the RepeatedField object itself with the Message.
742  // Applying these templates to inappropriate types will lead to an undefined
743  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
744  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
745  //
746  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
747 
748  // DEPRECATED. Please use GetRepeatedFieldRef().
749  //
750  // for T = Cord and all protobuf scalar types except enums.
751  template <typename T>
752  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
753  const RepeatedField<T>& GetRepeatedField(const Message&,
755 
756  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
757  //
758  // for T = Cord and all protobuf scalar types except enums.
759  template <typename T>
760  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
761  RepeatedField<T>* MutableRepeatedField(Message*,
763 
764  // DEPRECATED. Please use GetRepeatedFieldRef().
765  //
766  // for T = std::string, google::protobuf::internal::StringPieceField
767  // google::protobuf::Message & descendants.
768  template <typename T>
769  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
770  const RepeatedPtrField<T>& GetRepeatedPtrField(const Message&,
772 
773  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
774  //
775  // for T = std::string, google::protobuf::internal::StringPieceField
776  // google::protobuf::Message & descendants.
777  template <typename T>
778  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
779  RepeatedPtrField<T>* MutableRepeatedPtrField(Message*,
781 
782  // Extensions ----------------------------------------------------------------
783 
784  // Try to find an extension of this message type by fully-qualified field
785  // name. Returns nullptr if no extension is known for this name or number.
786  PROTOBUF_DEPRECATED_MSG(
787  "Please use DescriptorPool::FindExtensionByPrintableName instead")
788  const FieldDescriptor* FindKnownExtensionByName(
789  const std::string& name) const;
790 
791  // Try to find an extension of this message type by field number.
792  // Returns nullptr if no extension is known for this name or number.
793  PROTOBUF_DEPRECATED_MSG(
794  "Please use DescriptorPool::FindExtensionByNumber instead")
795  const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
796 
797  // Feature Flags -------------------------------------------------------------
798 
799  // Does this message support storing arbitrary integer values in enum fields?
800  // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
801  // take arbitrary integer values, and the legacy GetEnum() getter will
802  // dynamically create an EnumValueDescriptor for any integer value without
803  // one. If |false|, setting an unknown enum value via the integer-based
804  // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
805  //
806  // Generic code that uses reflection to handle messages with enum fields
807  // should check this flag before using the integer-based setter, and either
808  // downgrade to a compatible value or use the UnknownFieldSet if not. For
809  // example:
810  //
811  // int new_value = GetValueFromApplicationLogic();
812  // if (reflection->SupportsUnknownEnumValues()) {
813  // reflection->SetEnumValue(message, field, new_value);
814  // } else {
815  // if (field_descriptor->enum_type()->
816  // FindValueByNumber(new_value) != nullptr) {
817  // reflection->SetEnumValue(message, field, new_value);
818  // } else if (emit_unknown_enum_values) {
819  // reflection->MutableUnknownFields(message)->AddVarint(
820  // field->number(), new_value);
821  // } else {
822  // // convert value to a compatible/default value.
823  // new_value = CompatibleDowngrade(new_value);
824  // reflection->SetEnumValue(message, field, new_value);
825  // }
826  // }
827  bool SupportsUnknownEnumValues() const;
828 
829  // Returns the MessageFactory associated with this message. This can be
830  // useful for determining if a message is a generated message or not, for
831  // example:
832  // if (message->GetReflection()->GetMessageFactory() ==
833  // google::protobuf::MessageFactory::generated_factory()) {
834  // // This is a generated message.
835  // }
836  // It can also be used to create more messages of this type, though
837  // Message::New() is an easier way to accomplish this.
838  MessageFactory* GetMessageFactory() const;
839 
840  private:
841  // Obtain a pointer to a Repeated Field Structure and do some type checking:
842  // on field->cpp_type(),
843  // on field->field_option().ctype() (if ctype >= 0)
844  // of field->message_type() (if message_type != nullptr).
845  // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
846  void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
847  FieldDescriptor::CppType, int ctype,
849 
850  const void* GetRawRepeatedField(const Message& message,
852  FieldDescriptor::CppType cpptype, int ctype,
854 
855  // The following methods are used to implement (Mutable)RepeatedFieldRef.
856  // A Ref object will store a raw pointer to the repeated field data (obtained
857  // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
858  // RepeatedFieldAccessor) which will be used to access the raw data.
859 
860  // Returns a raw pointer to the repeated field
861  //
862  // "cpp_type" and "message_type" are deduced from the type parameter T passed
863  // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
864  // "message_type" should be set to its descriptor. Otherwise "message_type"
865  // should be set to nullptr. Implementations of this method should check
866  // whether "cpp_type"/"message_type" is consistent with the actual type of the
867  // field. We use 1 routine rather than 2 (const vs mutable) because it is
868  // protected and it doesn't change the message.
869  void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
870  FieldDescriptor::CppType cpp_type,
872 
873  // The returned pointer should point to a singleton instance which implements
874  // the RepeatedFieldAccessor interface.
875  const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
877 
879  const internal::ReflectionSchema schema_;
880  const DescriptorPool* const descriptor_pool_;
881  MessageFactory* const message_factory_;
882 
883  // Last non weak field index. This is an optimization when most weak fields
884  // are at the end of the containing message. If a message proto doesn't
885  // contain weak fields, then this field equals descriptor_->field_count().
886  int last_non_weak_field_index_;
887 
888  template <typename T, typename Enable>
889  friend class RepeatedFieldRef;
890  template <typename T, typename Enable>
892  friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
893  friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
894  friend class DynamicMessageFactory;
895  friend class python::MapReflectionFriend;
896 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
897  friend class expr::CelMapReflectionFriend;
900  friend class internal::WireFormat;
902  // Needed for implementing text format for map.
904  friend class internal::ReflectionAccessor;
905 
907  const internal::ReflectionSchema& schema,
908  const DescriptorPool* pool, MessageFactory* factory);
909 
910  // Special version for specialized implementations of string. We can't
911  // call MutableRawRepeatedField directly here because we don't have access to
912  // FieldOptions::* which are defined in descriptor.pb.h. Including that
913  // file here is not possible because it would cause a circular include cycle.
914  // We use 1 routine rather than 2 (const vs mutable) because it is private
915  // and mutable a repeated string field doesn't change the message.
916  void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
917  bool is_string) const;
918 
919  friend class MapReflectionTester;
920  // Returns true if key is in map. Returns false if key is not in map field.
921  bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
922  const MapKey& key) const;
923 
924  // If key is in map field: Saves the value pointer to val and returns
925  // false. If key in not in map field: Insert the key into map, saves
926  // value pointer to val and retuns true.
927  bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
928  const MapKey& key, MapValueRef* val) const;
929 
930  // Delete and returns true if key is in the map field. Returns false
931  // otherwise.
932  bool DeleteMapValue(Message* message, const FieldDescriptor* field,
933  const MapKey& key) const;
934 
935  // Returns a MapIterator referring to the first element in the map field.
936  // If the map field is empty, this function returns the same as
937  // reflection::MapEnd. Mutation to the field may invalidate the iterator.
938  MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
939 
940  // Returns a MapIterator referring to the theoretical element that would
941  // follow the last element in the map field. It does not point to any
942  // real element. Mutation to the field may invalidate the iterator.
943  MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
944 
945  // Get the number of <key, value> pair of a map field. The result may be
946  // different from FieldSize which can have duplicate keys.
947  int MapSize(const Message& message, const FieldDescriptor* field) const;
948 
949  // Help method for MapIterator.
950  friend class MapIterator;
951  internal::MapFieldBase* MutableMapData(Message* message,
952  const FieldDescriptor* field) const;
953 
954  const internal::MapFieldBase* GetMapData(const Message& message,
955  const FieldDescriptor* field) const;
956 
957  template <class T>
958  const T& GetRawNonOneof(const Message& message,
959  const FieldDescriptor* field) const;
960  template <class T>
961  T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
962 
963  template <typename Type>
964  const Type& GetRaw(const Message& message,
965  const FieldDescriptor* field) const;
966  template <typename Type>
967  inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
968  template <typename Type>
969  inline const Type& DefaultRaw(const FieldDescriptor* field) const;
970 
971  inline const uint32* GetHasBits(const Message& message) const;
972  inline uint32* MutableHasBits(Message* message) const;
973  inline uint32 GetOneofCase(const Message& message,
974  const OneofDescriptor* oneof_descriptor) const;
975  inline uint32* MutableOneofCase(
976  Message* message, const OneofDescriptor* oneof_descriptor) const;
978  const Message& message) const;
979  inline internal::ExtensionSet* MutableExtensionSet(Message* message) const;
980  inline Arena* GetArena(Message* message) const;
981 
983  GetInternalMetadataWithArena(const Message& message) const;
984 
985  internal::InternalMetadataWithArena* MutableInternalMetadataWithArena(
986  Message* message) const;
987 
988  inline bool IsInlined(const FieldDescriptor* field) const;
989 
990  inline bool HasBit(const Message& message,
991  const FieldDescriptor* field) const;
992  inline void SetBit(Message* message, const FieldDescriptor* field) const;
993  inline void ClearBit(Message* message, const FieldDescriptor* field) const;
994  inline void SwapBit(Message* message1, Message* message2,
995  const FieldDescriptor* field) const;
996 
997  // This function only swaps the field. Should swap corresponding has_bit
998  // before or after using this function.
999  void SwapField(Message* message1, Message* message2,
1000  const FieldDescriptor* field) const;
1001 
1002  void SwapOneofField(Message* message1, Message* message2,
1003  const OneofDescriptor* oneof_descriptor) const;
1004 
1005  inline bool HasOneofField(const Message& message,
1006  const FieldDescriptor* field) const;
1007  inline void SetOneofCase(Message* message,
1008  const FieldDescriptor* field) const;
1009  inline void ClearOneofField(Message* message,
1010  const FieldDescriptor* field) const;
1011 
1012  template <typename Type>
1013  inline const Type& GetField(const Message& message,
1014  const FieldDescriptor* field) const;
1015  template <typename Type>
1016  inline void SetField(Message* message, const FieldDescriptor* field,
1017  const Type& value) const;
1018  template <typename Type>
1019  inline Type* MutableField(Message* message,
1020  const FieldDescriptor* field) const;
1021  template <typename Type>
1022  inline const Type& GetRepeatedField(const Message& message,
1023  const FieldDescriptor* field,
1024  int index) const;
1025  template <typename Type>
1026  inline const Type& GetRepeatedPtrField(const Message& message,
1027  const FieldDescriptor* field,
1028  int index) const;
1029  template <typename Type>
1030  inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1031  int index, Type value) const;
1032  template <typename Type>
1033  inline Type* MutableRepeatedField(Message* message,
1034  const FieldDescriptor* field,
1035  int index) const;
1036  template <typename Type>
1037  inline void AddField(Message* message, const FieldDescriptor* field,
1038  const Type& value) const;
1039  template <typename Type>
1040  inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1041 
1042  int GetExtensionNumberOrDie(const Descriptor* type) const;
1043 
1044  // Internal versions of EnumValue API perform no checking. Called after checks
1045  // by public methods.
1046  void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1047  int value) const;
1048  void SetRepeatedEnumValueInternal(Message* message,
1049  const FieldDescriptor* field, int index,
1050  int value) const;
1051  void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1052  int value) const;
1053 
1054  Message* UnsafeArenaReleaseMessage(Message* message,
1055  const FieldDescriptor* field,
1056  MessageFactory* factory = nullptr) const;
1057 
1058  void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
1059  const FieldDescriptor* field) const;
1060 
1061  friend inline // inline so nobody can call this function.
1062  void
1063  RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1064 
1066 };
1067 
1068 // Abstract interface for a factory for message objects.
1069 class PROTOBUF_EXPORT MessageFactory {
1070  public:
1071  inline MessageFactory() {}
1072  virtual ~MessageFactory();
1073 
1074  // Given a Descriptor, gets or constructs the default (prototype) Message
1075  // of that type. You can then call that message's New() method to construct
1076  // a mutable message of that type.
1077  //
1078  // Calling this method twice with the same Descriptor returns the same
1079  // object. The returned object remains property of the factory. Also, any
1080  // objects created by calling the prototype's New() method share some data
1081  // with the prototype, so these must be destroyed before the MessageFactory
1082  // is destroyed.
1083  //
1084  // The given descriptor must outlive the returned message, and hence must
1085  // outlive the MessageFactory.
1086  //
1087  // Some implementations do not support all types. GetPrototype() will
1088  // return nullptr if the descriptor passed in is not supported.
1089  //
1090  // This method may or may not be thread-safe depending on the implementation.
1091  // Each implementation should document its own degree thread-safety.
1092  virtual const Message* GetPrototype(const Descriptor* type) = 0;
1093 
1094  // Gets a MessageFactory which supports all generated, compiled-in messages.
1095  // In other words, for any compiled-in type FooMessage, the following is true:
1096  // MessageFactory::generated_factory()->GetPrototype(
1097  // FooMessage::descriptor()) == FooMessage::default_instance()
1098  // This factory supports all types which are found in
1099  // DescriptorPool::generated_pool(). If given a descriptor from any other
1100  // pool, GetPrototype() will return nullptr. (You can also check if a
1101  // descriptor is for a generated message by checking if
1102  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1103  //
1104  // This factory is 100% thread-safe; calling GetPrototype() does not modify
1105  // any shared data.
1106  //
1107  // This factory is a singleton. The caller must not delete the object.
1108  static MessageFactory* generated_factory();
1109 
1110  // For internal use only: Registers a .proto file at static initialization
1111  // time, to be placed in generated_factory. The first time GetPrototype()
1112  // is called with a descriptor from this file, |register_messages| will be
1113  // called, with the file name as the parameter. It must call
1114  // InternalRegisterGeneratedMessage() (below) to register each message type
1115  // in the file. This strange mechanism is necessary because descriptors are
1116  // built lazily, so we can't register types by their descriptor until we
1117  // know that the descriptor exists. |filename| must be a permanent string.
1118  static void InternalRegisterGeneratedFile(
1120 
1121  // For internal use only: Registers a message type. Called only by the
1122  // functions which are registered with InternalRegisterGeneratedFile(),
1123  // above.
1124  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1125  const Message* prototype);
1126 
1127 
1128  private:
1130 };
1131 
1132 #define DECLARE_GET_REPEATED_FIELD(TYPE) \
1133  template <> \
1134  PROTOBUF_EXPORT const RepeatedField<TYPE>& \
1135  Reflection::GetRepeatedField<TYPE>(const Message& message, \
1136  const FieldDescriptor* field) const; \
1137  \
1138  template <> \
1139  PROTOBUF_EXPORT RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
1140  Message * message, const FieldDescriptor* field) const;
1141 
1149 
1150 #undef DECLARE_GET_REPEATED_FIELD
1151 
1152 // Tries to downcast this message to a generated message type. Returns nullptr
1153 // if this class is not an instance of T. This works even if RTTI is disabled.
1154 //
1155 // This also has the effect of creating a strong reference to T that will
1156 // prevent the linker from stripping it out at link time. This can be important
1157 // if you are using a DynamicMessageFactory that delegates to the generated
1158 // factory.
1159 template <typename T>
1160 const T* DynamicCastToGenerated(const Message* from) {
1161  // Compile-time assert that T is a generated type that has a
1162  // default_instance() accessor, but avoid actually calling it.
1163  const T& (*get_default_instance)() = &T::default_instance;
1164  (void)get_default_instance;
1165 
1166  // Compile-time assert that T is a subclass of google::protobuf::Message.
1167  const Message* unused = static_cast<T*>(nullptr);
1168  (void)unused;
1169 
1170 #ifdef GOOGLE_PROTOBUF_NO_RTTI
1171  bool ok = T::default_instance().GetReflection() == from->GetReflection();
1172  return ok ? down_cast<const T*>(from) : nullptr;
1173 #else
1174  return dynamic_cast<const T*>(from);
1175 #endif
1176 }
1177 
1178 template <typename T>
1180  const Message* message_const = from;
1181  return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1182 }
1183 
1184 // Call this function to ensure that this message's reflection is linked into
1185 // the binary:
1186 //
1187 // google::protobuf::LinkMessageReflection<FooMessage>();
1188 //
1189 // This will ensure that the following lookup will succeed:
1190 //
1191 // DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
1192 //
1193 // As a side-effect, it will also guarantee that anything else from the same
1194 // .proto file will also be available for lookup in the generated pool.
1195 //
1196 // This function does not actually register the message, so it does not need
1197 // to be called before the lookup. However it does need to occur in a function
1198 // that cannot be stripped from the binary (ie. it must be reachable from main).
1199 //
1200 // Best practice is to call this function as close as possible to where the
1201 // reflection is actually needed. This function is very cheap to call, so you
1202 // should not need to worry about its runtime overhead except in the tightest
1203 // of loops (on x86-64 it compiles into two "mov" instructions).
1204 template <typename T>
1206  typedef const T& GetDefaultInstanceFunction();
1207  GetDefaultInstanceFunction* volatile unused = &T::default_instance;
1208  (void)&unused; // Use address to avoid an extra load of volatile variable.
1209 }
1210 
1211 // =============================================================================
1212 // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
1213 // specializations for <std::string>, <StringPieceField> and <Message> and
1214 // handle everything else with the default template which will match any type
1215 // having a method with signature "static const google::protobuf::Descriptor*
1216 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1217 
1218 template <>
1219 inline const RepeatedPtrField<std::string>&
1220 Reflection::GetRepeatedPtrField<std::string>(
1221  const Message& message, const FieldDescriptor* field) const {
1222  return *static_cast<RepeatedPtrField<std::string>*>(
1223  MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1224 }
1225 
1226 template <>
1227 inline RepeatedPtrField<std::string>*
1228 Reflection::MutableRepeatedPtrField<std::string>(
1229  Message* message, const FieldDescriptor* field) const {
1230  return static_cast<RepeatedPtrField<std::string>*>(
1231  MutableRawRepeatedString(message, field, true));
1232 }
1233 
1234 
1235 // -----
1236 
1237 template <>
1239  const Message& message, const FieldDescriptor* field) const {
1240  return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1242 }
1243 
1244 template <>
1246  Message* message, const FieldDescriptor* field) const {
1249 }
1250 
1251 template <typename PB>
1253  const Message& message, const FieldDescriptor* field) const {
1254  return *static_cast<const RepeatedPtrField<PB>*>(
1256  PB::default_instance().GetDescriptor()));
1257 }
1258 
1259 template <typename PB>
1260 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
1261  Message* message, const FieldDescriptor* field) const {
1262  return static_cast<RepeatedPtrField<PB>*>(
1264  -1, PB::default_instance().GetDescriptor()));
1265 }
1266 } // namespace protobuf
1267 } // namespace google
1268 
1269 #include <google/protobuf/port_undef.inc>
1270 
1271 #endif // GOOGLE_PROTOBUF_MESSAGE_H__
table
upb_strtable table
Definition: php/ext/google/protobuf/protobuf.h:1065
google::protobuf::AssignDescriptorsHelper
Definition: generated_message_reflection.cc:2248
DECLARE_GET_REPEATED_FIELD
#define DECLARE_GET_REPEATED_FIELD(TYPE)
Definition: src/google/protobuf/message.h:1132
google::protobuf.internal::ExtensionSet
Definition: extension_set.h:179
google::protobuf.internal::GetExtensionSet
ExtensionSet * GetExtensionSet(MessageLite *msg, int64 extension_offset)
Definition: generated_message_table_driven_lite.h:94
google::protobuf::RepeatedPtrField
Definition: command_line_interface.h:62
name
GLuint const GLchar * name
Definition: glcorearb.h:3055
google::protobuf::MutableRepeatedFieldRef
Definition: src/google/protobuf/message.h:360
google::protobuf.internal::GetArena
Arena * GetArena(MessageLite *msg, int64 arena_offset)
Definition: generated_message_table_driven_lite.h:86
google::protobuf::FieldDescriptor
Definition: src/google/protobuf/descriptor.h:515
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS
#define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName)
Definition: macros.h:40
benchmarks.python.py_benchmark.const
const
Definition: py_benchmark.py:14
google::protobuf.internal::InternalMetadataWithArena
Definition: metadata.h:52
google::protobuf::int64
int64_t int64
Definition: protobuf/src/google/protobuf/stubs/port.h:151
google::protobuf.internal.python_message.MergeFrom
MergeFrom
Definition: python_message.py:1340
input
std::string input
Definition: tokenizer_unittest.cc:197
google::protobuf::Message::GetReflection
const Reflection * GetReflection() const
Definition: src/google/protobuf/message.h:335
google::protobuf.internal.python_message.DiscardUnknownFields
DiscardUnknownFields
Definition: python_message.py:1433
google::protobuf::python::cmessage::CopyFrom
static PyObject * CopyFrom(CMessage *self, PyObject *arg)
Definition: python/google/protobuf/pyext/message.cc:1861
google::protobuf::uint32
uint32_t uint32
Definition: protobuf/src/google/protobuf/stubs/port.h:155
google::protobuf.internal::ParseContext
Definition: parse_context.h:322
errors
const char * errors
Definition: tokenizer_unittest.cc:841
google::protobuf.internal::WireFormat
Definition: wire_format.h:78
google::protobuf::OneofDescriptor
Definition: src/google/protobuf/descriptor.h:843
generated_message_reflection.h
string
GLsizei const GLchar *const * string
Definition: glcorearb.h:3083
google::protobuf::RepeatedField
Definition: src/google/protobuf/message.h:184
google::protobuf.internal::SetField
void SetField(MessageLite *msg, uint32 *has_bits, uint32 has_bit_index, int64 offset, Type value)
Definition: generated_message_table_driven_lite.h:142
testing::internal::GetTypeName
std::string GetTypeName()
Definition: gtest-type-util.h:80
google::protobuf::MessageLite
Definition: message_lite.h:183
google::protobuf::Reflection
Definition: src/google/protobuf/message.h:400
descriptor
Descriptor * descriptor
Definition: php/ext/google/protobuf/protobuf.h:936
google::protobuf.internal.python_message._InternalParse
_InternalParse
Definition: python_message.py:1197
port.h
google::protobuf::python::cmessage::UnknownFieldSet
static PyObject * UnknownFieldSet(CMessage *self)
Definition: python/google/protobuf/pyext/message.cc:2501
google::protobuf::MessageFactory
Definition: src/google/protobuf/message.h:1069
T
#define T(upbtypeconst, upbtype, ctype, default_value)
ok
ROSCPP_DECL bool ok()
FieldDescriptor
Definition: ruby/ext/google/protobuf_c/protobuf.h:129
google::protobuf::Message::New
Message * New(Arena *arena) const override
Definition: src/google/protobuf/message.h:220
message_type
zend_class_entry * message_type
Definition: php/ext/google/protobuf/message.c:45
google::protobuf::python::repeated_composite_container::AddMessage
static PyObject * AddMessage(RepeatedCompositeContainer *self, PyObject *value)
Definition: repeated_composite_container.cc:109
google::protobuf::int32
int32_t int32
Definition: protobuf/src/google/protobuf/stubs/port.h:150
google::protobuf::python::cdescriptor_pool::FindExtensionByNumber
static PyObject * FindExtensionByNumber(PyObject *self, PyObject *args)
Definition: descriptor_pool.cc:420
google::protobuf.internal::MergePartialFromCodedStream
bool MergePartialFromCodedStream(MessageLite *msg, const ParseTable &table, io::CodedInputStream *input)
Definition: generated_message_table_driven.cc:96
Type
Definition: type.pb.h:182
google::protobuf.internal::ToIntSize
int ToIntSize(size_t size)
Definition: message_lite.h:104
google::protobuf::LinkMessageReflection
void LinkMessageReflection()
Definition: src/google/protobuf/message.h:1205
google::protobuf::MessageFactory::MessageFactory
MessageFactory()
Definition: src/google/protobuf/message.h:1071
google::protobuf::python::cdescriptor_pool::New
static PyObject * New(PyTypeObject *type, PyObject *args, PyObject *kwargs)
Definition: descriptor_pool.cc:177
google::protobuf::DescriptorPool
Definition: src/google/protobuf/descriptor.h:1539
google::protobuf::Metadata::descriptor
const Descriptor * descriptor
Definition: src/google/protobuf/message.h:191
google::protobuf::uint64
uint64_t uint64
Definition: protobuf/src/google/protobuf/stubs/port.h:156
google::protobuf::Reflection::GetRawRepeatedField
const void * GetRawRepeatedField(const Message &message, const FieldDescriptor *field, FieldDescriptor::CppType cpptype, int ctype, const Descriptor *message_type) const
Definition: generated_message_reflection.cc:1722
google::protobuf::Metadata::reflection
const Reflection * reflection
Definition: src/google/protobuf/message.h:192
google::protobuf::Reflection::GetRepeatedPtrField
const RepeatedPtrField< T > & GetRepeatedPtrField(const Message &, const FieldDescriptor *) const
google::protobuf.internal::DescriptorTable
Definition: generated_message_reflection.h:266
google::protobuf.internal.python_message.ListFields
ListFields
Definition: python_message.py:819
casts.h
field
const FieldDescriptor * field
Definition: parser_unittest.cc:2694
key
const SETUP_TEARDOWN_TESTCONTEXT char * key
Definition: test_wss_transport.cpp:10
google::protobuf::Message::~Message
~Message() override
Definition: src/google/protobuf/message.h:208
google::protobuf::descriptor_unittest::AddEnumValue
EnumValueDescriptorProto * AddEnumValue(EnumDescriptorProto *enum_proto, const std::string &name, int number)
Definition: descriptor_unittest.cc:172
google::protobuf.internal.python_message.ClearField
ClearField
Definition: python_message.py:902
pool
InternalDescriptorPool * pool
Definition: php/ext/google/protobuf/protobuf.h:798
void
typedef void(APIENTRY *GLDEBUGPROCARB)(GLenum source
google::protobuf::io::CodedOutputStream
Definition: coded_stream.h:693
google::protobuf::DynamicMessageFactory
Definition: dynamic_message.h:80
google::protobuf::Metadata
Definition: src/google/protobuf/message.h:190
fields
static const upb_fielddef fields[107]
Definition: ruby/ext/google/protobuf_c/upb.c:7671
google::protobuf::Reflection::MutableRawRepeatedField
void * MutableRawRepeatedField(Message *message, const FieldDescriptor *field, FieldDescriptor::CppType, int ctype, const Descriptor *message_type) const
Definition: generated_message_reflection.cc:1698
type
GLenum type
Definition: glcorearb.h:2695
google::protobuf::Message
Definition: src/google/protobuf/message.h:205
google::protobuf::Message::GetDescriptor
const Descriptor * GetDescriptor() const
Definition: src/google/protobuf/message.h:326
google::protobuf.internal::SetBit
void SetBit(uint32 *has_bits, uint32 has_bit_index)
Definition: generated_message_table_driven_lite.h:127
google::protobuf.internal.python_message.Clear
Clear
Definition: python_message.py:1431
google::protobuf::descriptor_unittest::AddEnum
EnumDescriptorProto * AddEnum(FileDescriptorProto *file, const std::string &name)
Definition: descriptor_unittest.cc:88
common.h
google::protobuf::DynamicCastToGenerated
const T * DynamicCastToGenerated(const Message *from)
Definition: src/google/protobuf/message.h:1160
size
GLsizeiptr size
Definition: glcorearb.h:2943
google::protobuf::MapKey
Definition: map_field.h:371
std
arena.h
google::protobuf::UnknownFieldSet
Definition: unknown_field_set.h:86
message_lite.h
google::protobuf::io::CodedInputStream
Definition: coded_stream.h:173
google::protobuf::descriptor_unittest::AddField
FieldDescriptorProto * AddField(DescriptorProto *parent, const std::string &name, int number, FieldDescriptorProto::Label label, FieldDescriptorProto::Type type)
Definition: descriptor_unittest.cc:109
google::protobuf::MapReflectionTester
Definition: map_test_util.h:88
google::protobuf::EnumValueDescriptor
Definition: src/google/protobuf/descriptor.h:1075
google::protobuf::Descriptor
Definition: src/google/protobuf/descriptor.h:231
descriptor.h
google::protobuf::RegisterAllTypesInternal
void RegisterAllTypesInternal(const Metadata *file_level_metadata, int size)
Definition: generated_message_reflection.cc:2392
google::protobuf.internal.python_message.IsInitialized
IsInitialized
Definition: python_message.py:1246
google::protobuf.internal::MapKeySorter
Definition: wire_format.cc:810
google::protobuf.internal::ReflectionSchema
Definition: generated_message_reflection.h:126
internal
Definition: any.pb.h:40
google::protobuf.internal::MapFieldBase
Definition: map_field.h:69
val
GLuint GLfloat * val
Definition: glcorearb.h:3604
google::protobuf.internal::ReflectionOps
Definition: reflection_ops.h:63
google::protobuf.internal::ClearOneofField
void ClearOneofField(const ParseTableField &field, Arena *arena, MessageLite *msg)
Definition: generated_message_table_driven_lite.h:159
value
GLsizei const GLfloat * value
Definition: glcorearb.h:3093
google::protobuf.internal.python_message.HasField
HasField
Definition: python_message.py:864
descriptor_
const Descriptor * descriptor_
Definition: field_comparator_test.cc:56
google::protobuf::FieldDescriptor::CPPTYPE_MESSAGE
@ CPPTYPE_MESSAGE
Definition: src/google/protobuf/descriptor.h:563
output
const upb_json_parsermethod const upb_symtab upb_sink * output
Definition: ruby/ext/google/protobuf_c/upb.h:10503
google::protobuf::MapIterator
Definition: map_field.h:712
google::protobuf.internal::MapFieldReflectionTest
Definition: src/google/protobuf/map_test.cc:995
index
GLuint index
Definition: glcorearb.h:3055
google::protobuf::Message::Message
Message()
Definition: src/google/protobuf/message.h:207
number
double number
Definition: cJSON.h:326
google
Definition: data_proto2_to_proto3_util.h:11
message
GLenum GLuint GLenum GLsizei const GLchar * message
Definition: glcorearb.h:2695
google::protobuf::RepeatedFieldRef
Definition: src/google/protobuf/message.h:357
google::protobuf::python::message_descriptor::GetDescriptor
static ParentDescriptor GetDescriptor(PyContainer *self)
Definition: descriptor_containers.cc:950
google::protobuf.internal::MapFieldPrinterHelper
Definition: text_format.cc:2073
google::protobuf.internal::cpp_type
FieldDescriptor::CppType cpp_type(FieldType type)
Definition: extension_set_heavy.cc:133
google::protobuf::MapValueRef
Definition: map_field.h:565
google::protobuf.internal.python_message.FindInitializationErrors
FindInitializationErrors
Definition: python_message.py:1292
google::protobuf::Reflection::MutableRepeatedPtrField
RepeatedPtrField< T > * MutableRepeatedPtrField(Message *, const FieldDescriptor *) const
google::protobuf.internal::MutableField
Type * MutableField(MessageLite *msg, uint32 *has_bits, uint32 has_bit_index, int64 offset)
Definition: generated_message_table_driven_lite.h:135


libaditof
Author(s):
autogenerated on Wed May 21 2025 02:06:56