30 using namespace gtsam;
42 static const double tol = 1
e-4;
65 GaussianBayesTree::sharedClique
R = bayesTree.
roots().front();
70 GaussianBayesTree::sharedClique
C2 = bayesTree[
X(5)];
76 Matrix A56 = (
Matrix(2,2) << -0.382022,0.,0.,-0.382022).finished();
79 GaussianBayesTree::sharedClique C3 = bayesTree[
X(4)];
84 double sigma4 = 0.661968;
85 Matrix A46 = (
Matrix(2,2) << -0.146067,0.,0.,-0.146067).finished();
88 GaussianBayesTree::sharedClique C4 = bayesTree[
X(3)];
121 VectorValues expectedSolution = VectorValues::Zero(actualSolution);
132 Matrix actualCovarianceX1 =
m->information().inverse();
136 double sigmax2 = 0.68712938;
138 Matrix expectedCovX2 = I_2x2 * (sigmax2 * sigmax2);
169 GaussianBayesTree::sharedClique
R = bayesTree.
roots().front();
174 GaussianBayesTree::sharedClique
C2 = bayesTree[
X(3)];
234 const Matrix I = I_2x2,
A = -0.00429185*
I;
254 double sig14 = 0.784465;
287 fg.
add(1, (
Matrix(1, 1) << 1.0).finished(), 3, (
Matrix(1, 1) << 2.0).finished(), 5, (
Matrix(1, 1) << 3.0).finished(), (
Vector(1) << 4.0).finished(),
model);
289 fg.
add(2, (
Matrix(1, 1) << 7.0).finished(), 4, (
Matrix(1, 1) << 8.0).finished(), 5, (
Matrix(1, 1) << 9.0).finished(), (
Vector(1) << 10.0).finished(),
model);
313 if (signbit(expectedJointJ(0, 2)) != signbit(actualJointJ(0, 2)))
314 expectedJointJ.row(0) = -expectedJointJ.row(0);
316 if (signbit(expectedJointJ(1, 2)) != signbit(actualJointJ(1, 2)))
317 expectedJointJ.row(1) = -expectedJointJ.row(1);