|
template<typename T , precision P, template< typename, precision > class matType> |
GLM_FUNC_DECL T | glm::determinant (matType< T, P > const &m) |
|
template<typename T , precision P, template< typename, precision > class matType> |
GLM_FUNC_DECL matType< T, P > | glm::inverse (matType< T, P > const &m) |
|
template<typename T , precision P, template< typename, precision > class matType> |
GLM_FUNC_DECL matType< T, P > | glm::matrixCompMult (matType< T, P > const &x, matType< T, P > const &y) |
|
template<typename T , precision P, template< typename, precision > class vecTypeA, template< typename, precision > class vecTypeB> |
GLM_FUNC_DECL detail::outerProduct_trait< T, P, vecTypeA, vecTypeB >::type | glm::outerProduct (vecTypeA< T, P > const &c, vecTypeB< T, P > const &r) |
|
For each of the following built-in matrix functions, there is both a single-precision floating point version, where all arguments and return values are single precision, and a double-precision floating version, where all arguments and return values are double precision. Only the single-precision floating point version is shown.
◆ determinant()
template<typename T , precision P, template< typename, precision > class matType>
◆ inverse()
template<typename T , precision P, template< typename, precision > class matType>
◆ matrixCompMult()
template<typename T , precision P, template< typename, precision > class matType>
GLM_FUNC_DECL matType<T, P> glm::matrixCompMult |
( |
matType< T, P > const & |
x, |
|
|
matType< T, P > const & |
y |
|
) |
| |
◆ outerProduct()
template<typename T , precision P, template< typename, precision > class vecTypeA, template< typename, precision > class vecTypeB>