3 from matplotlib
import pyplot
as plt
8 img = np.random.randint(0,200, size=(172,224), dtype=np.uint16)
9 ret,thresh1 = cv.threshold(img,min,max,cv.THRESH_BINARY)
10 ret,thresh2 = cv.threshold(img,min,max,cv.THRESH_BINARY_INV)
11 ret,thresh3 = cv.threshold(img,min,max,cv.THRESH_TRUNC)
12 ret,thresh4 = cv.threshold(img,min,max,cv.THRESH_TOZERO)
13 ret,thresh5 = cv.threshold(img,min,max,cv.THRESH_TOZERO_INV)
15 titles = [
'Original Image',
'BINARY',
'BINARY_INV',
'TRUNC',
'TOZERO',
'TOZERO_INV']
16 images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
18 plt.subplot(2,3,i+1),plt.imshow(images[i],
'gray',vmin=0,vmax=255)
20 plt.xticks([]),plt.yticks([])
25 img = cv.imread(
'gradient.jpg',0)
26 ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
27 ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
28 ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
29 ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
30 ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
32 titles = [
'Original Image',
'BINARY',
'BINARY_INV',
'TRUNC',
'TOZERO',
'TOZERO_INV']
33 images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
35 plt.subplot(2,3,i+1),plt.imshow(images[i],
'gray',vmin=0,vmax=255)
37 plt.xticks([]),plt.yticks([])
40 if __name__ ==
'__main__':