|
| template<typename RhsType , typename DstType > |
| void | _solve_impl (const RhsType &rhs, DstType &dst) const |
| |
| template<bool Conjugate, typename RhsType , typename DstType > |
| void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
| |
| const LDLT & | adjoint () const |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
| |
| template<typename InputType > |
| LDLT & | compute (const EigenBase< InputType > &matrix) |
| |
| template<typename InputType > |
| LDLT< MatrixType, _UpLo > & | compute (const EigenBase< InputType > &a) |
| |
| ComputationInfo | info () const |
| | Reports whether previous computation was successful. More...
|
| |
| bool | isNegative (void) const |
| |
| bool | isPositive () const |
| |
| | LDLT () |
| | Default Constructor. More...
|
| |
| | LDLT (Index size) |
| | Default Constructor with memory preallocation. More...
|
| |
| template<typename InputType > |
| | LDLT (const EigenBase< InputType > &matrix) |
| | Constructor with decomposition. More...
|
| |
| template<typename InputType > |
| | LDLT (EigenBase< InputType > &matrix) |
| | Constructs a LDLT factorization from a given matrix. More...
|
| |
| Traits::MatrixL | matrixL () const |
| |
| const MatrixType & | matrixLDLT () const |
| |
| Traits::MatrixU | matrixU () const |
| |
| template<typename Derived > |
| LDLT & | rankUpdate (const MatrixBase< Derived > &w, const RealScalar &alpha=1) |
| |
| template<typename Derived > |
| LDLT< MatrixType, _UpLo > & | rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma) |
| |
| RealScalar | rcond () const |
| |
| MatrixType | reconstructedMatrix () const |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
| |
| void | setZero () |
| |
| template<typename Derived > |
| bool | solveInPlace (MatrixBase< Derived > &bAndX) const |
| |
| const TranspositionType & | transpositionsP () const |
| |
| Diagonal< const MatrixType > | vectorD () const |
| |
| AdjointReturnType | adjoint () const |
| |
| const Solve< LDLT< _MatrixType, _UpLo >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
| |
| | SolverBase () |
| |
| ConstTransposeReturnType | transpose () const |
| |
| | ~SolverBase () |
| |
| template<typename Dest > |
| EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
| |
| template<typename Dest > |
| EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
| |
| template<typename Dest > |
| EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
| |
| EIGEN_DEVICE_FUNC Derived & | const_cast_derived () const |
| |
| EIGEN_DEVICE_FUNC const Derived & | const_derived () const |
| |
| EIGEN_DEVICE_FUNC Derived & | derived () |
| |
| EIGEN_DEVICE_FUNC const Derived & | derived () const |
| |
| template<typename Dest > |
| EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
| |
| template<typename Dest > |
| EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
| |
template<typename _MatrixType, int _UpLo>
class Eigen::LDLT< _MatrixType, _UpLo >
Robust Cholesky decomposition of a matrix with pivoting.
- Template Parameters
-
| _MatrixType | the type of the matrix of which to compute the LDL^T Cholesky decomposition |
| _UpLo | the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read. |
Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix
such that
, where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.
The decomposition uses pivoting to ensure stability, so that D will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.
Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
This class supports the inplace decomposition mechanism.
- See also
- MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
Definition at line 59 of file LDLT.h.