Go to the documentation of this file.
36 #if EIGEN_VERSION_AT_LEAST(2,92,0)
40 #include "Eigen/Array"
211 #define NABO_VERSION "1.0.7"
212 #define NABO_VERSION_INT 10007
216 template <
typename IndexType>
218 static_assert(std::is_integral<IndexType>::value,
"");
219 return std::is_unsigned<IndexType>::value ? std::numeric_limits<IndexType>::max() : IndexType(-1);
222 template <
typename ValueType>
224 static_assert(std::is_floating_point<ValueType>::value,
"");
225 return std::numeric_limits<ValueType>::infinity();
248 const_iterator it(find(key));
250 return linb::any_cast<T>(it->second);
257 template<
typename T,
typename Cloud_T = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> >
261 typedef typename Eigen::Matrix<T, Eigen::Dynamic, 1>
Vector;
263 typedef typename Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
Matrix;
269 typedef typename Eigen::Matrix<Index, Eigen::Dynamic, 1>
IndexVector;
271 typedef typename Eigen::Matrix<Index, Eigen::Dynamic, Eigen::Dynamic>
IndexMatrix;
325 unsigned long knn(
const Vector& query,
IndexVector& indices,
Vector& dists2,
const Index k = 1,
const T epsilon = 0,
const unsigned optionFlags = 0,
const T maxRadius = std::numeric_limits<T>::infinity())
const;
338 virtual unsigned long knn(
const Matrix& query,
IndexMatrix& indices,
Matrix& dists2,
const Index k = 1,
const T epsilon = 0,
const unsigned optionFlags = 0,
const T maxRadius = std::numeric_limits<T>::infinity())
const = 0;
351 virtual unsigned long knn(
const Matrix& query,
IndexMatrix& indices,
Matrix& dists2,
const Vector& maxRadii,
const Index k = 1,
const T epsilon = 0,
const unsigned optionFlags = 0)
const = 0;
391 template <
typename WrongMatrixType>
394 typedef int Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef[
sizeof(WrongMatrixType) > 0 ? -1 : 1];
395 Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef dummy;
400 template <
typename WrongMatrixType>
403 typedef int Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef[
sizeof(WrongMatrixType) > 0 ? -1 : 1];
404 Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef dummy;
409 template <
typename WrongMatrixType>
412 typedef int Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef[
sizeof(WrongMatrixType) > 0 ? -1 : 1];
413 Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef dummy;
418 template <
typename WrongMatrixType>
421 typedef int Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef[
sizeof(WrongMatrixType) > 0 ? -1 : 1];
422 Please_make_sure_that_the_decltype_of_the_first_parameter_is_equal_to_the_Matrix_typedef dummy;
@ KDTREE_LINEAR_HEAP
kd-tree with linear heap, good for small k (~up to 30)
@ KDTREE_CL_PT_IN_NODES
kd-tree using openCL, pt in nodes, only available if OpenCL enabled, UNSTABLE API
const Index dim
the dimensionality of the data-point cloud
@ SEARCH_TYPE_COUNT
number of search types
void checkSizesKnn(const Matrix &query, const IndexMatrix &indices, const Matrix &dists2, const Index k, const unsigned optionFlags, const Vector *maxRadii=0) const
Make sure that the output matrices have the right sizes. Throw an exception otherwise.
NearestNeighbourSearch(const CloudType &cloud, const Index dim, const unsigned creationOptionFlags)
constructor
static NearestNeighbourSearch * createKDTreeLinearHeap(const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are suppor...
@ TOUCH_STATISTICS
perform statistics on the number of points touched
const Vector maxBound
the high bound of the search space (axis-aligned bounding box)
@ ALLOW_SELF_MATCH
allows the return of the same point as the query, if this point is in the data cloud; forbidden by de...
PM::Parameters Parameters
constexpr IndexType invalidIndex()
static NearestNeighbourSearch * createKDTreeTreeHeap(const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Create a nearest-neighbour search, using a kd-tree with tree heap, good for large k (~from 30)
NearestNeighbourSearch< double > NNSearchD
nearest neighbour search with scalars of type double
Eigen::Matrix< Index, Eigen::Dynamic, 1 > IndexVector
a vector of indices to data points
const CloudType & cloud
the reference to the data-point cloud, which must remain valid during the lifetime of the NearestNeig...
Cloud_T CloudType
a column-major Eigen matrix in which each column is a point; this matrix has dim rows
const unsigned creationOptionFlags
creation options
@ BRUTE_FORCE_CL
brute-force using openCL, only available if OpenCL enabled, UNSTABLE API
Eigen::Matrix< Index, Eigen::Dynamic, Eigen::Dynamic > IndexMatrix
a matrix of indices to data points
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
a column-major Eigen matrix in which each column is a point; this matrix has dim rows
NearestNeighbourSearch< float > NNSearchF
nearest neighbour search with scalars of type float
static NearestNeighbourSearch * createBruteForce(const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0)
Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are suppor...
static NearestNeighbourSearch * createKDTreeLinearHeap(const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Create a nearest-neighbour search, using a kd-tree with linear heap, good for small k (~up to 30)
@ KDTREE_TREE_HEAP
kd-tree with tree heap, good for large k (~from 30)
Parameters()
Create an empty parameter vector.
@ KDTREE_CL_PT_IN_LEAVES
kd-tree using openCL, pt in leaves, only available if OpenCL enabled, UNSTABLE API
Nearest neighbour search interface, templatized on scalar type.
static NearestNeighbourSearch * create(const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Create a nearest-neighbour search.
SearchOptionFlags
search option
static constexpr Index InvalidIndex
the invalid index
T get(const std::string &key, const T &defaultValue) const
Get the value of a key, return defaultValue if the key does not exist.
Eigen::Matrix< T, Eigen::Dynamic, 1 > Vector
an Eigen vector of type T, to hold the coordinates of a point
Parameters(const std::string &key, const linb::any &value)
Create a parameter vector with a single entry.
virtual ~NearestNeighbourSearch()
virtual destructor
const Vector minBound
the low bound of the search space (axis-aligned bounding box)
@ BRUTE_FORCE
brute force, check distance to every point in the data
CreationOptionFlags
creation option
int Index
an index to a Vector or a Matrix, for refering to data points
static NearestNeighbourSearch * create(const WrongMatrixType &cloud, const Index dim=std::numeric_limits< Index >::max(), const SearchType preferedType=KDTREE_LINEAR_HEAP, const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are suppor...
static NearestNeighbourSearch * createBruteForce(const CloudType &cloud, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0)
Create a nearest-neighbour search, using brute-force search, useful for comparison only.
constexpr ValueType invalidValue()
unsigned long knn(const Vector &query, IndexVector &indices, Vector &dists2, const Index k=1, const T epsilon=0, const unsigned optionFlags=0, const T maxRadius=std::numeric_limits< T >::infinity()) const
Find the k nearest neighbours of query.
static constexpr T InvalidValue
the invalid value
static NearestNeighbourSearch * createKDTreeTreeHeap(const WrongMatrixType &, const Index dim=std::numeric_limits< Index >::max(), const unsigned creationOptionFlags=0, const Parameters &additionalParameters=Parameters())
Prevent creation of trees with the wrong matrix type. Currently only dynamic size matrices are suppor...
@ SORT_RESULTS
sort points by distances, when k > 1; do not sort by default
mp2p_icp
Author(s):
autogenerated on Thu Dec 26 2024 03:48:12