vgg16_fast_rcnn.py
Go to the documentation of this file.
1 import chainer
2 import chainer.functions as F
3 import chainer.links as L
4 
5 
6 class VGG16FastRCNN(chainer.Chain):
7 
8  def __init__(self):
9  super(self.__class__, self).__init__(
10  conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1),
11  conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1),
12 
13  conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1),
14  conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1),
15 
16  conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1),
17  conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1),
18  conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1),
19 
20  conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1),
21  conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
22  conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
23 
24  conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1),
25  conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1),
26  conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1),
27 
28  fc6=L.Linear(25088, 4096),
29  fc7=L.Linear(4096, 4096),
30  cls_score=L.Linear(4096, 21),
31  bbox_pred=L.Linear(4096, 84)
32  )
33 
34  def __call__(self, x, rois):
35  h = F.relu(self.conv1_1(x))
36  h = F.relu(self.conv1_2(h))
37  h = F.max_pooling_2d(h, 2, stride=2)
38 
39  h = F.relu(self.conv2_1(h))
40  h = F.relu(self.conv2_2(h))
41  h = F.max_pooling_2d(h, 2, stride=2)
42 
43  h = F.relu(self.conv3_1(h))
44  h = F.relu(self.conv3_2(h))
45  h = F.relu(self.conv3_3(h))
46  h = F.max_pooling_2d(h, 2, stride=2)
47 
48  h = F.relu(self.conv4_1(h))
49  h = F.relu(self.conv4_2(h))
50  h = F.relu(self.conv4_3(h))
51  h = F.max_pooling_2d(h, 2, stride=2)
52 
53  h = F.relu(self.conv5_1(h))
54  h = F.relu(self.conv5_2(h))
55  h = F.relu(self.conv5_3(h))
56  h = F.roi_pooling_2d(h, rois, 7, 7, spatial_scale=0.0625)
57 
58  h = F.dropout(F.relu(self.fc6(h)), ratio=0.5)
59  h = F.dropout(F.relu(self.fc7(h)), ratio=0.5)
60  cls_score = F.softmax(self.cls_score(h))
61  bbox_pred = self.bbox_pred(h)
62 
63  return cls_score, bbox_pred
jsk_recognition_utils.chainermodels.vgg16_fast_rcnn.VGG16FastRCNN.__init__
def __init__(self)
Definition: vgg16_fast_rcnn.py:8
jsk_recognition_utils.chainermodels.vgg16_fast_rcnn.VGG16FastRCNN
Definition: vgg16_fast_rcnn.py:6
jsk_recognition_utils.chainermodels.vgg16_fast_rcnn.VGG16FastRCNN.__call__
def __call__(self, x, rois)
Definition: vgg16_fast_rcnn.py:34


jsk_recognition_utils
Author(s):
autogenerated on Tue Jan 7 2025 04:04:52