gtsam
3rdparty
Eigen
blas
f2c
stbmv.c
Go to the documentation of this file.
1
/* stbmv.f -- translated by f2c (version 20100827).
2
You must link the resulting object file with libf2c:
3
on Microsoft Windows system, link with libf2c.lib;
4
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5
or, if you install libf2c.a in a standard place, with -lf2c -lm
6
-- in that order, at the end of the command line, as in
7
cc *.o -lf2c -lm
8
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9
10
http://www.netlib.org/f2c/libf2c.zip
11
*/
12
13
#include "
datatypes.h
"
14
15
/* Subroutine */
int
stbmv_
(
char
*uplo,
char
*
trans
,
char
*
diag
,
integer
*
n
,
16
integer
*k,
real
*
a
,
integer
*
lda
,
real
*
x
,
integer
*
incx
,
ftnlen
17
uplo_len,
ftnlen
trans_len,
ftnlen
diag_len)
18
{
19
/* System generated locals */
20
integer
a_dim1, a_offset, i__1, i__2, i__3, i__4;
21
22
/* Local variables */
23
integer
i__,
j
,
l
, ix, jx, kx,
info
;
24
real
temp;
25
extern
logical
lsame_
(
char
*,
char
*,
ftnlen
,
ftnlen
);
26
integer
kplus1;
27
extern
/* Subroutine */
int
xerbla_
(
char
*,
integer
*,
ftnlen
);
28
logical
nounit;
29
30
/* .. Scalar Arguments .. */
31
/* .. */
32
/* .. Array Arguments .. */
33
/* .. */
34
35
/* Purpose */
36
/* ======= */
37
38
/* STBMV performs one of the matrix-vector operations */
39
40
/* x := A*x, or x := A'*x, */
41
42
/* where x is an n element vector and A is an n by n unit, or non-unit, */
43
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
44
45
/* Arguments */
46
/* ========== */
47
48
/* UPLO - CHARACTER*1. */
49
/* On entry, UPLO specifies whether the matrix is an upper or */
50
/* lower triangular matrix as follows: */
51
52
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
53
54
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
55
56
/* Unchanged on exit. */
57
58
/* TRANS - CHARACTER*1. */
59
/* On entry, TRANS specifies the operation to be performed as */
60
/* follows: */
61
62
/* TRANS = 'N' or 'n' x := A*x. */
63
64
/* TRANS = 'T' or 't' x := A'*x. */
65
66
/* TRANS = 'C' or 'c' x := A'*x. */
67
68
/* Unchanged on exit. */
69
70
/* DIAG - CHARACTER*1. */
71
/* On entry, DIAG specifies whether or not A is unit */
72
/* triangular as follows: */
73
74
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
75
76
/* DIAG = 'N' or 'n' A is not assumed to be unit */
77
/* triangular. */
78
79
/* Unchanged on exit. */
80
81
/* N - INTEGER. */
82
/* On entry, N specifies the order of the matrix A. */
83
/* N must be at least zero. */
84
/* Unchanged on exit. */
85
86
/* K - INTEGER. */
87
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
88
/* super-diagonals of the matrix A. */
89
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
90
/* sub-diagonals of the matrix A. */
91
/* K must satisfy 0 .le. K. */
92
/* Unchanged on exit. */
93
94
/* A - REAL array of DIMENSION ( LDA, n ). */
95
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
96
/* by n part of the array A must contain the upper triangular */
97
/* band part of the matrix of coefficients, supplied column by */
98
/* column, with the leading diagonal of the matrix in row */
99
/* ( k + 1 ) of the array, the first super-diagonal starting at */
100
/* position 2 in row k, and so on. The top left k by k triangle */
101
/* of the array A is not referenced. */
102
/* The following program segment will transfer an upper */
103
/* triangular band matrix from conventional full matrix storage */
104
/* to band storage: */
105
106
/* DO 20, J = 1, N */
107
/* M = K + 1 - J */
108
/* DO 10, I = MAX( 1, J - K ), J */
109
/* A( M + I, J ) = matrix( I, J ) */
110
/* 10 CONTINUE */
111
/* 20 CONTINUE */
112
113
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
114
/* by n part of the array A must contain the lower triangular */
115
/* band part of the matrix of coefficients, supplied column by */
116
/* column, with the leading diagonal of the matrix in row 1 of */
117
/* the array, the first sub-diagonal starting at position 1 in */
118
/* row 2, and so on. The bottom right k by k triangle of the */
119
/* array A is not referenced. */
120
/* The following program segment will transfer a lower */
121
/* triangular band matrix from conventional full matrix storage */
122
/* to band storage: */
123
124
/* DO 20, J = 1, N */
125
/* M = 1 - J */
126
/* DO 10, I = J, MIN( N, J + K ) */
127
/* A( M + I, J ) = matrix( I, J ) */
128
/* 10 CONTINUE */
129
/* 20 CONTINUE */
130
131
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
132
/* corresponding to the diagonal elements of the matrix are not */
133
/* referenced, but are assumed to be unity. */
134
/* Unchanged on exit. */
135
136
/* LDA - INTEGER. */
137
/* On entry, LDA specifies the first dimension of A as declared */
138
/* in the calling (sub) program. LDA must be at least */
139
/* ( k + 1 ). */
140
/* Unchanged on exit. */
141
142
/* X - REAL array of dimension at least */
143
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
144
/* Before entry, the incremented array X must contain the n */
145
/* element vector x. On exit, X is overwritten with the */
146
/* transformed vector x. */
147
148
/* INCX - INTEGER. */
149
/* On entry, INCX specifies the increment for the elements of */
150
/* X. INCX must not be zero. */
151
/* Unchanged on exit. */
152
153
/* Further Details */
154
/* =============== */
155
156
/* Level 2 Blas routine. */
157
158
/* -- Written on 22-October-1986. */
159
/* Jack Dongarra, Argonne National Lab. */
160
/* Jeremy Du Croz, Nag Central Office. */
161
/* Sven Hammarling, Nag Central Office. */
162
/* Richard Hanson, Sandia National Labs. */
163
164
/* ===================================================================== */
165
166
/* .. Parameters .. */
167
/* .. */
168
/* .. Local Scalars .. */
169
/* .. */
170
/* .. External Functions .. */
171
/* .. */
172
/* .. External Subroutines .. */
173
/* .. */
174
/* .. Intrinsic Functions .. */
175
/* .. */
176
177
/* Test the input parameters. */
178
179
/* Parameter adjustments */
180
a_dim1 = *
lda
;
181
a_offset = 1 + a_dim1;
182
a
-= a_offset;
183
--
x
;
184
185
/* Function Body */
186
info
= 0;
187
if
(!
lsame_
(uplo,
"U"
, (
ftnlen
)1, (
ftnlen
)1) && !
lsame_
(uplo,
"L"
, (
188
ftnlen
)1, (
ftnlen
)1)) {
189
info
= 1;
190
}
else
if
(!
lsame_
(
trans
,
"N"
, (
ftnlen
)1, (
ftnlen
)1) && !
lsame_
(
trans
,
191
"T"
, (
ftnlen
)1, (
ftnlen
)1) && !
lsame_
(
trans
,
"C"
, (
ftnlen
)1, (
192
ftnlen
)1)) {
193
info
= 2;
194
}
else
if
(!
lsame_
(
diag
,
"U"
, (
ftnlen
)1, (
ftnlen
)1) && !
lsame_
(
diag
,
195
"N"
, (
ftnlen
)1, (
ftnlen
)1)) {
196
info
= 3;
197
}
else
if
(*
n
< 0) {
198
info
= 4;
199
}
else
if
(*k < 0) {
200
info
= 5;
201
}
else
if
(*
lda
< *k + 1) {
202
info
= 7;
203
}
else
if
(*
incx
== 0) {
204
info
= 9;
205
}
206
if
(
info
!= 0) {
207
xerbla_
(
"STBMV "
, &
info
, (
ftnlen
)6);
208
return
0;
209
}
210
211
/* Quick return if possible. */
212
213
if
(*
n
== 0) {
214
return
0;
215
}
216
217
nounit =
lsame_
(
diag
,
"N"
, (
ftnlen
)1, (
ftnlen
)1);
218
219
/* Set up the start point in X if the increment is not unity. This */
220
/* will be ( N - 1 )*INCX too small for descending loops. */
221
222
if
(*
incx
<= 0) {
223
kx = 1 - (*
n
- 1) * *
incx
;
224
}
else
if
(*
incx
!= 1) {
225
kx = 1;
226
}
227
228
/* Start the operations. In this version the elements of A are */
229
/* accessed sequentially with one pass through A. */
230
231
if
(
lsame_
(
trans
,
"N"
, (
ftnlen
)1, (
ftnlen
)1)) {
232
233
/* Form x := A*x. */
234
235
if
(
lsame_
(uplo,
"U"
, (
ftnlen
)1, (
ftnlen
)1)) {
236
kplus1 = *k + 1;
237
if
(*
incx
== 1) {
238
i__1 = *
n
;
239
for
(
j
= 1;
j
<= i__1; ++
j
) {
240
if
(
x
[
j
] != 0.
f
) {
241
temp =
x
[
j
];
242
l
= kplus1 -
j
;
243
/* Computing MAX */
244
i__2 = 1, i__3 =
j
- *k;
245
i__4 =
j
- 1;
246
for
(i__ =
max
(i__2,i__3); i__ <= i__4; ++i__) {
247
x
[i__] += temp *
a
[
l
+ i__ +
j
* a_dim1];
248
/* L10: */
249
}
250
if
(nounit) {
251
x
[
j
] *=
a
[kplus1 +
j
* a_dim1];
252
}
253
}
254
/* L20: */
255
}
256
}
else
{
257
jx = kx;
258
i__1 = *
n
;
259
for
(
j
= 1;
j
<= i__1; ++
j
) {
260
if
(
x
[jx] != 0.
f
) {
261
temp =
x
[jx];
262
ix = kx;
263
l
= kplus1 -
j
;
264
/* Computing MAX */
265
i__4 = 1, i__2 =
j
- *k;
266
i__3 =
j
- 1;
267
for
(i__ =
max
(i__4,i__2); i__ <= i__3; ++i__) {
268
x
[ix] += temp *
a
[
l
+ i__ +
j
* a_dim1];
269
ix += *
incx
;
270
/* L30: */
271
}
272
if
(nounit) {
273
x
[jx] *=
a
[kplus1 +
j
* a_dim1];
274
}
275
}
276
jx += *
incx
;
277
if
(
j
> *k) {
278
kx += *
incx
;
279
}
280
/* L40: */
281
}
282
}
283
}
else
{
284
if
(*
incx
== 1) {
285
for
(
j
= *
n
;
j
>= 1; --
j
) {
286
if
(
x
[
j
] != 0.
f
) {
287
temp =
x
[
j
];
288
l
= 1 -
j
;
289
/* Computing MIN */
290
i__1 = *
n
, i__3 =
j
+ *k;
291
i__4 =
j
+ 1;
292
for
(i__ =
min
(i__1,i__3); i__ >= i__4; --i__) {
293
x
[i__] += temp *
a
[
l
+ i__ +
j
* a_dim1];
294
/* L50: */
295
}
296
if
(nounit) {
297
x
[
j
] *=
a
[
j
* a_dim1 + 1];
298
}
299
}
300
/* L60: */
301
}
302
}
else
{
303
kx += (*
n
- 1) * *
incx
;
304
jx = kx;
305
for
(
j
= *
n
;
j
>= 1; --
j
) {
306
if
(
x
[jx] != 0.
f
) {
307
temp =
x
[jx];
308
ix = kx;
309
l
= 1 -
j
;
310
/* Computing MIN */
311
i__4 = *
n
, i__1 =
j
+ *k;
312
i__3 =
j
+ 1;
313
for
(i__ =
min
(i__4,i__1); i__ >= i__3; --i__) {
314
x
[ix] += temp *
a
[
l
+ i__ +
j
* a_dim1];
315
ix -= *
incx
;
316
/* L70: */
317
}
318
if
(nounit) {
319
x
[jx] *=
a
[
j
* a_dim1 + 1];
320
}
321
}
322
jx -= *
incx
;
323
if
(*
n
-
j
>= *k) {
324
kx -= *
incx
;
325
}
326
/* L80: */
327
}
328
}
329
}
330
}
else
{
331
332
/* Form x := A'*x. */
333
334
if
(
lsame_
(uplo,
"U"
, (
ftnlen
)1, (
ftnlen
)1)) {
335
kplus1 = *k + 1;
336
if
(*
incx
== 1) {
337
for
(
j
= *
n
;
j
>= 1; --
j
) {
338
temp =
x
[
j
];
339
l
= kplus1 -
j
;
340
if
(nounit) {
341
temp *=
a
[kplus1 +
j
* a_dim1];
342
}
343
/* Computing MAX */
344
i__4 = 1, i__1 =
j
- *k;
345
i__3 =
max
(i__4,i__1);
346
for
(i__ =
j
- 1; i__ >= i__3; --i__) {
347
temp +=
a
[
l
+ i__ +
j
* a_dim1] *
x
[i__];
348
/* L90: */
349
}
350
x
[
j
] = temp;
351
/* L100: */
352
}
353
}
else
{
354
kx += (*
n
- 1) * *
incx
;
355
jx = kx;
356
for
(
j
= *
n
;
j
>= 1; --
j
) {
357
temp =
x
[jx];
358
kx -= *
incx
;
359
ix = kx;
360
l
= kplus1 -
j
;
361
if
(nounit) {
362
temp *=
a
[kplus1 +
j
* a_dim1];
363
}
364
/* Computing MAX */
365
i__4 = 1, i__1 =
j
- *k;
366
i__3 =
max
(i__4,i__1);
367
for
(i__ =
j
- 1; i__ >= i__3; --i__) {
368
temp +=
a
[
l
+ i__ +
j
* a_dim1] *
x
[ix];
369
ix -= *
incx
;
370
/* L110: */
371
}
372
x
[jx] = temp;
373
jx -= *
incx
;
374
/* L120: */
375
}
376
}
377
}
else
{
378
if
(*
incx
== 1) {
379
i__3 = *
n
;
380
for
(
j
= 1;
j
<= i__3; ++
j
) {
381
temp =
x
[
j
];
382
l
= 1 -
j
;
383
if
(nounit) {
384
temp *=
a
[
j
* a_dim1 + 1];
385
}
386
/* Computing MIN */
387
i__1 = *
n
, i__2 =
j
+ *k;
388
i__4 =
min
(i__1,i__2);
389
for
(i__ =
j
+ 1; i__ <= i__4; ++i__) {
390
temp +=
a
[
l
+ i__ +
j
* a_dim1] *
x
[i__];
391
/* L130: */
392
}
393
x
[
j
] = temp;
394
/* L140: */
395
}
396
}
else
{
397
jx = kx;
398
i__3 = *
n
;
399
for
(
j
= 1;
j
<= i__3; ++
j
) {
400
temp =
x
[jx];
401
kx += *
incx
;
402
ix = kx;
403
l
= 1 -
j
;
404
if
(nounit) {
405
temp *=
a
[
j
* a_dim1 + 1];
406
}
407
/* Computing MIN */
408
i__1 = *
n
, i__2 =
j
+ *k;
409
i__4 =
min
(i__1,i__2);
410
for
(i__ =
j
+ 1; i__ <= i__4; ++i__) {
411
temp +=
a
[
l
+ i__ +
j
* a_dim1] *
x
[ix];
412
ix += *
incx
;
413
/* L150: */
414
}
415
x
[jx] = temp;
416
jx += *
incx
;
417
/* L160: */
418
}
419
}
420
}
421
}
422
423
return
0;
424
425
/* End of STBMV . */
426
427
}
/* stbmv_ */
428
gtsam::diag
Matrix diag(const std::vector< Matrix > &Hs)
Definition:
Matrix.cpp:207
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition:
gnuplot_common_settings.hh:12
trans
static char trans
Definition:
blas_interface.hh:58
ftnlen
int ftnlen
Definition:
datatypes.h:14
datatypes.h
n
int n
Definition:
BiCGSTAB_simple.cpp:1
j
std::ptrdiff_t j
Definition:
tut_arithmetic_redux_minmax.cpp:2
lsame_
logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
Definition:
lsame.c:15
l
static const Line3 l(Rot3(), 1, 1)
incx
RealScalar RealScalar int * incx
Definition:
level1_cplx_impl.h:29
info
else if n * info
Definition:
3rdparty/Eigen/lapack/cholesky.cpp:18
lda
* lda
Definition:
eigenvalues.cpp:59
tree::f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Definition:
testExpression.cpp:218
a
ArrayXXi a
Definition:
Array_initializer_list_23_cxx11.cpp:1
integer
int integer
Definition:
datatypes.h:8
xerbla_
EIGEN_WEAK_LINKING int xerbla_(const char *msg, int *info, int)
Definition:
xerbla.cpp:15
min
#define min(a, b)
Definition:
datatypes.h:19
logical
int logical
Definition:
datatypes.h:15
stbmv_
int stbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
Definition:
stbmv.c:15
max
#define max(a, b)
Definition:
datatypes.h:20
real
Definition:
main.h:100
gtsam
Author(s):
autogenerated on Wed Jan 1 2025 04:04:00