39 #define dSqrt(x) (sqrtf(x)) // square root
40 #define dRecip(x) ((1.0f/(x))) // reciprocal
41 #define dSin(x) (sinf(x)) // sin
42 #define dCos(x) (cosf(x)) // cos
45 #define dSqrt(x) (sqrt(x)) // square root
46 #define dRecip(x) ((1.0/(x))) // reciprocal
47 #define dSin(x) (sin(x)) // sin
48 #define dCos(x) (cos(x)) // cos
57 #define _R(i,j) R[(i)*4+(j)]
62 assert(qa && qb && qc);
63 qa[0] = qb[0]*qc[0] - qb[1]*qc[1] - qb[2]*qc[2] - qb[3]*qc[3];
64 qa[1] = qb[0]*qc[1] + qb[1]*qc[0] + qb[2]*qc[3] - qb[3]*qc[2];
65 qa[2] = qb[0]*qc[2] + qb[2]*qc[0] + qb[3]*qc[1] - qb[1]*qc[3];
66 qa[3] = qb[0]*qc[3] + qb[3]*qc[0] + qb[1]*qc[2] - qb[2]*qc[1];
73 dReal qq1 = 2*q[1]*q[1];
74 dReal qq2 = 2*q[2]*q[2];
75 dReal qq3 = 2*q[3]*q[3];
76 _R(0,0) = 1 - qq2 - qq3;
77 _R(0,1) = 2*(q[1]*q[2] - q[0]*q[3]);
78 _R(0,2) = 2*(q[1]*q[3] + q[0]*q[2]);
80 _R(1,0) = 2*(q[1]*q[2] + q[0]*q[3]);
81 _R(1,1) = 1 - qq1 - qq3;
82 _R(1,2) = 2*(q[2]*q[3] - q[0]*q[1]);
84 _R(2,0) = 2*(q[1]*q[3] - q[0]*q[2]);
85 _R(2,1) = 2*(q[2]*q[3] + q[0]*q[1]);
86 _R(2,2) = 1 - qq1 - qq2;
94 tr =
_R(0,0) +
_R(1,1) +
_R(2,2);
99 q[1] = (
_R(2,1) -
_R(1,2)) *
s;
100 q[2] = (
_R(0,2) -
_R(2,0)) *
s;
101 q[3] = (
_R(1,0) -
_R(0,1)) *
s;
105 if (
_R(1,1) >
_R(0,0)) {
106 if (
_R(2,2) >
_R(1,1))
goto case_2;
109 if (
_R(2,2) >
_R(0,0))
goto case_2;
116 q[2] = (
_R(0,1) +
_R(1,0)) *
s;
117 q[3] = (
_R(2,0) +
_R(0,2)) *
s;
118 q[0] = (
_R(2,1) -
_R(1,2)) *
s;
125 q[3] = (
_R(1,2) +
_R(2,1)) *
s;
126 q[1] = (
_R(0,1) +
_R(1,0)) *
s;
127 q[0] = (
_R(0,2) -
_R(2,0)) *
s;
134 q[1] = (
_R(2,0) +
_R(0,2)) *
s;
135 q[2] = (
_R(1,2) +
_R(2,1)) *
s;
136 q[0] = (
_R(1,0) -
_R(0,1)) *
s;
146 #define PI ((dReal)3.141592654)
149 #define rswap(x, y) *(int*)&(x) ^= *(int*)&(y) ^= *(int*)&(x) ^= *(int*)&(y);
151 #define g_fEpsilon 1e-8
152 #define distinctRoots 0 // roots r0 < r1 < r2
153 #define singleRoot 1 // root r0
154 #define floatRoot01 2 // roots r0 = r1 < r2
155 #define floatRoot12 4 // roots r0 < r1 = r2
156 #define tripleRoot 6 // roots r0 = r1 = r2
158 template <
class T>
inline T
RAD_2_DEG(T radians) {
return (radians * (T)57.29577951); }
164 inline float*
mult4(
float* pfres,
const float* pf1,
const float* pf2);
167 inline float*
multtrans3(
float* pfres,
const float* pf1,
const float* pf2);
168 inline float*
multtrans4(
float* pfres,
const float* pf1,
const float* pf2);
169 inline float*
transnorm3(
float* pfout,
const float* pfmat,
const float* pf);
171 inline float*
transpose3(
const float* pf,
float* pfres);
172 inline float*
transpose4(
const float* pf,
float* pfres);
174 inline float dot2(
const float* pf1,
const float* pf2);
175 inline float dot3(
const float* pf1,
const float* pf2);
176 inline float dot4(
const float* pf1,
const float* pf2);
182 inline float*
normalize2(
float* pfout,
const float* pf);
183 inline float*
normalize3(
float* pfout,
const float* pf);
184 inline float*
normalize4(
float* pfout,
const float* pf);
186 inline float*
cross3(
float* pfout,
const float* pf1,
const float* pf2);
189 inline float*
mult3_s4(
float* pfres,
const float* pf1,
const float* pf2);
190 inline float*
mult3_s3(
float* pfres,
const float* pf1,
const float* pf2);
192 inline float*
inv3(
const float* pf,
float* pfres,
float* pfdet,
int stride);
193 inline float*
inv4(
const float* pf,
float* pfres);
196 inline double*
mult4(
double* pfres,
const double* pf1,
const double* pf2);
199 inline double*
multtrans3(
double* pfres,
const double* pf1,
const double* pf2);
200 inline double*
multtrans4(
double* pfres,
const double* pf1,
const double* pf2);
201 inline double*
transnorm3(
double* pfout,
const double* pfmat,
const double* pf);
203 inline double*
transpose3(
const double* pf,
double* pfres);
204 inline double*
transpose4(
const double* pf,
double* pfres);
206 inline double dot2(
const double* pf1,
const double* pf2);
207 inline double dot3(
const double* pf1,
const double* pf2);
208 inline double dot4(
const double* pf1,
const double* pf2);
214 inline double*
normalize2(
double* pfout,
const double* pf);
215 inline double*
normalize3(
double* pfout,
const double* pf);
216 inline double*
normalize4(
double* pfout,
const double* pf);
218 inline double*
cross3(
double* pfout,
const double* pf1,
const double* pf2);
221 inline double*
mult3_s4(
double* pfres,
const double* pf1,
const double* pf2);
222 inline double*
mult3_s3(
double* pfres,
const double* pf1,
const double* pf2);
224 inline double*
inv3(
const double* pf,
double* pfres,
double* pfdet,
int stride);
225 inline double*
inv4(
const double* pf,
double* pfres);
254 template<
class U>
RaveVector(
const U* pf) { assert(pf != NULL);
x = (T)pf[0];
y = (T)pf[1];
z = (T)pf[2];
w = 0; }
260 operator T* () {
return &
x; }
261 operator const T* ()
const {
return (
const T*)&
x; }
289 inline void Set3(
const T* pvals) {
x = pvals[0];
y = pvals[1];
z = pvals[2]; }
290 inline void Set3(T val1, T val2, T val3) {
x = val1;
y = val2;
z = val3; }
291 inline void Set4(
const T* pvals) {
x = pvals[0];
y = pvals[1];
z = pvals[2];
w = pvals[3]; }
292 inline void Set4(T val1, T val2, T val3, T val4) {
x = val1;
y = val2;
z = val3;
w = val4;}
300 ucrossv[0] = u[1] * v[2] - u[2] * v[1];
301 ucrossv[1] = u[2] * v[0] - u[0] * v[2];
302 ucrossv[2] = u[0] * v[1] - u[1] * v[0];
323 template <
class S,
class U>
friend std::basic_ostream<S>&
operator<<(std::basic_ostream<S>& O,
const RaveVector<U>& v);
324 template <
class S,
class U>
friend std::basic_istream<S>&
operator>>(std::basic_istream<S>& I,
RaveVector<U>& v);
329 ucrossv[0] =
y * v[2] -
z * v[1];
330 ucrossv[1] =
z * v[0] -
x * v[2];
331 ucrossv[2] =
x * v[1] -
y * v[0];
382 rot.y = axis.
x*sinang;
383 rot.z = axis.
y*sinang;
384 rot.w = axis.
z*sinang;
404 v.
x = (1-yy-zz) * r.
x + (xy-zw) * r.
y + (xz+yw)*r.
z;
405 v.
y = (xy+zw) * r.
x + (1-xx-zz) * r.
y + (yz-xw)*r.
z;
406 v.
z = (xz-yw) * r.
x + (yz+xw) * r.
y + (1-xx-yy)*r.
z;
454 m[0] = t.
m[0];
m[1] = t.
m[1];
m[2] = t.
m[2];
m[3] = t.
m[3];
455 m[4] = t.
m[4];
m[5] = t.
m[5];
m[6] = t.
m[6];
m[7] = t.
m[7];
456 m[8] = t.
m[8];
m[9] = t.
m[9];
m[10] = t.
m[10];
m[11] = t.
m[11];
462 m[0] = 1;
m[1] = 0;
m[2] = 0;
463 m[4] = 0;
m[5] = 1;
m[6] = 0;
464 m[8] = 0;
m[9] = 0;
m[10] = 1;
473 quat.
y = axis.
x*sinang;
474 quat.
z = axis.
y*sinang;
475 quat.
w = axis.
z*sinang;
482 T qq1 = 2*quat[1]*quat[1];
483 T qq2 = 2*quat[2]*quat[2];
484 T qq3 = 2*quat[3]*quat[3];
485 m[4*0+0] = 1 - qq2 - qq3;
486 m[4*0+1] = 2*(quat[1]*quat[2] - quat[0]*quat[3]);
487 m[4*0+2] = 2*(quat[1]*quat[3] + quat[0]*quat[2]);
489 m[4*1+0] = 2*(quat[1]*quat[2] + quat[0]*quat[3]);
490 m[4*1+1] = 1 - qq1 - qq3;
491 m[4*1+2] = 2*(quat[2]*quat[3] - quat[0]*quat[1]);
493 m[4*2+0] = 2*(quat[1]*quat[3] - quat[0]*quat[2]);
494 m[4*2+1] = 2*(quat[2]*quat[3] + quat[0]*quat[1]);
495 m[4*2+2] = 1 - qq1 - qq2;
499 inline void rotfrommat(T m_00, T m_01, T m_02, T m_10, T m_11, T m_12, T m_20, T m_21, T m_22) {
500 m[0] = m_00;
m[1] = m_01;
m[2] = m_02;
m[3] = 0;
501 m[4] = m_10;
m[5] = m_11;
m[6] = m_12;
m[7] = 0;
502 m[8] = m_20;
m[9] = m_21;
m[10] = m_22;
m[11] = 0;
505 inline T
rot(
int i,
int j)
const {
506 assert( i >= 0 && i < 3 && j >= 0 && j < 3);
509 inline T&
rot(
int i,
int j) {
510 assert( i >= 0 && i < 3 && j >= 0 && j < 3);
517 v[0] = r[0] *
m[0] + r[1] *
m[1] + r[2] *
m[2] +
trans.x;
518 v[1] = r[0] *
m[4] + r[1] *
m[5] + r[2] *
m[6] +
trans.y;
519 v[2] = r[0] *
m[8] + r[1] *
m[9] + r[2] *
m[10] +
trans.z;
541 v.
x = r.
x *
m[0] + r.
y *
m[1] + r.
z *
m[2];
542 v.
y = r.
x *
m[4] + r.
y *
m[5] + r.
z *
m[6];
543 v.
z = r.
x *
m[8] + r.
y *
m[9] + r.
z *
m[10];
556 right.
x =
m[0]; up.
x =
m[1]; dir.
x =
m[2];
557 right.
y =
m[4]; up.
y =
m[5]; dir.
y =
m[6];
558 right.
z =
m[8]; up.
z =
m[9]; dir.
z =
m[10];
576 tr = t.
m[4*0+0] + t.
m[4*1+1] + t.
m[4*2+2];
579 rot[0] = (
dReal)(0.5) *
s;
581 rot[1] = (t.
m[4*2+1] - t.
m[4*1+2]) *
s;
582 rot[2] = (t.
m[4*0+2] - t.
m[4*2+0]) *
s;
583 rot[3] = (t.
m[4*1+0] - t.
m[4*0+1]) *
s;
587 if (t.
m[4*1+1] > t.
m[4*0+0]) {
588 if (t.
m[4*2+2] > t.
m[4*1+1])
goto case_2;
591 if (t.
m[4*2+2] > t.
m[4*0+0])
goto case_2;
595 s =
RaveSqrt((t.
m[4*0+0] - (t.
m[4*1+1] + t.
m[4*2+2])) + 1);
596 rot[1] = (
dReal)(0.5) *
s;
598 rot[2] = (t.
m[4*0+1] + t.
m[4*1+0]) *
s;
599 rot[3] = (t.
m[4*2+0] + t.
m[4*0+2]) *
s;
600 rot[0] = (t.
m[4*2+1] - t.
m[4*1+2]) *
s;
604 s =
RaveSqrt((t.
m[4*1+1] - (t.
m[4*2+2] + t.
m[4*0+0])) + 1);
605 rot[2] = (
dReal)(0.5) *
s;
607 rot[3] = (t.
m[4*1+2] + t.
m[4*2+1]) *
s;
608 rot[1] = (t.
m[4*0+1] + t.
m[4*1+0]) *
s;
609 rot[0] = (t.
m[4*0+2] - t.
m[4*2+0]) *
s;
613 s =
RaveSqrt((t.
m[4*2+2] - (t.
m[4*0+0] + t.
m[4*1+1])) + 1);
614 rot[3] = (
dReal)(0.5) *
s;
616 rot[1] = (t.
m[4*2+0] + t.
m[4*0+2]) *
s;
617 rot[2] = (t.
m[4*1+2] + t.
m[4*2+1]) *
s;
618 rot[0] = (t.
m[4*1+0] - t.
m[4*0+1]) *
s;
692 int CubicRoots (
double c0,
double c1,
double c2,
double *r0,
double *r1,
double *r2);
693 template <
class T,
class S>
void Tridiagonal3 (S* mat, T* diag, T* subd);
694 bool QLAlgorithm3 (
float* m_aafEntry,
float* afDiag,
float* afSubDiag);
695 bool QLAlgorithm3 (
double* m_aafEntry,
double* afDiag,
double* afSubDiag);
715 template <
class T>
int Min(T* pts,
int stride,
int numPts);
716 template <
class T>
int Max(T* pts,
int stride,
int numPts);
719 template <
class T>
inline void mult(T* pf, T fa,
int r);
723 template <
class T,
class R,
class S>
724 inline S*
mult(T* pf1, R* pf2,
int r1,
int c1,
int c2, S* pfres,
bool badd =
false);
729 template <
class T,
class R,
class S>
730 inline S*
multtrans(T* pf1, R* pf2,
int r1,
int c1,
int c2, S* pfres,
bool badd =
false);
736 template <
class T,
class R,
class S>
737 inline S*
multtrans_to2(T* pf1, R* pf2,
int r1,
int c1,
int r2, S* pfres,
bool badd =
false);
743 template <
class T>
inline T*
multto1(T* pf1, T* pf2,
int r1,
int c1, T* pftemp = NULL);
747 template <
class T,
class S>
inline T*
multto2(T* pf1, S* pf2,
int r2,
int c2, S* pftemp = NULL);
750 template <
class T>
inline void sub(T* pf1, T* pf2,
int r);
751 template <
class T>
inline T
normsqr(
const T* pf1,
int r);
752 template <
class T>
inline T
lengthsqr(
const T* pf1,
const T* pf2,
int length);
753 template <
class T>
inline T
dot(T* pf1, T* pf2,
int length);
755 template <
class T>
inline T
sum(T* pf,
int length);
758 template <
class T>
inline bool inv2(T* pf, T* pfres);
767 b = -(pfmat[0] + pfmat[3]);
768 c = pfmat[0] * pfmat[3] - pfmat[1] * pfmat[2];
769 d = b * b - 4.0f * c + 1e-16
f;
771 if(
d < 0 )
return false;
774 peigs[0] = a; peigs[1] = a;
775 fv1x = pfmat[1]; fv1y = a - pfmat[0];
776 c = 1 /
RaveSqrt(fv1x*fv1x + fv1y*fv1y);
777 fv1x *= c; fv1y *= c;
778 fv2x = -fv1y; fv2y = fv1x;
786 fv1x = pfmat[1]; fv1y = a-pfmat[0];
787 c = 1 /
RaveSqrt(fv1x*fv1x + fv1y*fv1y);
788 fv1x *= c; fv1y *= c;
792 fv2x = pfmat[1]; fv2y = a-pfmat[0];
793 c = 1 /
RaveSqrt(fv2x*fv2x + fv2y*fv2y);
794 fv2x *= c; fv2y *= c;
802 T
d = b * b - (T)4 * c * a + (T)1e-16;
804 if(
d < 0 )
return 0;
807 r1 = r2 = (T)-0.5 * b / a;
813 r1 = (T)-0.5 * (b +
d) / a;
820 #define MULT3(stride) { \
821 pfres2[0*stride+0] = pf1[0*stride+0]*pf2[0*stride+0]+pf1[0*stride+1]*pf2[1*stride+0]+pf1[0*stride+2]*pf2[2*stride+0]; \
822 pfres2[0*stride+1] = pf1[0*stride+0]*pf2[0*stride+1]+pf1[0*stride+1]*pf2[1*stride+1]+pf1[0*stride+2]*pf2[2*stride+1]; \
823 pfres2[0*stride+2] = pf1[0*stride+0]*pf2[0*stride+2]+pf1[0*stride+1]*pf2[1*stride+2]+pf1[0*stride+2]*pf2[2*stride+2]; \
824 pfres2[1*stride+0] = pf1[1*stride+0]*pf2[0*stride+0]+pf1[1*stride+1]*pf2[1*stride+0]+pf1[1*stride+2]*pf2[2*stride+0]; \
825 pfres2[1*stride+1] = pf1[1*stride+0]*pf2[0*stride+1]+pf1[1*stride+1]*pf2[1*stride+1]+pf1[1*stride+2]*pf2[2*stride+1]; \
826 pfres2[1*stride+2] = pf1[1*stride+0]*pf2[0*stride+2]+pf1[1*stride+1]*pf2[1*stride+2]+pf1[1*stride+2]*pf2[2*stride+2]; \
827 pfres2[2*stride+0] = pf1[2*stride+0]*pf2[0*stride+0]+pf1[2*stride+1]*pf2[1*stride+0]+pf1[2*stride+2]*pf2[2*stride+0]; \
828 pfres2[2*stride+1] = pf1[2*stride+0]*pf2[0*stride+1]+pf1[2*stride+1]*pf2[1*stride+1]+pf1[2*stride+2]*pf2[2*stride+1]; \
829 pfres2[2*stride+2] = pf1[2*stride+0]*pf2[0*stride+2]+pf1[2*stride+1]*pf2[1*stride+2]+pf1[2*stride+2]*pf2[2*stride+2]; \
834 inline T*
_mult3_s4(T* pfres,
const T* pf1,
const T* pf2)
836 assert( pf1 != NULL && pf2 != NULL && pfres != NULL );
839 if( pfres == pf1 || pfres == pf2 ) pfres2 = (T*)alloca(12 *
sizeof(T));
844 if( pfres2 != pfres ) memcpy(pfres, pfres2, 12*
sizeof(T));
851 inline T*
_mult3_s3(T* pfres,
const T* pf1,
const T* pf2)
853 assert( pf1 != NULL && pf2 != NULL && pfres != NULL );
856 if( pfres == pf1 || pfres == pf2 ) pfres2 = (T*)alloca(9 *
sizeof(T));
861 if( pfres2 != pfres ) memcpy(pfres, pfres2, 9*
sizeof(T));
868 inline T*
_mult4(T* pfres,
const T* p1,
const T* p2)
870 assert( pfres != NULL && p1 != NULL && p2 != NULL );
873 if( pfres == p1 || pfres == p2 ) pfres2 = (T*)alloca(16 *
sizeof(T));
876 pfres2[0*4+0] = p1[0*4+0]*p2[0*4+0] + p1[0*4+1]*p2[1*4+0] + p1[0*4+2]*p2[2*4+0] + p1[0*4+3]*p2[3*4+0];
877 pfres2[0*4+1] = p1[0*4+0]*p2[0*4+1] + p1[0*4+1]*p2[1*4+1] + p1[0*4+2]*p2[2*4+1] + p1[0*4+3]*p2[3*4+1];
878 pfres2[0*4+2] = p1[0*4+0]*p2[0*4+2] + p1[0*4+1]*p2[1*4+2] + p1[0*4+2]*p2[2*4+2] + p1[0*4+3]*p2[3*4+2];
879 pfres2[0*4+3] = p1[0*4+0]*p2[0*4+3] + p1[0*4+1]*p2[1*4+3] + p1[0*4+2]*p2[2*4+3] + p1[0*4+3]*p2[3*4+3];
881 pfres2[1*4+0] = p1[1*4+0]*p2[0*4+0] + p1[1*4+1]*p2[1*4+0] + p1[1*4+2]*p2[2*4+0] + p1[1*4+3]*p2[3*4+0];
882 pfres2[1*4+1] = p1[1*4+0]*p2[0*4+1] + p1[1*4+1]*p2[1*4+1] + p1[1*4+2]*p2[2*4+1] + p1[1*4+3]*p2[3*4+1];
883 pfres2[1*4+2] = p1[1*4+0]*p2[0*4+2] + p1[1*4+1]*p2[1*4+2] + p1[1*4+2]*p2[2*4+2] + p1[1*4+3]*p2[3*4+2];
884 pfres2[1*4+3] = p1[1*4+0]*p2[0*4+3] + p1[1*4+1]*p2[1*4+3] + p1[1*4+2]*p2[2*4+3] + p1[1*4+3]*p2[3*4+3];
886 pfres2[2*4+0] = p1[2*4+0]*p2[0*4+0] + p1[2*4+1]*p2[1*4+0] + p1[2*4+2]*p2[2*4+0] + p1[2*4+3]*p2[3*4+0];
887 pfres2[2*4+1] = p1[2*4+0]*p2[0*4+1] + p1[2*4+1]*p2[1*4+1] + p1[2*4+2]*p2[2*4+1] + p1[2*4+3]*p2[3*4+1];
888 pfres2[2*4+2] = p1[2*4+0]*p2[0*4+2] + p1[2*4+1]*p2[1*4+2] + p1[2*4+2]*p2[2*4+2] + p1[2*4+3]*p2[3*4+2];
889 pfres2[2*4+3] = p1[2*4+0]*p2[0*4+3] + p1[2*4+1]*p2[1*4+3] + p1[2*4+2]*p2[2*4+3] + p1[2*4+3]*p2[3*4+3];
891 pfres2[3*4+0] = p1[3*4+0]*p2[0*4+0] + p1[3*4+1]*p2[1*4+0] + p1[3*4+2]*p2[2*4+0] + p1[3*4+3]*p2[3*4+0];
892 pfres2[3*4+1] = p1[3*4+0]*p2[0*4+1] + p1[3*4+1]*p2[1*4+1] + p1[3*4+2]*p2[2*4+1] + p1[3*4+3]*p2[3*4+1];
893 pfres2[3*4+2] = p1[3*4+0]*p2[0*4+2] + p1[3*4+1]*p2[1*4+2] + p1[3*4+2]*p2[2*4+2] + p1[3*4+3]*p2[3*4+2];
894 pfres2[3*4+3] = p1[3*4+0]*p2[0*4+3] + p1[3*4+1]*p2[1*4+3] + p1[3*4+2]*p2[2*4+3] + p1[3*4+3]*p2[3*4+3];
896 if( pfres != pfres2 ) memcpy(pfres, pfres2,
sizeof(T)*16);
904 if( pfres == pf1 ) pfres2 = (T*)alloca(9 *
sizeof(T));
907 pfres2[0] = pf1[0]*pf2[0]+pf1[3]*pf2[3]+pf1[6]*pf2[6];
908 pfres2[1] = pf1[0]*pf2[1]+pf1[3]*pf2[4]+pf1[6]*pf2[7];
909 pfres2[2] = pf1[0]*pf2[2]+pf1[3]*pf2[5]+pf1[6]*pf2[8];
911 pfres2[3] = pf1[1]*pf2[0]+pf1[4]*pf2[3]+pf1[7]*pf2[6];
912 pfres2[4] = pf1[1]*pf2[1]+pf1[4]*pf2[4]+pf1[7]*pf2[7];
913 pfres2[5] = pf1[1]*pf2[2]+pf1[4]*pf2[5]+pf1[7]*pf2[8];
915 pfres2[6] = pf1[2]*pf2[0]+pf1[5]*pf2[3]+pf1[8]*pf2[6];
916 pfres2[7] = pf1[2]*pf2[1]+pf1[5]*pf2[4]+pf1[8]*pf2[7];
917 pfres2[8] = pf1[2]*pf2[2]+pf1[5]*pf2[5]+pf1[8]*pf2[8];
919 if( pfres2 != pfres ) memcpy(pfres, pfres2, 9*
sizeof(T));
928 if( pfres == pf1 ) pfres2 = (T*)alloca(16 *
sizeof(T));
931 for(
int i = 0; i < 4; ++i) {
932 for(
int j = 0; j < 4; ++j) {
933 pfres[4*i+j] = pf1[i] * pf2[j] + pf1[i+4] * pf2[j+4] + pf1[i+8] * pf2[j+8] + pf1[i+12] * pf2[j+12];
946 q.
x = -1 + 2*(rand()/((
dReal)RAND_MAX));
947 q.
y = -1 + 2*(rand()/((
dReal)RAND_MAX));
948 q.
z = -1 + 2*(rand()/((
dReal)RAND_MAX));
949 q.
w = -1 + 2*(rand()/((
dReal)RAND_MAX));
976 T cosHalfTheta = qa.
w * qb.
w + qa.
x * qb.
x + qa.
y * qb.
y + qa.
z * qb.
z;
979 qm.
w = qa.
w;qm.
x = qa.
x;qm.
y = qa.
y;qm.
z = qa.
z;
983 T halfTheta =
RaveAcos(cosHalfTheta);
984 T sinHalfTheta =
RaveSqrt(1 - cosHalfTheta*cosHalfTheta);
988 qm.
w = (qa.
w * 0.5f + qb.
w * 0.5f);
989 qm.
x = (qa.
x * 0.5f + qb.
x * 0.5f);
990 qm.
y = (qa.
y * 0.5f + qb.
y * 0.5f);
991 qm.
z = (qa.
z * 0.5f + qb.
z * 0.5f);
995 T ratioA =
RaveSin((1 - t) * halfTheta) / sinHalfTheta;
996 T ratioB =
RaveSin(t * halfTheta) / sinHalfTheta;
998 qm.
w = (qa.
w * ratioA + qb.
w * ratioB);
999 qm.
x = (qa.
x * ratioA + qb.
x * ratioB);
1000 qm.
y = (qa.
y * ratioA + qb.
y * ratioB);
1001 qm.
z = (qa.
z * ratioA + qb.
z * ratioB);
1008 return pf[0*stride+2] * (pf[1*stride + 0] * pf[2*stride + 1] - pf[1*stride + 1] * pf[2*stride + 0]) +
1009 pf[1*stride+2] * (pf[0*stride + 1] * pf[2*stride + 0] - pf[0*stride + 0] * pf[2*stride + 1]) +
1010 pf[2*stride+2] * (pf[0*stride + 0] * pf[1*stride + 1] - pf[0*stride + 1] * pf[1*stride + 0]);
1016 inline T*
_inv3(
const T* pf, T* pfres, T* pfdet,
int stride)
1019 if( pfres == pf ) pfres2 = (T*)alloca(3 * stride *
sizeof(T));
1020 else pfres2 = pfres;
1025 pfres2[0*stride + 0] = pf[1*stride + 1] * pf[2*stride + 2] - pf[1*stride + 2] * pf[2*stride + 1];
1026 pfres2[0*stride + 1] = pf[0*stride + 2] * pf[2*stride + 1] - pf[0*stride + 1] * pf[2*stride + 2];
1027 pfres2[0*stride + 2] = pf[0*stride + 1] * pf[1*stride + 2] - pf[0*stride + 2] * pf[1*stride + 1];
1028 pfres2[1*stride + 0] = pf[1*stride + 2] * pf[2*stride + 0] - pf[1*stride + 0] * pf[2*stride + 2];
1029 pfres2[1*stride + 1] = pf[0*stride + 0] * pf[2*stride + 2] - pf[0*stride + 2] * pf[2*stride + 0];
1030 pfres2[1*stride + 2] = pf[0*stride + 2] * pf[1*stride + 0] - pf[0*stride + 0] * pf[1*stride + 2];
1031 pfres2[2*stride + 0] = pf[1*stride + 0] * pf[2*stride + 1] - pf[1*stride + 1] * pf[2*stride + 0];
1032 pfres2[2*stride + 1] = pf[0*stride + 1] * pf[2*stride + 0] - pf[0*stride + 0] * pf[2*stride + 1];
1033 pfres2[2*stride + 2] = pf[0*stride + 0] * pf[1*stride + 1] - pf[0*stride + 1] * pf[1*stride + 0];
1035 T fdet = pf[0*stride + 2] * pfres2[2*stride + 0] + pf[1*stride + 2] * pfres2[2*stride + 1] +
1036 pf[2*stride + 2] * pfres2[2*stride + 2];
1041 if( fabs(fdet) < 1e-12 ) {
1049 pfres[0*stride+0] *= fdet; pfres[0*stride+1] *= fdet; pfres[0*stride+2] *= fdet;
1050 pfres[1*stride+0] *= fdet; pfres[1*stride+1] *= fdet; pfres[1*stride+2] *= fdet;
1051 pfres[2*stride+0] *= fdet; pfres[2*stride+1] *= fdet; pfres[2*stride+2] *= fdet;
1055 pfres[0*stride+0] = pfres2[0*stride+0] * fdet;
1056 pfres[0*stride+1] = pfres2[0*stride+1] * fdet;
1057 pfres[0*stride+2] = pfres2[0*stride+2] * fdet;
1058 pfres[1*stride+0] = pfres2[1*stride+0] * fdet;
1059 pfres[1*stride+1] = pfres2[1*stride+1] * fdet;
1060 pfres[1*stride+2] = pfres2[1*stride+2] * fdet;
1061 pfres[2*stride+0] = pfres2[2*stride+0] * fdet;
1062 pfres[2*stride+1] = pfres2[2*stride+1] * fdet;
1063 pfres[2*stride+2] = pfres2[2*stride+2] * fdet;
1072 if( pfres == pf ) pfres2 = (T*)alloca(16 *
sizeof(T));
1073 else pfres2 = pfres;
1082 fd0 = pf[2*4 + 0] * pf[3*4 + 1] - pf[2*4 + 1] * pf[3*4 + 0];
1083 fd1 = pf[2*4 + 1] * pf[3*4 + 2] - pf[2*4 + 2] * pf[3*4 + 1];
1084 fd2 = pf[2*4 + 2] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 2];
1086 f1 = pf[2*4 + 1] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 1];
1087 f2 = pf[2*4 + 0] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 0];
1088 f3 = pf[2*4 + 0] * pf[3*4 + 2] - pf[2*4 + 2] * pf[3*4 + 0];
1090 pfres2[0*4 + 0] = pf[1*4 + 1] * fd2 - pf[1*4 + 2] * f1 + pf[1*4 + 3] * fd1;
1091 pfres2[0*4 + 1] = -(pf[0*4 + 1] * fd2 - pf[0*4 + 2] * f1 + pf[0*4 + 3] * fd1);
1093 pfres2[1*4 + 0] = -(pf[1*4 + 0] * fd2 - pf[1*4 + 2] * f2 + pf[1*4 + 3] * f3);
1094 pfres2[1*4 + 1] = pf[0*4 + 0] * fd2 - pf[0*4 + 2] * f2 + pf[0*4 + 3] * f3;
1096 pfres2[2*4 + 0] = pf[1*4 + 0] * f1 - pf[1*4 + 1] * f2 + pf[1*4 + 3] * fd0;
1097 pfres2[2*4 + 1] = -(pf[0*4 + 0] * f1 - pf[0*4 + 1] * f2 + pf[0*4 + 3] * fd0);
1099 pfres2[3*4 + 0] = -(pf[1*4 + 0] * fd1 - pf[1*4 + 1] * f3 + pf[1*4 + 2] * fd0);
1100 pfres2[3*4 + 1] = pf[0*4 + 0] * fd1 - pf[0*4 + 1] * f3 + pf[0*4 + 2] * fd0;
1103 fd0 = pf[0*4 + 0] * pf[1*4 + 1] - pf[0*4 + 1] * pf[1*4 + 0];
1104 fd1 = pf[0*4 + 1] * pf[1*4 + 2] - pf[0*4 + 2] * pf[1*4 + 1];
1105 fd2 = pf[0*4 + 2] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 2];
1107 f1 = pf[0*4 + 1] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 1];
1108 f2 = pf[0*4 + 0] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 0];
1109 f3 = pf[0*4 + 0] * pf[1*4 + 2] - pf[0*4 + 2] * pf[1*4 + 0];
1111 pfres2[0*4 + 2] = pf[3*4 + 1] * fd2 - pf[3*4 + 2] * f1 + pf[3*4 + 3] * fd1;
1112 pfres2[0*4 + 3] = -(pf[2*4 + 1] * fd2 - pf[2*4 + 2] * f1 + pf[2*4 + 3] * fd1);
1114 pfres2[1*4 + 2] = -(pf[3*4 + 0] * fd2 - pf[3*4 + 2] * f2 + pf[3*4 + 3] * f3);
1115 pfres2[1*4 + 3] = pf[2*4 + 0] * fd2 - pf[2*4 + 2] * f2 + pf[2*4 + 3] * f3;
1117 pfres2[2*4 + 2] = pf[3*4 + 0] * f1 - pf[3*4 + 1] * f2 + pf[3*4 + 3] * fd0;
1118 pfres2[2*4 + 3] = -(pf[2*4 + 0] * f1 - pf[2*4 + 1] * f2 + pf[2*4 + 3] * fd0);
1120 pfres2[3*4 + 2] = -(pf[3*4 + 0] * fd1 - pf[3*4 + 1] * f3 + pf[3*4 + 2] * fd0);
1121 pfres2[3*4 + 3] = pf[2*4 + 0] * fd1 - pf[2*4 + 1] * f3 + pf[2*4 + 2] * fd0;
1123 T fdet = pf[0*4 + 3] * pfres2[3*4 + 0] + pf[1*4 + 3] * pfres2[3*4 + 1] +
1124 pf[2*4 + 3] * pfres2[3*4 + 2] + pf[3*4 + 3] * pfres2[3*4 + 3];
1126 if( fabs(fdet) < 1e-9)
return NULL;
1131 if( pfres2 == pfres ) {
1132 mult(pfres, fdet, 16);
1138 pfres[i] = pfres2[i] * fdet;
1148 assert( pf != NULL && pfres != NULL );
1151 rswap(pfres[1], pfres[3]);
1152 rswap(pfres[2], pfres[6]);
1153 rswap(pfres[5], pfres[7]);
1157 pfres[0] = pf[0]; pfres[1] = pf[3]; pfres[2] = pf[6];
1158 pfres[3] = pf[1]; pfres[4] = pf[4]; pfres[5] = pf[7];
1159 pfres[6] = pf[2]; pfres[7] = pf[5]; pfres[8] = pf[8];
1167 assert( pf != NULL && pfres != NULL );
1170 rswap(pfres[1], pfres[4]);
1171 rswap(pfres[2], pfres[8]);
1172 rswap(pfres[3], pfres[12]);
1173 rswap(pfres[6], pfres[9]);
1174 rswap(pfres[7], pfres[13]);
1175 rswap(pfres[11], pfres[15]);
1179 pfres[0] = pf[0]; pfres[1] = pf[4]; pfres[2] = pf[8]; pfres[3] = pf[12];
1180 pfres[4] = pf[1]; pfres[5] = pf[5]; pfres[6] = pf[9]; pfres[7] = pf[13];
1181 pfres[8] = pf[2]; pfres[9] = pf[6]; pfres[10] = pf[10]; pfres[11] = pf[14];
1182 pfres[12] = pf[3]; pfres[13] = pf[7]; pfres[14] = pf[11]; pfres[15] = pf[15];
1187 inline T
_dot2(
const T* pf1,
const T* pf2)
1189 assert( pf1 != NULL && pf2 != NULL );
1190 return pf1[0]*pf2[0] + pf1[1]*pf2[1];
1194 inline T
_dot3(
const T* pf1,
const T* pf2)
1196 assert( pf1 != NULL && pf2 != NULL );
1197 return pf1[0]*pf2[0] + pf1[1]*pf2[1] + pf1[2]*pf2[2];
1201 inline T
_dot4(
const T* pf1,
const T* pf2)
1203 assert( pf1 != NULL && pf2 != NULL );
1204 return pf1[0]*pf2[0] + pf1[1]*pf2[1] + pf1[2]*pf2[2] + pf1[3] * pf2[3];
1210 assert( pf != NULL );
1211 return pf[0] * pf[0] + pf[1] * pf[1];
1217 assert( pf != NULL );
1218 return pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2];
1224 assert( pf != NULL );
1225 return pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2] + pf[3] * pf[3];
1233 T
f = pf[0]*pf[0] + pf[1]*pf[1];
1235 pfout[0] = pf[0] *
f;
1236 pfout[1] = pf[1] *
f;
1246 T
f = pf[0]*pf[0] + pf[1]*pf[1] + pf[2]*pf[2];
1249 pfout[0] = pf[0] *
f;
1250 pfout[1] = pf[1] *
f;
1251 pfout[2] = pf[2] *
f;
1261 T
f = pf[0]*pf[0] + pf[1]*pf[1] + pf[2]*pf[2] + pf[3]*pf[3];
1264 pfout[0] = pf[0] *
f;
1265 pfout[1] = pf[1] *
f;
1266 pfout[2] = pf[2] *
f;
1267 pfout[3] = pf[3] *
f;
1273 inline T*
_cross3(T* pfout,
const T* pf1,
const T* pf2)
1275 assert( pfout != NULL && pf1 != NULL && pf2 != NULL );
1278 temp[0] = pf1[1] * pf2[2] - pf1[2] * pf2[1];
1279 temp[1] = pf1[2] * pf2[0] - pf1[0] * pf2[2];
1280 temp[2] = pf1[0] * pf2[1] - pf1[1] * pf2[0];
1282 pfout[0] = temp[0]; pfout[1] = temp[1]; pfout[2] = temp[2];
1289 assert( pfout != NULL && pf != NULL && pmat != NULL );
1292 T* pfreal = (pfout == pf) ? dummy : pfout;
1294 pfreal[0] = pf[0] * pmat->
m[0] + pf[1] * pmat->
m[1] + pf[2] * pmat->
m[2] + pmat->
trans.x;
1295 pfreal[1] = pf[0] * pmat->
m[4] + pf[1] * pmat->
m[5] + pf[2] * pmat->
m[6] + pmat->
trans.y;
1296 pfreal[2] = pf[0] * pmat->
m[8] + pf[1] * pmat->
m[9] + pf[2] * pmat->
m[10] + pmat->
trans.z;
1299 pfout[0] = pfreal[0];
1300 pfout[1] = pfreal[1];
1301 pfout[2] = pfreal[2];
1310 assert( pfout != NULL && pf != NULL && pfmat != NULL );
1313 T* pfreal = (pfout == pf) ? dummy : pfout;
1315 pfreal[0] = pf[0] * pfmat[0] + pf[1] * pfmat[1] + pf[2] * pfmat[2];
1316 pfreal[1] = pf[0] * pfmat[3] + pf[1] * pfmat[4] + pf[2] * pfmat[5];
1317 pfreal[2] = pf[0] * pfmat[6] + pf[1] * pfmat[7] + pf[2] * pfmat[8];
1320 pfout[0] = pfreal[0];
1321 pfout[1] = pfreal[1];
1322 pfout[2] = pfreal[2];
1331 assert( pfout != NULL && pf != NULL && pmat != NULL );
1334 T* pfreal = (pfout == pf) ? dummy : pfout;
1336 pfreal[0] = pf[0] * pmat->
m[0] + pf[1] * pmat->
m[1] + pf[2] * pmat->
m[2];
1337 pfreal[1] = pf[0] * pmat->
m[4] + pf[1] * pmat->
m[5] + pf[2] * pmat->
m[6];
1338 pfreal[2] = pf[0] * pmat->
m[8] + pf[1] * pmat->
m[9] + pf[2] * pmat->
m[10];
1340 if( pfreal != pfout ) {
1341 pfout[0] = pfreal[0];
1342 pfout[1] = pfreal[1];
1343 pfout[2] = pfreal[2];
1349 inline float*
mult4(
float* pfres,
const float* pf1,
const float* pf2) {
return _mult4<float>(pfres, pf1, pf2); }
1351 inline float*
multtrans3(
float* pfres,
const float* pf1,
const float* pf2) {
return _multtrans3<float>(pfres, pf1, pf2); }
1352 inline float*
multtrans4(
float* pfres,
const float* pf1,
const float* pf2) {
return _multtrans4<float>(pfres, pf1, pf2); }
1353 inline float*
transnorm3(
float* pfout,
const float* pfmat,
const float* pf) {
return _transnorm3<float>(pfout, pfmat, pf); }
1355 inline float*
transpose3(
const float* pf,
float* pfres) {
return _transpose3<float>(pf, pfres); }
1356 inline float*
transpose4(
const float* pf,
float* pfres) {
return _transpose4<float>(pf, pfres); }
1358 inline float dot2(
const float* pf1,
const float* pf2) {
return _dot2<float>(pf1, pf2); }
1359 inline float dot3(
const float* pf1,
const float* pf2) {
return _dot3<float>(pf1, pf2); }
1360 inline float dot4(
const float* pf1,
const float* pf2) {
return _dot4<float>(pf1, pf2); }
1362 inline float lengthsqr2(
const float* pf) {
return _lengthsqr2<float>(pf); }
1363 inline float lengthsqr3(
const float* pf) {
return _lengthsqr3<float>(pf); }
1364 inline float lengthsqr4(
const float* pf) {
return _lengthsqr4<float>(pf); }
1366 inline float*
normalize2(
float* pfout,
const float* pf) {
return _normalize2<float>(pfout, pf); }
1367 inline float*
normalize3(
float* pfout,
const float* pf) {
return _normalize3<float>(pfout, pf); }
1368 inline float*
normalize4(
float* pfout,
const float* pf) {
return _normalize4<float>(pfout, pf); }
1370 inline float*
cross3(
float* pfout,
const float* pf1,
const float* pf2) {
return _cross3<float>(pfout, pf1, pf2); }
1373 inline float*
mult3_s4(
float* pfres,
const float* pf1,
const float* pf2) {
return _mult3_s4<float>(pfres, pf1, pf2); }
1374 inline float*
mult3_s3(
float* pfres,
const float* pf1,
const float* pf2) {
return _mult3_s3<float>(pfres, pf1, pf2); }
1376 inline float*
inv3(
const float* pf,
float* pfres,
float* pfdet,
int stride) {
return _inv3<float>(pf, pfres, pfdet, stride); }
1377 inline float*
inv4(
const float* pf,
float* pfres) {
return _inv4<float>(pf, pfres); }
1380 inline double*
mult4(
double* pfres,
const double* pf1,
const double* pf2) {
return _mult4<double>(pfres, pf1, pf2); }
1382 inline double*
multtrans3(
double* pfres,
const double* pf1,
const double* pf2) {
return _multtrans3<double>(pfres, pf1, pf2); }
1383 inline double*
multtrans4(
double* pfres,
const double* pf1,
const double* pf2) {
return _multtrans4<double>(pfres, pf1, pf2); }
1384 inline double*
transnorm3(
double* pfout,
const double* pfmat,
const double* pf) {
return _transnorm3<double>(pfout, pfmat, pf); }
1386 inline double*
transpose3(
const double* pf,
double* pfres) {
return _transpose3<double>(pf, pfres); }
1387 inline double*
transpose4(
const double* pf,
double* pfres) {
return _transpose4<double>(pf, pfres); }
1389 inline double dot2(
const double* pf1,
const double* pf2) {
return _dot2<double>(pf1, pf2); }
1390 inline double dot3(
const double* pf1,
const double* pf2) {
return _dot3<double>(pf1, pf2); }
1391 inline double dot4(
const double* pf1,
const double* pf2) {
return _dot4<double>(pf1, pf2); }
1393 inline double lengthsqr2(
const double* pf) {
return _lengthsqr2<double>(pf); }
1394 inline double lengthsqr3(
const double* pf) {
return _lengthsqr3<double>(pf); }
1395 inline double lengthsqr4(
const double* pf) {
return _lengthsqr4<double>(pf); }
1397 inline double*
normalize2(
double* pfout,
const double* pf) {
return _normalize2<double>(pfout, pf); }
1398 inline double*
normalize3(
double* pfout,
const double* pf) {
return _normalize3<double>(pfout, pf); }
1399 inline double*
normalize4(
double* pfout,
const double* pf) {
return _normalize4<double>(pfout, pf); }
1401 inline double*
cross3(
double* pfout,
const double* pf1,
const double* pf2) {
return _cross3<double>(pfout, pf1, pf2); }
1404 inline double*
mult3_s4(
double* pfres,
const double* pf1,
const double* pf2) {
return _mult3_s4<double>(pfres, pf1, pf2); }
1405 inline double*
mult3_s3(
double* pfres,
const double* pf1,
const double* pf2) {
return _mult3_s3<double>(pfres, pf1, pf2); }
1407 inline double*
inv3(
const double* pf,
double* pfres,
double* pfdet,
int stride) {
return _inv3<double>(pf, pfres, pfdet, stride); }
1408 inline double*
inv4(
const double* pf,
double* pfres) {
return _inv4<double>(pf, pfres); }
1420 template <
class T>
inline void mult(T* pf, T fa,
int r)
1422 assert( pf != NULL );
1430 template <
class T,
class R,
class S>
1431 inline S*
mult(T* pf1, R* pf2,
int r1,
int c1,
int c2, S* pfres,
bool badd)
1433 assert( pf1 != NULL && pf2 != NULL && pfres != NULL);
1436 if( !badd ) memset(pfres, 0,
sizeof(S) * r1 * c2);
1445 pfres[j] += (S)(pf1[k] * pf2[k*c2 + j]);
1458 template <
class T,
class R,
class S>
1459 inline S*
multtrans(T* pf1, R* pf2,
int r1,
int c1,
int c2, S* pfres,
bool badd)
1461 assert( pf1 != NULL && pf2 != NULL && pfres != NULL);
1464 if( !badd ) memset(pfres, 0,
sizeof(S) * c1 * c2);
1474 pfres[j] += (S)(pf1[k*c1] * pf2[k*c2 + j]);
1489 template <
class T,
class R,
class S>
1490 inline S*
multtrans_to2(T* pf1, R* pf2,
int r1,
int c1,
int r2, S* pfres,
bool badd)
1492 assert( pf1 != NULL && pf2 != NULL && pfres != NULL);
1495 if( !badd ) memset(pfres, 0,
sizeof(S) * r1 * r2);
1504 pfres[j] += (S)(pf1[k] * pf2[j*c1 + k]);
1517 template <
class T>
inline T*
multto1(T* pf1, T* pf2,
int r,
int c, T* pftemp)
1519 assert( pf1 != NULL && pf2 != NULL );
1524 if( pftemp == NULL ) {
1539 pftemp[j] += pf1[k] * pf2[k*c + j];
1545 memcpy(pf1, pftemp, c *
sizeof(T));
1549 if( bdel )
delete[] pftemp;
1554 template <
class T,
class S>
inline T*
multto2(T* pf1, S* pf2,
int r2,
int c2, S* pftemp)
1556 assert( pf1 != NULL && pf2 != NULL );
1561 if( pftemp == NULL ) {
1576 pftemp[i] += pf1[i*r2 + k] * pf2[k*c2 + j];
1584 *(pf2+i*c2+j) = pftemp[i];
1591 if( bdel )
delete[] pftemp;
1596 template <
class T>
inline void add(T* pf1, T* pf2,
int r)
1598 assert( pf1 != NULL && pf2 != NULL);
1606 template <
class T>
inline void sub(T* pf1, T* pf2,
int r)
1608 assert( pf1 != NULL && pf2 != NULL);
1616 template <
class T>
inline T
normsqr(
const T* pf1,
int r)
1618 assert( pf1 != NULL );
1623 d += pf1[r] * pf1[r];
1629 template <
class T>
inline T
lengthsqr(
const T* pf1,
const T* pf2,
int length)
1641 template <
class T>
inline T
dot(T* pf1, T* pf2,
int length)
1652 template <
class T>
inline T
sum(T* pf,
int length)
1663 template <
class T>
inline bool inv2(T* pf, T* pfres)
1665 T fdet = pf[0] * pf[3] - pf[1] * pf[2];
1667 if( fabs(fdet) < 1e-16 )
return false;
1673 pfres[0] = fdet * pf[3]; pfres[1] = -fdet * pf[1];
1674 pfres[2] = -fdet * pf[2]; pfres[3] = fdet * pf[0];
1679 pfres[0] = pf[3] * fdet;
1682 pfres[3] = ftemp * pf[0];
1687 template <
class T,
class S>
1690 T a, b, c,
d, e,
f, ell, q;
1710 mat[0*3+0] = (S)1; mat[0*3+1] = (S)0; mat[0*3+2] = (T)0;
1711 mat[1*3+0] = (S)0; mat[1*3+1] = b; mat[1*3+2] = c;
1712 mat[2*3+0] = (S)0; mat[2*3+1] = c; mat[2*3+2] = -b;
1719 mat[0*3+0] = (S)1; mat[0*3+1] = (S)0; mat[0*3+2] = (S)0;
1720 mat[1*3+0] = (S)0; mat[1*3+1] = (S)1; mat[1*3+2] = (S)0;
1721 mat[2*3+0] = (S)0; mat[2*3+1] = (S)0; mat[2*3+2] = (S)1;
1726 int Min(T* pts,
int stride,
int numPts)
1728 assert( pts != NULL && numPts > 0 && stride > 0 );
1730 int best = pts[0]; pts += stride;
1731 for(
int i = 1; i < numPts; ++i, pts += stride) {
1740 int Max(T* pts,
int stride,
int numPts)
1742 assert( pts != NULL && numPts > 0 && stride > 0 );
1744 int best = pts[0]; pts += stride;
1745 for(
int i = 1; i < numPts; ++i, pts += stride) {
1756 template <
class T,
class U>
1759 return O << v.
x <<
" " << v.
y <<
" " << v.
z <<
" " << v.
w <<
" ";
1762 template <
class T,
class U>
1765 return I >> v.
x >> v.
y >> v.
z >> v.
w;
1768 template <
class T,
class U>
1771 return O << v.
rot.x <<
" " << v.
rot.y <<
" " << v.
rot.z <<
" " << v.
rot.w <<
" "
1775 template <
class T,
class U>
1782 template <
class T,
class U>
1785 return O << v.
m[0] <<
" " << v.
m[4] <<
" " << v.
m[8] <<
" "
1786 << v.
m[1] <<
" " << v.
m[5] <<
" " << v.
m[9] <<
" "
1787 << v.
m[2] <<
" " << v.
m[6] <<
" " << v.
m[10] <<
" "
1792 template <
class T,
class U>
1795 return I >> v.
m[0] >> v.
m[4] >> v.
m[8]
1796 >> v.
m[1] >> v.
m[5] >> v.
m[9]
1797 >> v.
m[2] >> v.
m[6] >> v.
m[10]