Go to the documentation of this file.
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
23 template<
typename Generator,
typename XprType>
30 typedef typename XprType::Nested
Nested;
32 static const int NumDimensions = XprTraits::NumDimensions;
33 static const int Layout = XprTraits::Layout;
37 template<
typename Generator,
typename XprType>
43 template<
typename Generator,
typename XprType>
53 template<
typename Generator,
typename XprType>
81 template<
typename Generator,
typename ArgType,
typename Device>
115 :
m_device(device), m_generator(op.generator())
123 for (
int i = 1;
i < NumDims; ++
i) {
124 m_strides[
i] = m_strides[
i - 1] * m_dimensions[
i - 1];
128 m_strides[NumDims - 1] = 1;
130 for (
int i = NumDims - 2;
i >= 0; --
i) {
131 m_strides[
i] = m_strides[
i + 1] * m_dimensions[
i + 1];
148 extract_coordinates(index, coords);
149 return m_generator(coords);
152 template<
int LoadMode>
160 for (
int i = 0;
i < packetSize; ++
i) {
169 const size_t target_size =
m_device.firstLevelCacheSize();
171 return internal::TensorBlockResourceRequirements::skewed<Scalar>(
175 struct BlockIteratorState {
184 bool =
false)
const {
185 static const bool is_col_major =
190 extract_coordinates(
desc.offset(), coords);
199 for (
int i = 0;
i < NumDims; ++
i) {
200 const int dim = is_col_major ?
i : NumDims - 1 -
i;
202 it[
i].stride =
i == 0 ? 1 : (it[
i - 1].
size * it[
i - 1].stride);
203 it[
i].span = it[
i].stride * (it[
i].
size - 1);
216 static const int inner_dim = is_col_major ? 0 : NumDims - 1;
218 const Index inner_dim_vectorized = inner_dim_size - packet_size;
220 while (it[NumDims - 1].count < it[NumDims - 1].
size) {
223 for (;
i <= inner_dim_vectorized;
i += packet_size) {
224 for (
Index j = 0;
j < packet_size; ++
j) {
226 j_coords[inner_dim] +=
j;
227 *(block_buffer +
offset +
i +
j) = m_generator(j_coords);
229 coords[inner_dim] += packet_size;
232 for (;
i < inner_dim_size; ++
i) {
233 *(block_buffer +
offset +
i) = m_generator(coords);
236 coords[inner_dim] = initial_coords[inner_dim];
239 if (NumDims == 1)
break;
242 for (
i = 1;
i < NumDims; ++
i) {
243 if (++it[
i].count < it[
i].
size) {
245 coords[is_col_major ?
i : NumDims - 1 -
i]++;
248 if (
i != NumDims - 1) it[
i].count = 0;
249 coords[is_col_major ?
i : NumDims - 1 -
i] =
250 initial_coords[is_col_major ?
i : NumDims - 1 -
i];
262 return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() +
263 TensorOpCost::MulCost<Scalar>());
268 #ifdef EIGEN_USE_SYCL
277 for (
int i = NumDims - 1;
i > 0; --
i) {
278 const Index idx = index / m_fast_strides[
i];
279 index -= idx * m_strides[
i];
284 for (
int i = 0;
i < NumDims - 1; ++
i) {
285 const Index idx = index / m_fast_strides[
i];
286 index -= idx * m_strides[
i];
289 coords[NumDims-1] = index;
302 #endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
#define EIGEN_DEVICE_FUNC
Namespace containing all symbols from the Eigen library.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const
Generic expression where a coefficient-wise binary operator is applied to two expressions.
TensorGeneratorOp< Generator, XprType > type
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const
internal::TensorMaterializedBlock< CoeffReturnType, NumDims, Layout, Index > TensorBlock
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc &desc, TensorBlockScratch &scratch, bool=false) const
PacketType< CoeffReturnType, Device >::type PacketReturnType
const EIGEN_DEVICE_FUNC Generator & generator() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
XprTraits::PointerType PointerType
EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
internal::TensorIntDivisor< Index > IndexDivisor
traits< XprType > XprTraits
TensorEvaluator< ArgType, Device >::Dimensions Dimensions
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType)
const typedef TensorGeneratorOp< Generator, XprType > & type
EIGEN_STRONG_INLINE void cleanup()
Storage::Type EvaluatorPointerType
remove_reference< Nested >::type _Nested
Eigen::internal::traits< TensorGeneratorOp >::Index Index
XprTraits::StorageKind StorageKind
const Device EIGEN_DEVICE_REF m_device
#define EIGEN_STRONG_INLINE
#define EIGEN_UNROLL_LOOP
Eigen::internal::traits< TensorGeneratorOp >::Scalar Scalar
array< IndexDivisor, NumDims > m_fast_strides
const Device EIGEN_DEVICE_REF m_device
const Generator m_generator
XprType::CoeffReturnType CoeffReturnType
Eigen::NumTraits< Scalar >::Real RealScalar
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate offset
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType &expr, const Generator &generator)
Eigen::internal::traits< TensorGeneratorOp >::StorageKind StorageKind
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE std::size_t size()
Eigen::internal::nested< TensorGeneratorOp >::type Nested
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
const EIGEN_DEVICE_FUNC internal::remove_all< typename XprType::Nested >::type & expression() const
A cost model used to limit the number of threads used for evaluating tensor expression.
StorageMemory< CoeffReturnType, Device > Storage
internal::TensorBlockScratchAllocator< Device > TensorBlockScratch
internal::TensorBlockDescriptor< NumDims, Index > TensorBlockDesc
TensorGeneratorOp< Generator, ArgType > XprType
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void extract_coordinates(Index index, array< Index, NumDims > &coords) const
Derived::Scalar CoeffReturnType
array< Index, NumDims > m_strides
static EIGEN_STRONG_INLINE Storage prepareStorage(TensorBlockDesc &desc, TensorBlockScratch &scratch, bool allow_strided_storage=false)
XprType::CoeffReturnType CoeffReturnType
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
TensorMaterializedBlock AsTensorMaterializedBlock() const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:05:53