Go to the documentation of this file.
7 #ifndef SPARSE_CHOLESKY_H
8 #define SPARSE_CHOLESKY_H
11 #include <Eigen/SparseCore>
12 #include <Eigen/SparseCholesky>
14 #include "../Util/CompInfo.h"
26 template <
typename Scalar,
int Uplo = Eigen::Lower,
int Flags = 0,
typename StorageIndex =
int>
52 if (
mat.rows() !=
mat.cols())
53 throw std::invalid_argument(
"SparseCholesky: matrix must be square");
109 #endif // SPARSE_CHOLESKY_H
A versatible sparse matrix representation.
Eigen::SimplicialLLT< SparseMatrix, Uplo > m_decomp
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
A direct sparse LLT Cholesky factorizations.
Eigen::Map< Vector > MapVec
A matrix or vector expression mapping an existing array of data.
A matrix or vector expression mapping an existing expression.
Eigen::SparseMatrix< Scalar, Flags, StorageIndex > SparseMatrix
SparseCholesky(ConstGenericSparseMatrix &mat)
@ SUCCESSFUL
Computation was successful.
const typedef Eigen::Ref< const SparseMatrix > ConstGenericSparseMatrix
void upper_triangular_solve(const Scalar *x_in, Scalar *y_out) const
Eigen::Map< const Vector > MapConstVec
void lower_triangular_solve(const Scalar *x_in, Scalar *y_out) const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
gtsam
Author(s):
autogenerated on Fri Jan 10 2025 04:04:12