python
gtsam
examples
SimpleRotation.py
Go to the documentation of this file.
1
"""
2
GTSAM Copyright 2010, Georgia Tech Research Corporation,
3
Atlanta, Georgia 30332-0415
4
All Rights Reserved
5
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
6
7
See LICENSE for the license information
8
9
This example will perform a relatively trivial optimization on
10
a single variable with a single factor.
11
"""
12
13
import
numpy
as
np
14
import
gtsam
15
from
gtsam.symbol_shorthand
import
X
16
17
def
main
():
18
"""
19
Step 1: Create a factor to express a unary constraint
20
21
The "prior" in this case is the measurement from a sensor,
22
with a model of the noise on the measurement.
23
24
The "Key" created here is a label used to associate parts of the
25
state (stored in "RotValues") with particular factors. They require
26
an index to allow for lookup, and should be unique.
27
28
In general, creating a factor requires:
29
- A key or set of keys labeling the variables that are acted upon
30
- A measurement value
31
- A measurement model with the correct dimensionality for the factor
32
"""
33
prior =
gtsam.Rot2.fromAngle
(np.deg2rad(30))
34
prior.print(
'goal angle'
)
35
model =
gtsam.noiseModel.Isotropic.Sigma
(dim=1, sigma=np.deg2rad(1))
36
key =
X
(1)
37
factor = gtsam.PriorFactorRot2(key, prior, model)
38
39
"""
40
Step 2: Create a graph container and add the factor to it
41
42
Before optimizing, all factors need to be added to a Graph container,
43
which provides the necessary top-level functionality for defining a
44
system of constraints.
45
46
In this case, there is only one factor, but in a practical scenario,
47
many more factors would be added.
48
"""
49
graph =
gtsam.NonlinearFactorGraph
()
50
graph.push_back(factor)
51
graph.print(
'full graph'
)
52
53
"""
54
Step 3: Create an initial estimate
55
56
An initial estimate of the solution for the system is necessary to
57
start optimization. This system state is the "Values" instance,
58
which is similar in structure to a dictionary, in that it maps
59
keys (the label created in step 1) to specific values.
60
61
The initial estimate provided to optimization will be used as
62
a linearization point for optimization, so it is important that
63
all of the variables in the graph have a corresponding value in
64
this structure.
65
"""
66
initial =
gtsam.Values
()
67
initial.insert(key,
gtsam.Rot2.fromAngle
(np.deg2rad(20)))
68
initial.print(
'initial estimate'
)
69
70
"""
71
Step 4: Optimize
72
73
After formulating the problem with a graph of constraints
74
and an initial estimate, executing optimization is as simple
75
as calling a general optimization function with the graph and
76
initial estimate. This will yield a new RotValues structure
77
with the final state of the optimization.
78
"""
79
result =
gtsam.LevenbergMarquardtOptimizer
(graph, initial).
optimize
()
80
result.print(
'final result'
)
81
82
83
if
__name__ ==
'__main__'
:
84
main
()
gtsam::optimize
Point3 optimize(const NonlinearFactorGraph &graph, const Values &values, Key landmarkKey)
Definition:
triangulation.cpp:177
gtsam.examples.SimpleRotation.main
def main()
Definition:
SimpleRotation.py:17
gtsam::symbol_shorthand
Definition:
inference/Symbol.h:147
X
#define X
Definition:
icosphere.cpp:20
gtsam::Rot2::fromAngle
static Rot2 fromAngle(double theta)
Named constructor from angle in radians.
Definition:
Rot2.h:65
gtsam::NonlinearFactorGraph
Definition:
NonlinearFactorGraph.h:55
gtsam::LevenbergMarquardtOptimizer
Definition:
LevenbergMarquardtOptimizer.h:35
gtsam::Values
Definition:
Values.h:65
gtsam::noiseModel::Isotropic::Sigma
static shared_ptr Sigma(size_t dim, double sigma, bool smart=true)
Definition:
NoiseModel.cpp:625
gtsam
Author(s):
autogenerated on Fri Jan 10 2025 04:03:59