Jacobi preconditioner for LeastSquaresConjugateGradient. More...
#include <BasicPreconditioners.h>

Public Member Functions | |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner & | analyzePattern (const MatType &) |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner & | compute (const MatType &mat) |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner & | factorize (const MatType &mat) |
| ComputationInfo | info () |
| LeastSquareDiagonalPreconditioner () | |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner (const MatType &mat) | |
Public Member Functions inherited from Eigen::DiagonalPreconditioner< _Scalar > | |
| template<typename Rhs , typename Dest > | |
| void | _solve_impl (const Rhs &b, Dest &x) const |
| template<typename MatType > | |
| DiagonalPreconditioner & | analyzePattern (const MatType &) |
| Index | cols () const |
| template<typename MatType > | |
| DiagonalPreconditioner & | compute (const MatType &mat) |
| DiagonalPreconditioner () | |
| template<typename MatType > | |
| DiagonalPreconditioner (const MatType &mat) | |
| template<typename MatType > | |
| DiagonalPreconditioner & | factorize (const MatType &mat) |
| ComputationInfo | info () |
| Index | rows () const |
| template<typename Rhs > | |
| const Solve< DiagonalPreconditioner, Rhs > | solve (const MatrixBase< Rhs > &b) const |
Private Types | |
| typedef DiagonalPreconditioner< _Scalar > | Base |
| typedef NumTraits< Scalar >::Real | RealScalar |
| typedef _Scalar | Scalar |
Additional Inherited Members | |
Public Types inherited from Eigen::DiagonalPreconditioner< _Scalar > | |
| enum | { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic } |
| typedef Vector::StorageIndex | StorageIndex |
Protected Attributes inherited from Eigen::DiagonalPreconditioner< _Scalar > | |
| Vector | m_invdiag |
| bool | m_isInitialized |
Jacobi preconditioner for LeastSquaresConjugateGradient.
This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
| _Scalar | the type of the scalar. |
The diagonal entries are pre-inverted and stored into a dense vector.
Definition at line 128 of file BasicPreconditioners.h.
|
private |
Definition at line 132 of file BasicPreconditioners.h.
|
private |
Definition at line 131 of file BasicPreconditioners.h.
|
private |
Definition at line 130 of file BasicPreconditioners.h.
|
inline |
Definition at line 136 of file BasicPreconditioners.h.
|
inlineexplicit |
Definition at line 139 of file BasicPreconditioners.h.
|
inline |
Definition at line 145 of file BasicPreconditioners.h.
|
inline |
Definition at line 183 of file BasicPreconditioners.h.
|
inline |
Definition at line 151 of file BasicPreconditioners.h.
|
inline |
Definition at line 188 of file BasicPreconditioners.h.