Program Listing for File matrix.hpp

Return to documentation for file (include/pinocchio/math/matrix.hpp)

//
// Copyright (c) 2016-2020 CNRS INRIA
//

#ifndef __pinocchio_math_matrix_hpp__
#define __pinocchio_math_matrix_hpp__

#include "pinocchio/macros.hpp"
#include "pinocchio/math/fwd.hpp"
#include "pinocchio/utils/static-if.hpp"

#include <boost/type_traits.hpp>
#include <Eigen/Dense>

namespace pinocchio
{

  template<typename Derived>
  inline bool hasNaN(const Eigen::DenseBase<Derived> & m)
  {
    return !((m.derived().array() == m.derived().array()).all());
  }

  namespace internal
  {
    template<
      typename MatrixLike,
      bool value = is_floating_point<typename MatrixLike::Scalar>::value>
    struct isZeroAlgo
    {
      typedef typename MatrixLike::Scalar Scalar;
      typedef typename MatrixLike::RealScalar RealScalar;

      static bool run(
        const Eigen::MatrixBase<MatrixLike> & mat,
        const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
      {
        return mat.isZero(prec);
      }
    };

    template<typename MatrixLike>
    struct isZeroAlgo<MatrixLike, false>
    {
      typedef typename MatrixLike::Scalar Scalar;
      typedef typename MatrixLike::RealScalar RealScalar;

      static bool run(
        const Eigen::MatrixBase<MatrixLike> & /*vec*/,
        const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
      {
        PINOCCHIO_UNUSED_VARIABLE(prec);
        return true;
      }
    };
  } // namespace internal

  template<typename MatrixLike>
  inline bool isZero(
    const Eigen::MatrixBase<MatrixLike> & m,
    const typename MatrixLike::RealScalar & prec =
      Eigen::NumTraits<typename MatrixLike::Scalar>::dummy_precision())
  {
    return internal::isZeroAlgo<MatrixLike>::run(m, prec);
  }

  template<typename M1, typename M2>
  struct MatrixMatrixProduct
  {
#if EIGEN_VERSION_AT_LEAST(3, 2, 90)
    typedef typename Eigen::Product<M1, M2> type;
#else
    typedef typename Eigen::ProductReturnType<M1, M2>::Type type;
#endif
  };

  template<typename Scalar, typename Matrix>
  struct ScalarMatrixProduct
  {
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
    typedef Eigen::CwiseBinaryOp<
      EIGEN_CAT(EIGEN_CAT(Eigen::internal::scalar_, product), _op) < Scalar,
      typename Eigen::internal::traits<Matrix>::Scalar>,
      const typename Eigen::internal::plain_constant_type<Matrix, Scalar>::type,
      const Matrix > type;
#elif EIGEN_VERSION_AT_LEAST(3, 2, 90)
    typedef Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix> type;
#else
    typedef const Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix>
      type;
#endif
  };

  template<typename Matrix, typename Scalar>
  struct MatrixScalarProduct
  {
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
    typedef Eigen::CwiseBinaryOp<
      EIGEN_CAT(EIGEN_CAT(Eigen::internal::scalar_, product), _op) <
        typename Eigen::internal::traits<Matrix>::Scalar,
      Scalar>,
      const Matrix,
      const typename Eigen::internal::plain_constant_type<Matrix, Scalar>::type > type;
#elif EIGEN_VERSION_AT_LEAST(3, 2, 90)
    typedef Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix> type;
#else
    typedef const Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix>
      type;
#endif
  };

  namespace internal
  {
    template<
      typename MatrixLike,
      bool value = is_floating_point<typename MatrixLike::Scalar>::value>
    struct isUnitaryAlgo
    {
      typedef typename MatrixLike::Scalar Scalar;
      typedef typename MatrixLike::RealScalar RealScalar;

      static bool run(
        const Eigen::MatrixBase<MatrixLike> & mat,
        const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
      {
        return mat.isUnitary(prec);
      }
    };

    template<typename MatrixLike>
    struct isUnitaryAlgo<MatrixLike, false>
    {
      typedef typename MatrixLike::Scalar Scalar;
      typedef typename MatrixLike::RealScalar RealScalar;

      static bool run(
        const Eigen::MatrixBase<MatrixLike> & /*vec*/,
        const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
      {
        PINOCCHIO_UNUSED_VARIABLE(prec);
        return true;
      }
    };
  } // namespace internal

  template<typename MatrixLike>
  inline bool isUnitary(
    const Eigen::MatrixBase<MatrixLike> & mat,
    const typename MatrixLike::RealScalar & prec =
      Eigen::NumTraits<typename MatrixLike::Scalar>::dummy_precision())
  {
    return internal::isUnitaryAlgo<MatrixLike>::run(mat, prec);
  }

  namespace internal
  {
    template<
      typename VectorLike,
      bool value = is_floating_point<typename VectorLike::Scalar>::value>
    struct isNormalizedAlgo
    {
      typedef typename VectorLike::Scalar Scalar;
      typedef typename VectorLike::RealScalar RealScalar;

      static bool run(
        const Eigen::MatrixBase<VectorLike> & vec,
        const RealScalar & prec = Eigen::NumTraits<RealScalar>::dummy_precision())
      {
        return math::fabs(static_cast<RealScalar>(vec.norm() - RealScalar(1))) <= prec;
      }
    };

    template<typename VectorLike>
    struct isNormalizedAlgo<VectorLike, false>
    {
      typedef typename VectorLike::Scalar Scalar;
      typedef typename VectorLike::RealScalar RealScalar;

      static bool run(
        const Eigen::MatrixBase<VectorLike> & /*vec*/,
        const RealScalar & prec = Eigen::NumTraits<RealScalar>::dummy_precision())
      {
        PINOCCHIO_UNUSED_VARIABLE(prec);
        return true;
      }
    };
  } // namespace internal

  template<typename VectorLike>
  inline bool isNormalized(
    const Eigen::MatrixBase<VectorLike> & vec,
    const typename VectorLike::RealScalar & prec =
      Eigen::NumTraits<typename VectorLike::Scalar>::dummy_precision())
  {
    EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorLike);
    return internal::isNormalizedAlgo<VectorLike>::run(vec, prec);
  }

  namespace internal
  {
    template<
      typename VectorLike,
      bool value = is_floating_point<typename VectorLike::Scalar>::value>
    struct normalizeAlgo
    {
      static void run(const Eigen::MatrixBase<VectorLike> & vec)
      {
        return vec.const_cast_derived().normalize();
      }
    };

    template<typename VectorLike>
    struct normalizeAlgo<VectorLike, false>
    {
      static void run(const Eigen::MatrixBase<VectorLike> & vec)
      {
        using namespace internal;
        typedef typename VectorLike::RealScalar RealScalar;
        typedef typename VectorLike::Scalar Scalar;
        const RealScalar z = vec.squaredNorm();
        const Scalar sqrt_z = if_then_else(GT, z, Scalar(0), math::sqrt(z), Scalar(1));
        vec.const_cast_derived() /= sqrt_z;
      }
    };
  } // namespace internal

  template<typename VectorLike>
  inline void normalize(const Eigen::MatrixBase<VectorLike> & vec)
  {
    EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorLike);
    internal::normalizeAlgo<VectorLike>::run(vec.const_cast_derived());
  }

  namespace internal
  {
    template<typename Scalar>
    struct CallCorrectMatrixInverseAccordingToScalar
    {
      template<typename MatrixIn, typename MatrixOut>
      static void
      run(const Eigen::MatrixBase<MatrixIn> & m_in, const Eigen::MatrixBase<MatrixOut> & dest)
      {
        MatrixOut & dest_ = PINOCCHIO_EIGEN_CONST_CAST(MatrixOut, dest);
        dest_.noalias() = m_in.inverse();
      }
    };

  } // namespace internal

  template<typename MatrixIn, typename MatrixOut>
  inline void
  inverse(const Eigen::MatrixBase<MatrixIn> & m_in, const Eigen::MatrixBase<MatrixOut> & dest)
  {
    MatrixOut & dest_ = PINOCCHIO_EIGEN_CONST_CAST(MatrixOut, dest);
    internal::CallCorrectMatrixInverseAccordingToScalar<typename MatrixIn::Scalar>::run(
      m_in, dest_);
  }

} // namespace pinocchio

#endif // #ifndef __pinocchio_math_matrix_hpp__