Program Listing for File lanczos-decomposition.hpp

Return to documentation for file (include/pinocchio/math/lanczos-decomposition.hpp)

//
// Copyright (c) 2024 INRIA
//

#ifndef __pinocchio_math_lanczos_decomposition_hpp__
#define __pinocchio_math_lanczos_decomposition_hpp__

#include "pinocchio/math/fwd.hpp"
#include "pinocchio/math/tridiagonal-matrix.hpp"
#include "pinocchio/math/gram-schmidt-orthonormalisation.hpp"

namespace pinocchio
{

  template<typename _Matrix>
  struct LanczosDecompositionTpl
  {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    typedef typename PINOCCHIO_EIGEN_PLAIN_TYPE(_Matrix) PlainMatrix;
    typedef typename PINOCCHIO_EIGEN_PLAIN_TYPE(typename PlainMatrix::ColXpr) Vector;
    typedef typename _Matrix::Scalar Scalar;
    enum
    {
      Options = _Matrix::Options
    };
    typedef TridiagonalSymmetricMatrixTpl<Scalar, Options> TridiagonalMatrix;

    template<typename MatrixLikeType>
    LanczosDecompositionTpl(const MatrixLikeType & mat, const Eigen::DenseIndex decomposition_size)
    : m_Qs(mat.rows(), decomposition_size)
    , m_Ts(decomposition_size)
    , m_A_times_q(mat.rows())
    , m_rank(-1)
    {
      PINOCCHIO_CHECK_INPUT_ARGUMENT(mat.rows() == mat.cols(), "The input matrix is not square.");
      PINOCCHIO_CHECK_INPUT_ARGUMENT(
        decomposition_size >= 1, "The size of the decomposition should be greater than one.");
      PINOCCHIO_CHECK_INPUT_ARGUMENT(
        decomposition_size <= mat.rows(),
        "The size of the decomposition should not be larger than the number of rows.");

      compute(mat);
    }

    bool operator==(const LanczosDecompositionTpl & other) const
    {
      if (this == &other)
        return true;
      return m_Qs == other.m_Qs && m_Ts == other.m_Ts && m_rank == other.m_rank;
    }

    bool operator!=(const LanczosDecompositionTpl & other) const
    {
      return !(*this == other);
    }

    template<typename MatrixLikeType>
    void compute(const MatrixLikeType & A)
    {
      PINOCCHIO_CHECK_INPUT_ARGUMENT(A.rows() == A.cols(), "The input matrix is not square.");
      PINOCCHIO_CHECK_INPUT_ARGUMENT(
        A.rows() == m_Qs.rows(), "The input matrix is of correct size.");

      const Eigen::DenseIndex decomposition_size = m_Ts.cols();
      auto & alphas = m_Ts.diagonal();
      auto & betas = m_Ts.subDiagonal();

      m_Qs.col(0).fill(Scalar(1) / math::sqrt(Scalar(m_Qs.rows())));
      m_Ts.setZero();
      Eigen::DenseIndex k;
      for (k = 0; k < decomposition_size; ++k)
      {
        const auto q = m_Qs.col(k);
        m_A_times_q.noalias() = A * q;
        alphas[k] = q.dot(m_A_times_q);

        if (k < decomposition_size - 1)
        {
          auto q_next = m_Qs.col(k + 1);
          m_A_times_q -= alphas[k] * q;
          if (k > 0)
          {
            m_A_times_q -= betas[k - 1] * m_Qs.col(k - 1);
          }

          // Perform Gram-Schmidt orthogonalization procedure.
          if (k > 0)
            orthonormalisation(m_Qs.leftCols(k), m_A_times_q);

          // Compute beta
          betas[k] = m_A_times_q.norm();
          if (betas[k] <= 1e2 * Eigen::NumTraits<Scalar>::epsilon())
          {
            break;
          }
          else
          {
            q_next.noalias() = m_A_times_q / betas[k];
          }
        }
      }
      m_rank = math::max(Eigen::DenseIndex(1), k);
    }

    template<typename MatrixLikeType>
    PlainMatrix computeDecompositionResidual(const MatrixLikeType & A) const
    {
      const Eigen::DenseIndex last_col_id = m_Ts.cols() - 1;
      const auto & alphas = m_Ts.diagonal();
      const auto & betas = m_Ts.subDiagonal();

      PlainMatrix residual = A * m_Qs;
      residual -= (m_Qs * m_Ts).eval();

      const auto & q = m_Qs.col(last_col_id);

      auto & tmp_vec = m_A_times_q; // use m_A_times_q as a temporary vector
      tmp_vec.noalias() = A * q;
      tmp_vec -= alphas[last_col_id] * q;
      if (last_col_id > 0)
        tmp_vec -= betas[last_col_id - 1] * m_Qs.col(last_col_id - 1);

      residual.col(last_col_id) -= tmp_vec;

      return residual;
    }

    const TridiagonalMatrix & Ts() const
    {
      return m_Ts;
    }
    TridiagonalMatrix & Ts()
    {
      return m_Ts;
    }

    const PlainMatrix & Qs() const
    {
      return m_Qs;
    }
    PlainMatrix & Qs()
    {
      return m_Qs;
    }

    Eigen::DenseIndex rank() const
    {
      return m_rank;
    }

  protected:
    PlainMatrix m_Qs;
    TridiagonalMatrix m_Ts;
    mutable Vector m_A_times_q;
    Eigen::DenseIndex m_rank;
  };
} // namespace pinocchio

#endif // ifndef __pinocchio_math_lanczos_decomposition_hpp__