spectral_analysis.cpp
Go to the documentation of this file.
00001 /*********************************************************************
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2009, Willow Garage
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of the Willow Garage nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *********************************************************************/
00034 
00035 #include <ias_descriptors_3d/shared/spectral_analysis.h>
00036 
00037 using namespace std;
00038 
00039 // --------------------------------------------------------------
00040 /* See function definition */
00041 // --------------------------------------------------------------
00042 SpectralAnalysis::SpectralAnalysis(double support_radius)
00043 {
00044   support_radius_ = support_radius;
00045   spectral_computed_ = false;
00046 }
00047 
00048 // --------------------------------------------------------------
00049 /* See function definition */
00050 // --------------------------------------------------------------
00051 SpectralAnalysis::~SpectralAnalysis()
00052 {
00053   clearSpectral();
00054 }
00055 
00056 // --------------------------------------------------------------
00057 /* See function definition */
00058 // --------------------------------------------------------------
00059 void SpectralAnalysis::clearSpectral()
00060 {
00061   unsigned int nbr_data = normals_.size();
00062   for (unsigned int i = 0 ; i < nbr_data ; i++)
00063   {
00064     if (normals_[i] != NULL)
00065     {
00066       delete normals_[i];
00067       delete middle_eig_vecs_[i];
00068       delete tangents_[i];
00069       delete eigenvalues_[i];
00070     }
00071   }
00072   normals_.clear();
00073   middle_eig_vecs_.clear();
00074   tangents_.clear();
00075   eigenvalues_.clear();
00076   spectral_computed_ = false;
00077 }
00078 
00079 // --------------------------------------------------------------
00080 /* See function definition */
00081 // --------------------------------------------------------------
00082 int SpectralAnalysis::analyzeInterestPoints(const sensor_msgs::PointCloud& data,
00083                                             cloud_kdtree::KdTree& data_kdtree,
00084                                             const std::vector<const geometry_msgs::Point32*>& interest_pts)
00085 {
00086   if (spectral_computed_)
00087   {
00088     ROS_ERROR("SpectralAnalysis::analyzeInterestPoints() spectral info already exists");
00089     return -1;
00090   }
00091 
00092   // ----------------------------------------
00093   // Ensure some regions are provided
00094   unsigned int nbr_interest_pts = interest_pts.size();
00095 
00096   // ----------------------------------------
00097   // Ensure radius is valid
00098   if (support_radius_ < 1e-6)
00099   {
00100     ROS_ERROR("SpectralAnalysis::analyzeInterestPoints() support radius must be set to a positive value");
00101     return -1;
00102   }
00103 
00104   // ----------------------------------------
00105   // Allocate accordingly
00106   normals_.assign(nbr_interest_pts, NULL);
00107   middle_eig_vecs_.assign(nbr_interest_pts, NULL);
00108   tangents_.assign(nbr_interest_pts, NULL);
00109   eigenvalues_.assign(nbr_interest_pts, NULL);
00110 
00111   // ----------------------------------------
00112   // Find neighboring points within radius for each interest point
00113   int int_nbr_interest_pts = static_cast<int> (nbr_interest_pts);
00114 #pragma omp parallel for schedule(dynamic)
00115   for (int i = 0 ; i < int_nbr_interest_pts ; i++)
00116   {
00117     // ---------------------
00118     // Retrieve next interest point
00119     const geometry_msgs::Point32* curr_interest_pt = interest_pts[static_cast<size_t> (i)];
00120     if (curr_interest_pt == NULL)
00121     {
00122       ROS_WARN("SpectralAnalysis::analyzeInterestPoints() passed NULL interest point");
00123     }
00124     else
00125     {
00126       // ---------------------
00127       // Retrieve neighboring points around the interest point
00128       vector<int> neighbor_indices;
00129       vector<float> neighbor_distances; // unused
00130       // radiusSearch returning false (0 neighbors) is okay
00131       data_kdtree.radiusSearch(*curr_interest_pt, support_radius_, neighbor_indices, neighbor_distances);
00132 
00133       // ---------------------
00134       // Compute spectral information for interest point
00135       computeSpectralInfo(data, neighbor_indices, static_cast<size_t> (i));
00136     }
00137   }
00138 
00139   spectral_computed_ = true;
00140   return 0;
00141 }
00142 
00143 // --------------------------------------------------------------
00144 /* See function definition */
00145 // --------------------------------------------------------------
00146 int SpectralAnalysis::analyzeInterestRegions(const sensor_msgs::PointCloud& data,
00147                                              cloud_kdtree::KdTree& data_kdtree,
00148                                              const std::vector<const vector<int>*>& interest_region_indices)
00149 {
00150   if (spectral_computed_)
00151   {
00152     ROS_ERROR("SpectralAnalysis::analyzeInterestRegions() spectral info already exists");
00153     return -1;
00154   }
00155 
00156   // ----------------------------------------
00157   // Ensure some regions are provided
00158   unsigned int nbr_regions = interest_region_indices.size();
00159 
00160   // ----------------------------------------
00161   // Allocate accordingly
00162   normals_.assign(nbr_regions, NULL);
00163   middle_eig_vecs_.assign(nbr_regions, NULL);
00164   tangents_.assign(nbr_regions, NULL);
00165   eigenvalues_.assign(nbr_regions, NULL);
00166 
00167   // ----------------------------------------
00168   // For each interest region, either:
00169   //   Use the region itself as the support volume
00170   //   Find a support volume within a radius from the region's centroid
00171   int int_nbr_regions = static_cast<int> (nbr_regions);
00172 #pragma omp parallel for schedule(dynamic)
00173   for (int i = 0 ; i < int_nbr_regions ; i++)
00174   {
00175     // ---------------------
00176     // Retrieve next interest region
00177     // (By default, use the interest region as the support volume)
00178     const vector<int>* curr_interest_region = interest_region_indices[static_cast<size_t> (i)];
00179     if (curr_interest_region == NULL)
00180     {
00181       ROS_WARN("SpectralAnalysis::analyzeInterestRegions() passed NULL interest region");
00182     }
00183     else
00184     {
00185       // Do a range search around the interest region's CENTROID if indicated
00186       vector<int> neighbor_indices;
00187       if (support_radius_ > 1e-6)
00188       {
00189         // Compute centroid of interest region
00190         geometry_msgs::Point32 region_centroid;
00191         cloud_geometry::nearest::computeCentroid(data, *curr_interest_region, region_centroid);
00192 
00193         vector<float> neighbor_distances; // unused
00194         // radiusSearch returning false (0 neighbors) is okay
00195         data_kdtree.radiusSearch(region_centroid, support_radius_, neighbor_indices, neighbor_distances);
00196 
00197         // Now point to the neighboring points from radiusSearch
00198         curr_interest_region = &neighbor_indices;
00199       }
00200 
00201       // ---------------------
00202       // Compute spectral information for interest region
00203       computeSpectralInfo(data, *curr_interest_region, static_cast<size_t> (i));
00204     }
00205   }
00206 
00207   // ----------------------------------------
00208   spectral_computed_ = true;
00209   return 0;
00210 }
00211 
00212 // --------------------------------------------------------------
00213 /* See function definition */
00214 // --------------------------------------------------------------
00215 void SpectralAnalysis::computeSpectralInfo(const sensor_msgs::PointCloud& data,
00216                                            const vector<int>& support_volume_indices,
00217                                            const size_t idx)
00218 {
00219   // ----------------------------------------
00220   // Need 3-by-3 matrix to have full rank
00221   if (support_volume_indices.size() < 3)
00222   {
00223     ROS_DEBUG("SpectralAnalysis::computeSpectralInfo() not enough neighbors for interest sample %u", idx);
00224     return;
00225   }
00226 
00227   // ----------------------------------------
00228   // Allocate for new data
00229   Eigen3::Vector3d* new_normal = new Eigen3::Vector3d();
00230   Eigen3::Vector3d* new_middle_eigvec = new Eigen3::Vector3d();
00231   Eigen3::Vector3d* new_tangent = new Eigen3::Vector3d();
00232   Eigen3::Vector3d* new_eig_vals = new Eigen3::Vector3d();
00233 
00234   // ----------------------------------------
00235   // Eigen-analysis of support volume
00236   // smallest eigenvalue = index 0
00237   geometry_msgs::Point32 centroid;
00238   Eigen3::Matrix3d eigen_vectors;
00239   cloud_geometry::nearest::computePatchEigenNormalized(data, support_volume_indices, eigen_vectors,
00240       *(new_eig_vals), centroid);
00241 
00242   // ----------------------------------------
00243   // Populate containers
00244   for (unsigned int j = 0 ; j < 3 ; j++)
00245   {
00246     (*(new_normal))[j] = eigen_vectors(j, 0);
00247     (*(new_middle_eigvec))[j] = eigen_vectors(j, 1);
00248     (*(new_tangent))[j] = eigen_vectors(j, 2);
00249   }
00250 
00251   // Make unit length
00252   new_normal->normalize();
00253   new_middle_eigvec->normalize();
00254   new_tangent->normalize();
00255 
00256   normals_[idx] = new_normal;
00257   middle_eig_vecs_[idx] = new_middle_eigvec;
00258   tangents_[idx] = new_tangent;
00259   eigenvalues_[idx] = new_eig_vals;
00260 
00261 }
00262 


ias_descriptors_3d
Author(s): Daniel Munoz/ dmunoz@willowgarage.com, Dejan Pangercic (patched version)
autogenerated on Mon Oct 6 2014 08:48:26