channel.cpp
Go to the documentation of this file.
00001 /*********************************************************************
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2009, Willow Garage
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of the Willow Garage nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *********************************************************************/
00034 
00035 #include <ias_descriptors_3d/channel.h>
00036 
00037 using namespace std;
00038 
00039 // --------------------------------------------------------------
00040 /* See function definition */
00041 // --------------------------------------------------------------
00042 Channel::Channel(const string& channel_name)
00043 {
00044   channel_name_ = channel_name;
00045   result_size_ = 1;
00046   result_size_defined_ = true;
00047 }
00048 
00049 // --------------------------------------------------------------
00050 /* See function definition */
00051 // --------------------------------------------------------------
00052 void Channel::clearShared()
00053 {
00054 }
00055 
00056 // --------------------------------------------------------------
00057 /* See function definition */
00058 // --------------------------------------------------------------
00059 std::string Channel::getName() const
00060 {
00061   return string("TODO: Add a name to this feature.");
00062 }
00063 
00064 // --------------------------------------------------------------
00065 /* See function definition */
00066 // --------------------------------------------------------------
00067 int Channel::precompute(const sensor_msgs::PointCloud& data,
00068                         cloud_kdtree::KdTree& data_kdtree,
00069                         const std::vector<const geometry_msgs::Point32*>& interest_pts)
00070 {
00071   return 0;
00072 }
00073 
00074 // --------------------------------------------------------------
00075 /* See function definition */
00076 // --------------------------------------------------------------
00077 int Channel::precompute(const sensor_msgs::PointCloud& data,
00078                         cloud_kdtree::KdTree& data_kdtree,
00079                         const std::vector<const std::vector<int>*>& interest_region_indices)
00080 {
00081   return 0;
00082 }
00083 
00084 // --------------------------------------------------------------
00085 /* See function definition */
00086 // --------------------------------------------------------------
00087 void Channel::doComputation(const sensor_msgs::PointCloud& data,
00088                             cloud_kdtree::KdTree& data_kdtree,
00089                             const std::vector<const geometry_msgs::Point32*>& interest_pts,
00090                             std::vector<std::vector<float> >& results)
00091 {
00092   // ----------------------------------------------
00093   // Lookup the channel index corresponding to the given name
00094   int channel_idx = cloud_geometry::getChannelIndex(data, channel_name_);
00095   if (channel_idx < 0)
00096   {
00097     ROS_ERROR("Channel::doComputation() could not find channel %s in given point cloud", channel_name_.c_str());
00098     return;
00099   }
00100   const std::vector<sensor_msgs::ChannelFloat32>& pt_cloud_chans = data.channels;
00101 
00102   // ----------------------------------------------
00103   // For each interest point, look up its index in the point cloud and then copy the
00104   // specified channel value
00105   int nbr_interest_pts = interest_pts.size();
00106 #pragma omp parallel for
00107   for (int i = 0 ; i < nbr_interest_pts ; i++)
00108   {
00109     // --------------------------
00110     if (interest_pts[static_cast<size_t> (i)] == NULL)
00111     {
00112       ROS_WARN("Channel::doComputation() passed NULL interest point %u", i);
00113       continue;
00114     }
00115     const geometry_msgs::Point32& curr_interest_pt = *(interest_pts[static_cast<size_t> (i)]);
00116 
00117     // --------------------------
00118     // Look for the interest point in the point cloud
00119     vector<int> neighbor_indices;
00120     vector<float> neighbor_distances; // unused
00121     data_kdtree.nearestKSearch(curr_interest_pt, 1, neighbor_indices, neighbor_distances);
00122     unsigned int nearest_pt_idx = neighbor_indices.at(0);
00123     const geometry_msgs::Point32& nearest_pt = data.points[nearest_pt_idx];
00124 
00125     // --------------------------
00126     // Verify the nearest point is the same as the given interest point
00127     if (cloud_geometry::distances::pointToPointDistanceSqr(curr_interest_pt, nearest_pt) > 1e-8)
00128     {
00129       ROS_WARN("Channel::doComputation() could not find point (%f,%f,%f) in the given point cloud",
00130           curr_interest_pt.x, curr_interest_pt.y, curr_interest_pt.z);
00131       continue;
00132     }
00133 
00134     // --------------------------
00135     // Copy the channel value
00136     results[static_cast<size_t> (i)].resize(result_size_);
00137     results[static_cast<size_t> (i)][0] = pt_cloud_chans[channel_idx].values[nearest_pt_idx];
00138   }
00139 }
00140 
00141 // --------------------------------------------------------------
00142 /* See function definition */
00143 // --------------------------------------------------------------
00144 void Channel::doComputation(const sensor_msgs::PointCloud& data,
00145                             cloud_kdtree::KdTree& data_kdtree,
00146                             const std::vector<const vector<int>*>& interest_region_indices,
00147                             std::vector<std::vector<float> >& results)
00148 {
00149   // ----------------------------------------------
00150   // Lookup the channel index corresponding to the given name
00151   int channel_idx = cloud_geometry::getChannelIndex(data, channel_name_);
00152   if (channel_idx < 0)
00153   {
00154     ROS_ERROR("Channel::doComputation() could not find channel %s in given point cloud", channel_name_.c_str());
00155     return;
00156   }
00157   const std::vector<sensor_msgs::ChannelFloat32>& pt_cloud_chans = data.channels;
00158 
00159   // ----------------------------------------------
00160   // For each interest region, look up each of its points index in the point cloud
00161   // and then copy the region's average specified channel value
00162   int nbr_interest_regions = interest_region_indices.size();
00163 #pragma omp parallel for
00164   for (int i = 0 ; i < nbr_interest_regions ; i++)
00165   {
00166     // --------------------------
00167     if (interest_region_indices[static_cast<size_t> (i)] == NULL)
00168     {
00169       ROS_WARN("Channel::doComputation passed NULL interest region %u", i);
00170       continue;
00171     }
00172     const vector<int>& curr_interest_region = *(interest_region_indices[static_cast<size_t> (i)]);
00173 
00174     // --------------------------
00175     // Initialize average to 0
00176     results[static_cast<size_t> (i)].resize(result_size_);
00177     results[static_cast<size_t> (i)][0] = 0.0;
00178 
00179     // --------------------------
00180     // Sum each interest points' channel value
00181     unsigned int nbr_pts_in_region = curr_interest_region.size();
00182     for (unsigned int j = 0 ; j < nbr_pts_in_region ; j++)
00183     {
00184       unsigned int curr_interest_pt_idx = static_cast<unsigned int> (curr_interest_region[j]);
00185       results[static_cast<size_t> (i)][0] += pt_cloud_chans[channel_idx].values.at(
00186           curr_interest_pt_idx);
00187     }
00188 
00189     // --------------------------
00190     // Average
00191     results[static_cast<size_t> (i)][0] /= static_cast<float> (nbr_pts_in_region);
00192   }
00193 }


ias_descriptors_3d
Author(s): Daniel Munoz/ dmunoz@willowgarage.com, Dejan Pangercic (patched version)
autogenerated on Mon Oct 6 2014 08:48:26