00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024 #include <iostream>
00025 #include <algorithm>
00026 #include "cxcore.h"
00027 #include "cv.h"
00028 #include "highgui.h"
00029 #include "Kalman.h"
00030 #include "Util.h"
00031 #include "Alvar.h"
00032
00033 namespace alvar {
00034
00035 KalmanSensorCore::KalmanSensorCore(const KalmanSensorCore &k) {
00036 m = k.m;
00037 n = k.n;
00038 z = cvCloneMat(k.z);
00039 H = cvCloneMat(k.H);
00040 H_trans = cvCloneMat(k.H_trans);
00041 K = cvCloneMat(k.K);
00042 z_pred = cvCloneMat(k.z_pred);
00043 z_residual = cvCloneMat(k.z_residual);
00044 x_gain = cvCloneMat(k.x_gain);
00045 }
00046
00047 KalmanSensorCore::KalmanSensorCore(int _n, int _m) {
00048 n = _n;
00049 m = _m;
00050 z = cvCreateMat(m,1,CV_64FC1); cvSetZero(z);
00051 H = cvCreateMat(m,n,CV_64FC1); cvSetZero(H);
00052 H_trans = cvCreateMat(n,m,CV_64FC1); cvSetZero(H_trans);
00053 K = cvCreateMat(n,m,CV_64FC1); cvSetZero(K);
00054 z_pred = cvCreateMat(m,1,CV_64FC1); cvSetZero(z_pred);
00055 z_residual = cvCreateMat(m,1,CV_64FC1); cvSetZero(z_residual);
00056 x_gain = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_gain);
00057 }
00058
00059 KalmanSensorCore::~KalmanSensorCore() {
00060 cvReleaseMat(&z);
00061 cvReleaseMat(&H);
00062 cvReleaseMat(&H_trans);
00063 cvReleaseMat(&K);
00064 cvReleaseMat(&z_pred);
00065 cvReleaseMat(&z_residual);
00066 cvReleaseMat(&x_gain);
00067 }
00068
00069 void KalmanSensorCore::update_x(CvMat *x_pred, CvMat *x) {
00070
00071 cvMatMul(H, x_pred, z_pred);
00072 cvScaleAdd(z_pred, cvScalar(-1), z, z_residual);
00073 cvMatMul(K, z_residual, x_gain);
00074 cvScaleAdd(x_pred, cvScalar(1), x_gain, x);
00075 }
00076
00077 void KalmanCore::predict_x(unsigned long tick) {
00078
00079 cvMatMul(F, x, x_pred);
00080 }
00081
00082 KalmanCore::KalmanCore(const KalmanCore &s) {
00083 n = s.n;
00084 x = cvCloneMat(s.x);
00085 F = cvCloneMat(s.F);
00086 x_pred = cvCloneMat(s.x_pred);
00087 F_trans = cvCloneMat(s.F_trans);
00088 }
00089
00090 KalmanCore::KalmanCore(int _n) {
00091 n = _n;
00092 x = cvCreateMat(n,1,CV_64FC1); cvSetZero(x);
00093 F = cvCreateMat(n,n,CV_64FC1); cvSetIdentity(F);
00094 F_trans = cvCreateMat(n,n,CV_64FC1); cvSetIdentity(F_trans);
00095 x_pred = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_pred);
00096 }
00097
00098 KalmanCore::~KalmanCore() {
00099 cvReleaseMat(&x);
00100 cvReleaseMat(&F);
00101 cvReleaseMat(&F_trans);
00102 cvReleaseMat(&x_pred);
00103 }
00104
00105 CvMat *KalmanCore::predict() {
00106 predict_x(0);
00107 return x_pred;
00108 }
00109
00110 CvMat *KalmanCore::predict_update(KalmanSensorCore *sensor) {
00111 predict();
00112 sensor->update_x(x_pred, x);
00113 return x;
00114 }
00115
00116 KalmanSensor::KalmanSensor(const KalmanSensor &k) : KalmanSensorCore(k) {
00117 R = cvCloneMat(k.R);
00118 R_tmp = cvCloneMat(k.R_tmp);
00119 P_tmp = cvCloneMat(k.P_tmp);
00120 }
00121
00122 KalmanSensor::KalmanSensor(int n, int _m) : KalmanSensorCore(n, _m) {
00123 R = cvCreateMat(m,m,CV_64FC1); cvSetZero(R);
00124 R_tmp = cvCreateMat(m,m,CV_64FC1); cvSetZero(R);
00125 P_tmp = cvCreateMat(n,n,CV_64FC1); cvSetZero(P_tmp);
00126 }
00127
00128 KalmanSensor::~KalmanSensor() {
00129 cvReleaseMat(&R);
00130 cvReleaseMat(&R_tmp);
00131 cvReleaseMat(&P_tmp);
00132 }
00133
00134 void KalmanSensor::update_K(CvMat *P_pred) {
00135
00136 cvTranspose(H, H_trans);
00137 cvMatMul(P_pred, H_trans, K);
00138 cvMatMul(H, K, R_tmp);
00139 cvScaleAdd(R_tmp, cvScalar(1), R, R_tmp);
00140 cvInvert(R_tmp, R_tmp);
00141 cvMatMul(H_trans, R_tmp, K);
00142 cvMatMul(P_pred, K, K);
00143 }
00144
00145 void KalmanSensor::update_P(CvMat *P_pred, CvMat *P) {
00146
00147 cvMatMul(K, H, P_tmp);
00148 cvSetIdentity(P);
00149 cvScaleAdd(P_tmp, cvScalar(-1), P, P);
00150 cvMatMul(P, P_pred, P);
00151 }
00152
00153 void Kalman::predict_P() {
00154
00155 cvTranspose(F, F_trans);
00156 cvMatMul(P, F_trans, P_pred);
00157 cvMatMul(F, P_pred, P_pred);
00158 cvScaleAdd(P_pred, cvScalar(1), Q, P_pred);
00159 }
00160
00161 Kalman::Kalman(int _n) : KalmanCore(_n) {
00162 prev_tick = 0;
00163 Q = cvCreateMat(n,n,CV_64FC1); cvSetZero(Q);
00164 P = cvCreateMat(n,n,CV_64FC1); cvSetZero(P);
00165 P_pred = cvCreateMat(n,n,CV_64FC1); cvSetZero(P_pred);
00166 }
00167
00168 Kalman::~Kalman() {
00169 cvReleaseMat(&Q);
00170 cvReleaseMat(&P);
00171 cvReleaseMat(&P_pred);
00172 }
00173
00174 void Kalman::update_F(unsigned long tick) {
00175
00176 }
00177
00178 CvMat *Kalman::predict(unsigned long tick) {
00179 update_F(tick);
00180 predict_x(tick);
00181 predict_P();
00182 return x_pred;
00183 }
00184
00185 CvMat *Kalman::predict_update(KalmanSensor *sensor, unsigned long tick) {
00186 predict(tick);
00187 sensor->update_H(x_pred);
00188 sensor->update_K(P_pred);
00189 sensor->update_x(x_pred, x);
00190 sensor->update_P(P_pred, P);
00191 prev_tick = tick;
00192 return x;
00193 }
00194
00195 double Kalman::seconds_since_update(unsigned long tick) {
00196 unsigned long tick_diff = (prev_tick ? tick-prev_tick : 0);
00197 return ((double)tick_diff/1000.0);
00198 }
00199
00200 void KalmanSensorEkf::update_H(CvMat *x_pred) {
00201
00202 const double step = 0.000001;
00203 cvZero(H);
00204 for (int i=0; i<n; i++) {
00205 CvMat H_column;
00206 cvGetCol(H, &H_column, i);
00207
00208 cvZero(delta);
00209 cvmSet(delta, i, 0, step);
00210 cvAdd(x_pred, delta, x_plus);
00211 cvmSet(delta, i, 0, -step);
00212 cvAdd(x_pred, delta, x_minus);
00213
00214 h(x_plus, z_tmp1);
00215 h(x_minus, z_tmp2);
00216 cvSub(z_tmp1, z_tmp2, &H_column);
00217 cvScale(&H_column, &H_column, 1.0/(2*step));
00218 }
00219 }
00220
00221 void KalmanSensorEkf::update_x(CvMat *x_pred, CvMat *x) {
00222
00223 h(x_pred, z_pred);
00224 cvScaleAdd(z_pred, cvScalar(-1), z, z_residual);
00225 cvMatMul(K, z_residual, x_gain);
00226 cvScaleAdd(x_pred, cvScalar(1), x_gain, x);
00227 }
00228
00229 KalmanSensorEkf::KalmanSensorEkf(const KalmanSensorEkf &k) : KalmanSensor(k) {
00230 delta = cvCloneMat(k.delta);
00231 x_plus = cvCloneMat(k.x_plus);
00232 x_minus = cvCloneMat(k.x_minus);
00233 z_tmp1 = cvCloneMat(k.z_tmp1);
00234 z_tmp2 = cvCloneMat(k.z_tmp2);
00235 }
00236
00237 KalmanSensorEkf::KalmanSensorEkf(int _n, int _m) : KalmanSensor(_n, _m) {
00238 delta = cvCreateMat(n,1,CV_64FC1); cvSetZero(delta);
00239 x_plus = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_plus);
00240 x_minus = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_minus);
00241 z_tmp1 = cvCreateMat(m,1,CV_64FC1); cvSetZero(z_tmp1);
00242 z_tmp2 = cvCreateMat(m,1,CV_64FC1); cvSetZero(z_tmp2);
00243 }
00244
00245 KalmanSensorEkf::~KalmanSensorEkf() {
00246 cvReleaseMat(&delta);
00247 cvReleaseMat(&x_plus);
00248 cvReleaseMat(&x_minus);
00249 cvReleaseMat(&z_tmp1);
00250 cvReleaseMat(&z_tmp2);
00251 }
00252
00253 void KalmanEkf::update_F(unsigned long tick) {
00254
00255
00256 double dt = (tick-prev_tick)/1000.0;
00257 const double step = 0.000001;
00258 cvZero(F);
00259 for (int i=0; i<n; i++) {
00260 CvMat F_column;
00261 cvGetCol(F, &F_column, i);
00262
00263 cvZero(delta);
00264 cvmSet(delta, i, 0, step);
00265 cvAdd(x, delta, x_plus);
00266 cvmSet(delta, i, 0, -step);
00267 cvAdd(x, delta, x_minus);
00268
00269 f(x_plus, x_tmp1, dt);
00270 f(x_minus, x_tmp2, dt);
00271 cvSub(x_tmp1, x_tmp2, &F_column);
00272 cvScale(&F_column, &F_column, 1.0/(2*step));
00273 }
00274 }
00275
00276 void KalmanEkf::predict_x(unsigned long tick) {
00277 double dt = (tick-prev_tick)/1000.0;
00278 f(x, x_pred, dt);
00279 }
00280
00281 KalmanEkf::KalmanEkf(int _n) : Kalman(_n) {
00282 delta = cvCreateMat(n,1,CV_64FC1); cvSetZero(delta);
00283 x_plus = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_plus);
00284 x_minus = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_minus);
00285 x_tmp1 = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_tmp1);
00286 x_tmp2 = cvCreateMat(n,1,CV_64FC1); cvSetZero(x_tmp2);
00287 }
00288
00289 KalmanEkf::~KalmanEkf() {
00290 cvReleaseMat(&delta);
00291 cvReleaseMat(&x_plus);
00292 cvReleaseMat(&x_minus);
00293 cvReleaseMat(&x_tmp1);
00294 cvReleaseMat(&x_tmp2);
00295 }
00296
00297 void KalmanVisualize::img_matrix(CvMat *mat, int top, int left) {
00298 cvSetImageROI(img, cvRect(top, left, mat->cols, mat->rows));
00299 for (int j=0; j<mat->rows; j++) {
00300 for (int i=0; i<mat->cols; i++) {
00301 double d = cvGet2D(mat, j, i).val[0];
00302 if (d < 0) d=-d;
00303 double c1=0, c2=0, c3=0;
00304 if (d < 0.1) {
00305 c1 = 0 + ((d - 0.0)/(0.1 - 0.0)*(127 - 0));
00306 } else if(d < 1.0) {
00307 c1 = 127 + ((d - 0.1)/(1.0 - 0.1)*(255 - 127));
00308 } else if (d < 10.0) {
00309 c1 = 255;
00310 c2 = 0 + ((d - 1.0)/(10.0 - 1.0)*(255 - 0));
00311 } else if (d < 100.0) {
00312 c1 = 255;
00313 c2 = 255;
00314 c3 = 0 + ((d - 10.0)/(100.0 - 10.0)*(255 - 0));
00315 } else {
00316 c1 = 255; c2 = 255; c3 = 255;
00317 }
00318 if (d < 0) {
00319 cvSet2D(img, j, i, cvScalar(c3, c2, c1));
00320 } else {
00321 cvSet2D(img, j, i, cvScalar(c2, c1, c3));
00322 }
00323 }
00324 }
00325 cvResetImageROI(img);
00326 }
00327
00328 void KalmanVisualize::Init() {
00329 n = kalman->get_n();
00330 m = sensor->get_m();
00331 int img_width = std::max(3+n+3+n+5+m+5, 1+n+1+n+1+n+1+m+1+n+1);
00332 int img_height = 1+n+1+std::max(n, m+1+m)+1;
00333 img = cvCreateImage(cvSize(img_width, img_height), IPL_DEPTH_8U, 3);
00334 cvSet(img, cvScalar(64,64,64));
00335 img_legend = cvLoadImage("Legend.png");
00336 if (img_legend) {
00337 for (img_scale=1; img_scale<50; img_scale++) {
00338 if (img_scale*img_width > img_legend->width) {
00339 break;
00340 }
00341 }
00342 img_show = cvCreateImage(cvSize(img_width*img_scale, img_legend->height + img_height*img_scale), IPL_DEPTH_8U, 3);
00343 cvSet(img_show, cvScalar(64,64,64));
00344 cvSetImageROI(img_show, cvRect(0, 0, img_legend->width, img_legend->height));
00345 cvCopy(img_legend, img_show);
00346 cvResetImageROI(img_show);
00347 cvNamedWindow("KalmanVisualize");
00348 } else {
00349 img_scale = 1;
00350 img_show = cvCreateImage(cvSize(img_width*img_scale, img_height*img_scale), IPL_DEPTH_8U, 3);
00351 cvSet(img_show, cvScalar(64,64,64));
00352 cvNamedWindow("KalmanVisualize",0);
00353 }
00354 }
00355
00356 void KalmanVisualize::out_matrix(CvMat *m, char *name) {
00357 if (m->cols == 1) {
00358 std::cout<<name<<" = [";
00359 for (int j=0; j<m->rows; j++) {
00360 std::cout<<" "<<cvGet2D(m, j, 0).val[0];
00361 }
00362 std::cout<<"]^T"<<std::endl;
00363 } else if (m->rows == 1) {
00364 std::cout<<name<<" = [";
00365 for (int i=0; i<m->cols; i++) {
00366 std::cout<<" "<<cvGet2D(m, 0, i).val[0];
00367 }
00368 std::cout<<"]^T"<<std::endl;
00369 } else {
00370 std::cout<<name<<" = ["<<std::endl;
00371 for (int j=0; j<m->rows; j++) {
00372 for (int i=0; i<m->cols; i++) {
00373 std::cout<<" "<<cvGet2D(m, j, i).val[0];
00374 }
00375 std::cout<<std::endl;
00376 }
00377 std::cout<<"]"<<std::endl;
00378 }
00379 }
00380
00381 KalmanVisualize::KalmanVisualize(Kalman *_kalman, KalmanSensor *_sensor) {
00382 kalman = _kalman;
00383 sensor = _sensor;
00384 kalman_ext = _kalman;
00385 sensor_ext = _sensor;
00386 Init();
00387 }
00388
00389 KalmanVisualize::KalmanVisualize(KalmanCore *_kalman, KalmanSensorCore *_sensor) {
00390 kalman = _kalman;
00391 sensor = _sensor;
00392 kalman_ext = NULL;
00393 sensor_ext = NULL;
00394 Init();
00395 }
00396
00397 KalmanVisualize::~KalmanVisualize() {
00398 cvReleaseImage(&img);
00399 }
00400
00401 void KalmanVisualize::update_pre() {
00402 img_matrix(kalman->x, 1, 1);
00403 if (kalman_ext && sensor_ext) {
00404 int y = std::max(2+n, 3+m+m);
00405 img_matrix(kalman_ext->P, 1, y);
00406 }
00407 }
00408
00409 void KalmanVisualize::update_post() {
00410 img_matrix(kalman->F, 3, 1);
00411 img_matrix(kalman->x_pred, 4+n, 1);
00412 img_matrix(sensor->H, 6+n, 1);
00413 img_matrix(sensor->z_pred, 7+n+n, 1);
00414 img_matrix(sensor->z, 7+n+n, 2 + m);
00415 img_matrix(sensor->z_residual, 9+n+n, 1);
00416 img_matrix(sensor->K, 11+n+n, 1);
00417 img_matrix(sensor->x_gain, 12+n+n+m, 1);
00418 img_matrix(kalman->x, 14+n+n+m, 1);
00419 if (kalman_ext && sensor_ext) {
00420 int y = std::max(2+n, 3+m+m);
00421 img_matrix(kalman_ext->Q, 2+n, y);
00422 img_matrix(kalman_ext->P_pred, 3+n+n, y);
00423 img_matrix(sensor_ext->R, 4+n+n+n, y);
00424 img_matrix(kalman_ext->P, img->width - 1 - n, y);
00425 }
00426 if (img_legend) {
00427 cvSetImageROI(img_show, cvRect(0, img_legend->height, img->width * img_scale, img->height * img_scale));
00428 cvResize(img, img_show, CV_INTER_NN);
00429 cvResetImageROI(img_show);
00430 } else {
00431 cvResize(img, img_show, CV_INTER_NN);
00432 }
00433 }
00434
00435 void KalmanVisualize::show() {
00436
00437 cvShowImage("KalmanVisualize", img_show);
00438 }
00439
00440 }