PlacePlanning.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/srv/PlacePlanning.srv */
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "ros/service_traits.h"
00018 
00019 #include "object_manipulation_msgs/GraspableObject.h"
00020 #include "geometry_msgs/Quaternion.h"
00021 #include "geometry_msgs/Pose.h"
00022 
00023 
00024 #include "geometry_msgs/PoseStamped.h"
00025 #include "object_manipulation_msgs/GraspPlanningErrorCode.h"
00026 
00027 namespace object_manipulation_msgs
00028 {
00029 template <class ContainerAllocator>
00030 struct PlacePlanningRequest_ {
00031   typedef PlacePlanningRequest_<ContainerAllocator> Type;
00032 
00033   PlacePlanningRequest_()
00034   : arm_name()
00035   , target()
00036   , default_orientation()
00037   , grasp_pose()
00038   , collision_object_name()
00039   , collision_support_surface_name()
00040   {
00041   }
00042 
00043   PlacePlanningRequest_(const ContainerAllocator& _alloc)
00044   : arm_name(_alloc)
00045   , target(_alloc)
00046   , default_orientation(_alloc)
00047   , grasp_pose(_alloc)
00048   , collision_object_name(_alloc)
00049   , collision_support_surface_name(_alloc)
00050   {
00051   }
00052 
00053   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _arm_name_type;
00054   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  arm_name;
00055 
00056   typedef  ::object_manipulation_msgs::GraspableObject_<ContainerAllocator>  _target_type;
00057    ::object_manipulation_msgs::GraspableObject_<ContainerAllocator>  target;
00058 
00059   typedef  ::geometry_msgs::Quaternion_<ContainerAllocator>  _default_orientation_type;
00060    ::geometry_msgs::Quaternion_<ContainerAllocator>  default_orientation;
00061 
00062   typedef  ::geometry_msgs::Pose_<ContainerAllocator>  _grasp_pose_type;
00063    ::geometry_msgs::Pose_<ContainerAllocator>  grasp_pose;
00064 
00065   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_object_name_type;
00066   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_object_name;
00067 
00068   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_support_surface_name_type;
00069   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_support_surface_name;
00070 
00071 
00072   typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > Ptr;
00073   typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator>  const> ConstPtr;
00074   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00075 }; // struct PlacePlanningRequest
00076 typedef  ::object_manipulation_msgs::PlacePlanningRequest_<std::allocator<void> > PlacePlanningRequest;
00077 
00078 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest> PlacePlanningRequestPtr;
00079 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningRequest const> PlacePlanningRequestConstPtr;
00080 
00081 
00082 template <class ContainerAllocator>
00083 struct PlacePlanningResponse_ {
00084   typedef PlacePlanningResponse_<ContainerAllocator> Type;
00085 
00086   PlacePlanningResponse_()
00087   : place_locations()
00088   , error_code()
00089   {
00090   }
00091 
00092   PlacePlanningResponse_(const ContainerAllocator& _alloc)
00093   : place_locations(_alloc)
00094   , error_code(_alloc)
00095   {
00096   }
00097 
00098   typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other >  _place_locations_type;
00099   std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other >  place_locations;
00100 
00101   typedef  ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator>  _error_code_type;
00102    ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator>  error_code;
00103 
00104 
00105   typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > Ptr;
00106   typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator>  const> ConstPtr;
00107   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00108 }; // struct PlacePlanningResponse
00109 typedef  ::object_manipulation_msgs::PlacePlanningResponse_<std::allocator<void> > PlacePlanningResponse;
00110 
00111 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse> PlacePlanningResponsePtr;
00112 typedef boost::shared_ptr< ::object_manipulation_msgs::PlacePlanningResponse const> PlacePlanningResponseConstPtr;
00113 
00114 struct PlacePlanning
00115 {
00116 
00117 typedef PlacePlanningRequest Request;
00118 typedef PlacePlanningResponse Response;
00119 Request request;
00120 Response response;
00121 
00122 typedef Request RequestType;
00123 typedef Response ResponseType;
00124 }; // struct PlacePlanning
00125 } // namespace object_manipulation_msgs
00126 
00127 namespace ros
00128 {
00129 namespace message_traits
00130 {
00131 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > : public TrueType {};
00132 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator>  const> : public TrueType {};
00133 template<class ContainerAllocator>
00134 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00135   static const char* value() 
00136   {
00137     return "f8c649647c00f63351f0ba78c050e744";
00138   }
00139 
00140   static const char* value(const  ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 
00141   static const uint64_t static_value1 = 0xf8c649647c00f633ULL;
00142   static const uint64_t static_value2 = 0x51f0ba78c050e744ULL;
00143 };
00144 
00145 template<class ContainerAllocator>
00146 struct DataType< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00147   static const char* value() 
00148   {
00149     return "object_manipulation_msgs/PlacePlanningRequest";
00150   }
00151 
00152   static const char* value(const  ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 
00153 };
00154 
00155 template<class ContainerAllocator>
00156 struct Definition< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00157   static const char* value() 
00158   {
00159     return "\n\
00160 \n\
00161 \n\
00162 string arm_name\n\
00163 \n\
00164 \n\
00165 GraspableObject target\n\
00166 \n\
00167 \n\
00168 \n\
00169 \n\
00170 geometry_msgs/Quaternion default_orientation\n\
00171 \n\
00172 \n\
00173 geometry_msgs/Pose grasp_pose\n\
00174 \n\
00175 \n\
00176 \n\
00177 string collision_object_name\n\
00178 \n\
00179 \n\
00180 \n\
00181 string collision_support_surface_name\n\
00182 \n\
00183 \n\
00184 ================================================================================\n\
00185 MSG: object_manipulation_msgs/GraspableObject\n\
00186 # an object that the object_manipulator can work on\n\
00187 \n\
00188 # a graspable object can be represented in multiple ways. This message\n\
00189 # can contain all of them. Which one is actually used is up to the receiver\n\
00190 # of this message. When adding new representations, one must be careful that\n\
00191 # they have reasonable lightweight defaults indicating that that particular\n\
00192 # representation is not available.\n\
00193 \n\
00194 # the tf frame to be used as a reference frame when combining information from\n\
00195 # the different representations below\n\
00196 string reference_frame_id\n\
00197 \n\
00198 # potential recognition results from a database of models\n\
00199 # all poses are relative to the object reference pose\n\
00200 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00201 \n\
00202 # the point cloud itself\n\
00203 sensor_msgs/PointCloud cluster\n\
00204 \n\
00205 # a region of a PointCloud2 of interest\n\
00206 object_manipulation_msgs/SceneRegion region\n\
00207 \n\
00208 # the name that this object has in the collision environment\n\
00209 string collision_name\n\
00210 ================================================================================\n\
00211 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00212 # Informs that a specific model from the Model Database has been \n\
00213 # identified at a certain location\n\
00214 \n\
00215 # the database id of the model\n\
00216 int32 model_id\n\
00217 \n\
00218 # the pose that it can be found in\n\
00219 geometry_msgs/PoseStamped pose\n\
00220 \n\
00221 # a measure of the confidence level in this detection result\n\
00222 float32 confidence\n\
00223 \n\
00224 # the name of the object detector that generated this detection result\n\
00225 string detector_name\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: geometry_msgs/PoseStamped\n\
00229 # A Pose with reference coordinate frame and timestamp\n\
00230 Header header\n\
00231 Pose pose\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: std_msgs/Header\n\
00235 # Standard metadata for higher-level stamped data types.\n\
00236 # This is generally used to communicate timestamped data \n\
00237 # in a particular coordinate frame.\n\
00238 # \n\
00239 # sequence ID: consecutively increasing ID \n\
00240 uint32 seq\n\
00241 #Two-integer timestamp that is expressed as:\n\
00242 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00243 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00244 # time-handling sugar is provided by the client library\n\
00245 time stamp\n\
00246 #Frame this data is associated with\n\
00247 # 0: no frame\n\
00248 # 1: global frame\n\
00249 string frame_id\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/Pose\n\
00253 # A representation of pose in free space, composed of postion and orientation. \n\
00254 Point position\n\
00255 Quaternion orientation\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Point\n\
00259 # This contains the position of a point in free space\n\
00260 float64 x\n\
00261 float64 y\n\
00262 float64 z\n\
00263 \n\
00264 ================================================================================\n\
00265 MSG: geometry_msgs/Quaternion\n\
00266 # This represents an orientation in free space in quaternion form.\n\
00267 \n\
00268 float64 x\n\
00269 float64 y\n\
00270 float64 z\n\
00271 float64 w\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/PointCloud\n\
00275 # This message holds a collection of 3d points, plus optional additional\n\
00276 # information about each point.\n\
00277 \n\
00278 # Time of sensor data acquisition, coordinate frame ID.\n\
00279 Header header\n\
00280 \n\
00281 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00282 # in the frame given in the header.\n\
00283 geometry_msgs/Point32[] points\n\
00284 \n\
00285 # Each channel should have the same number of elements as points array,\n\
00286 # and the data in each channel should correspond 1:1 with each point.\n\
00287 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00288 ChannelFloat32[] channels\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: geometry_msgs/Point32\n\
00292 # This contains the position of a point in free space(with 32 bits of precision).\n\
00293 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00294 # \n\
00295 # This recommendation is to promote interoperability.  \n\
00296 #\n\
00297 # This message is designed to take up less space when sending\n\
00298 # lots of points at once, as in the case of a PointCloud.  \n\
00299 \n\
00300 float32 x\n\
00301 float32 y\n\
00302 float32 z\n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/ChannelFloat32\n\
00305 # This message is used by the PointCloud message to hold optional data\n\
00306 # associated with each point in the cloud. The length of the values\n\
00307 # array should be the same as the length of the points array in the\n\
00308 # PointCloud, and each value should be associated with the corresponding\n\
00309 # point.\n\
00310 \n\
00311 # Channel names in existing practice include:\n\
00312 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00313 #              This is opposite to usual conventions but remains for\n\
00314 #              historical reasons. The newer PointCloud2 message has no\n\
00315 #              such problem.\n\
00316 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00317 #           (R,G,B) values packed into the least significant 24 bits,\n\
00318 #           in order.\n\
00319 #   \"intensity\" - laser or pixel intensity.\n\
00320 #   \"distance\"\n\
00321 \n\
00322 # The channel name should give semantics of the channel (e.g.\n\
00323 # \"intensity\" instead of \"value\").\n\
00324 string name\n\
00325 \n\
00326 # The values array should be 1-1 with the elements of the associated\n\
00327 # PointCloud.\n\
00328 float32[] values\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: object_manipulation_msgs/SceneRegion\n\
00332 # Point cloud\n\
00333 sensor_msgs/PointCloud2 cloud\n\
00334 \n\
00335 # Indices for the region of interest\n\
00336 int32[] mask\n\
00337 \n\
00338 # One of the corresponding 2D images, if applicable\n\
00339 sensor_msgs/Image image\n\
00340 \n\
00341 # The disparity image, if applicable\n\
00342 sensor_msgs/Image disparity_image\n\
00343 \n\
00344 # Camera info for the camera that took the image\n\
00345 sensor_msgs/CameraInfo cam_info\n\
00346 \n\
00347 # a 3D region of interest for grasp planning\n\
00348 geometry_msgs/PoseStamped  roi_box_pose\n\
00349 geometry_msgs/Vector3      roi_box_dims\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: sensor_msgs/PointCloud2\n\
00353 # This message holds a collection of N-dimensional points, which may\n\
00354 # contain additional information such as normals, intensity, etc. The\n\
00355 # point data is stored as a binary blob, its layout described by the\n\
00356 # contents of the \"fields\" array.\n\
00357 \n\
00358 # The point cloud data may be organized 2d (image-like) or 1d\n\
00359 # (unordered). Point clouds organized as 2d images may be produced by\n\
00360 # camera depth sensors such as stereo or time-of-flight.\n\
00361 \n\
00362 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00363 # points).\n\
00364 Header header\n\
00365 \n\
00366 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00367 # 1 and width is the length of the point cloud.\n\
00368 uint32 height\n\
00369 uint32 width\n\
00370 \n\
00371 # Describes the channels and their layout in the binary data blob.\n\
00372 PointField[] fields\n\
00373 \n\
00374 bool    is_bigendian # Is this data bigendian?\n\
00375 uint32  point_step   # Length of a point in bytes\n\
00376 uint32  row_step     # Length of a row in bytes\n\
00377 uint8[] data         # Actual point data, size is (row_step*height)\n\
00378 \n\
00379 bool is_dense        # True if there are no invalid points\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: sensor_msgs/PointField\n\
00383 # This message holds the description of one point entry in the\n\
00384 # PointCloud2 message format.\n\
00385 uint8 INT8    = 1\n\
00386 uint8 UINT8   = 2\n\
00387 uint8 INT16   = 3\n\
00388 uint8 UINT16  = 4\n\
00389 uint8 INT32   = 5\n\
00390 uint8 UINT32  = 6\n\
00391 uint8 FLOAT32 = 7\n\
00392 uint8 FLOAT64 = 8\n\
00393 \n\
00394 string name      # Name of field\n\
00395 uint32 offset    # Offset from start of point struct\n\
00396 uint8  datatype  # Datatype enumeration, see above\n\
00397 uint32 count     # How many elements in the field\n\
00398 \n\
00399 ================================================================================\n\
00400 MSG: sensor_msgs/Image\n\
00401 # This message contains an uncompressed image\n\
00402 # (0, 0) is at top-left corner of image\n\
00403 #\n\
00404 \n\
00405 Header header        # Header timestamp should be acquisition time of image\n\
00406                      # Header frame_id should be optical frame of camera\n\
00407                      # origin of frame should be optical center of cameara\n\
00408                      # +x should point to the right in the image\n\
00409                      # +y should point down in the image\n\
00410                      # +z should point into to plane of the image\n\
00411                      # If the frame_id here and the frame_id of the CameraInfo\n\
00412                      # message associated with the image conflict\n\
00413                      # the behavior is undefined\n\
00414 \n\
00415 uint32 height         # image height, that is, number of rows\n\
00416 uint32 width          # image width, that is, number of columns\n\
00417 \n\
00418 # The legal values for encoding are in file src/image_encodings.cpp\n\
00419 # If you want to standardize a new string format, join\n\
00420 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00421 \n\
00422 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00423                       # taken from the list of strings in src/image_encodings.cpp\n\
00424 \n\
00425 uint8 is_bigendian    # is this data bigendian?\n\
00426 uint32 step           # Full row length in bytes\n\
00427 uint8[] data          # actual matrix data, size is (step * rows)\n\
00428 \n\
00429 ================================================================================\n\
00430 MSG: sensor_msgs/CameraInfo\n\
00431 # This message defines meta information for a camera. It should be in a\n\
00432 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00433 # image topics named:\n\
00434 #\n\
00435 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00436 #   image            - monochrome, distorted\n\
00437 #   image_color      - color, distorted\n\
00438 #   image_rect       - monochrome, rectified\n\
00439 #   image_rect_color - color, rectified\n\
00440 #\n\
00441 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00442 # for producing the four processed image topics from image_raw and\n\
00443 # camera_info. The meaning of the camera parameters are described in\n\
00444 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00445 #\n\
00446 # The image_geometry package provides a user-friendly interface to\n\
00447 # common operations using this meta information. If you want to, e.g.,\n\
00448 # project a 3d point into image coordinates, we strongly recommend\n\
00449 # using image_geometry.\n\
00450 #\n\
00451 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00452 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00453 # indicates an uncalibrated camera.\n\
00454 \n\
00455 #######################################################################\n\
00456 #                     Image acquisition info                          #\n\
00457 #######################################################################\n\
00458 \n\
00459 # Time of image acquisition, camera coordinate frame ID\n\
00460 Header header    # Header timestamp should be acquisition time of image\n\
00461                  # Header frame_id should be optical frame of camera\n\
00462                  # origin of frame should be optical center of camera\n\
00463                  # +x should point to the right in the image\n\
00464                  # +y should point down in the image\n\
00465                  # +z should point into the plane of the image\n\
00466 \n\
00467 \n\
00468 #######################################################################\n\
00469 #                      Calibration Parameters                         #\n\
00470 #######################################################################\n\
00471 # These are fixed during camera calibration. Their values will be the #\n\
00472 # same in all messages until the camera is recalibrated. Note that    #\n\
00473 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00474 #                                                                     #\n\
00475 # The internal parameters can be used to warp a raw (distorted) image #\n\
00476 # to:                                                                 #\n\
00477 #   1. An undistorted image (requires D and K)                        #\n\
00478 #   2. A rectified image (requires D, K, R)                           #\n\
00479 # The projection matrix P projects 3D points into the rectified image.#\n\
00480 #######################################################################\n\
00481 \n\
00482 # The image dimensions with which the camera was calibrated. Normally\n\
00483 # this will be the full camera resolution in pixels.\n\
00484 uint32 height\n\
00485 uint32 width\n\
00486 \n\
00487 # The distortion model used. Supported models are listed in\n\
00488 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00489 # simple model of radial and tangential distortion - is sufficent.\n\
00490 string distortion_model\n\
00491 \n\
00492 # The distortion parameters, size depending on the distortion model.\n\
00493 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00494 float64[] D\n\
00495 \n\
00496 # Intrinsic camera matrix for the raw (distorted) images.\n\
00497 #     [fx  0 cx]\n\
00498 # K = [ 0 fy cy]\n\
00499 #     [ 0  0  1]\n\
00500 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00501 # coordinates using the focal lengths (fx, fy) and principal point\n\
00502 # (cx, cy).\n\
00503 float64[9]  K # 3x3 row-major matrix\n\
00504 \n\
00505 # Rectification matrix (stereo cameras only)\n\
00506 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00507 # stereo image plane so that epipolar lines in both stereo images are\n\
00508 # parallel.\n\
00509 float64[9]  R # 3x3 row-major matrix\n\
00510 \n\
00511 # Projection/camera matrix\n\
00512 #     [fx'  0  cx' Tx]\n\
00513 # P = [ 0  fy' cy' Ty]\n\
00514 #     [ 0   0   1   0]\n\
00515 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00516 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00517 #  is the normal camera intrinsic matrix for the rectified image.\n\
00518 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00519 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00520 #  (cx', cy') - these may differ from the values in K.\n\
00521 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00522 #  also have R = the identity and P[1:3,1:3] = K.\n\
00523 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00524 #  position of the optical center of the second camera in the first\n\
00525 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00526 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00527 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00528 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00529 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00530 #  the rectified image is given by:\n\
00531 #  [u v w]' = P * [X Y Z 1]'\n\
00532 #         x = u / w\n\
00533 #         y = v / w\n\
00534 #  This holds for both images of a stereo pair.\n\
00535 float64[12] P # 3x4 row-major matrix\n\
00536 \n\
00537 \n\
00538 #######################################################################\n\
00539 #                      Operational Parameters                         #\n\
00540 #######################################################################\n\
00541 # These define the image region actually captured by the camera       #\n\
00542 # driver. Although they affect the geometry of the output image, they #\n\
00543 # may be changed freely without recalibrating the camera.             #\n\
00544 #######################################################################\n\
00545 \n\
00546 # Binning refers here to any camera setting which combines rectangular\n\
00547 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00548 #  resolution of the output image to\n\
00549 #  (width / binning_x) x (height / binning_y).\n\
00550 # The default values binning_x = binning_y = 0 is considered the same\n\
00551 #  as binning_x = binning_y = 1 (no subsampling).\n\
00552 uint32 binning_x\n\
00553 uint32 binning_y\n\
00554 \n\
00555 # Region of interest (subwindow of full camera resolution), given in\n\
00556 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00557 #  always denotes the same window of pixels on the camera sensor,\n\
00558 #  regardless of binning settings.\n\
00559 # The default setting of roi (all values 0) is considered the same as\n\
00560 #  full resolution (roi.width = width, roi.height = height).\n\
00561 RegionOfInterest roi\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: sensor_msgs/RegionOfInterest\n\
00565 # This message is used to specify a region of interest within an image.\n\
00566 #\n\
00567 # When used to specify the ROI setting of the camera when the image was\n\
00568 # taken, the height and width fields should either match the height and\n\
00569 # width fields for the associated image; or height = width = 0\n\
00570 # indicates that the full resolution image was captured.\n\
00571 \n\
00572 uint32 x_offset  # Leftmost pixel of the ROI\n\
00573                  # (0 if the ROI includes the left edge of the image)\n\
00574 uint32 y_offset  # Topmost pixel of the ROI\n\
00575                  # (0 if the ROI includes the top edge of the image)\n\
00576 uint32 height    # Height of ROI\n\
00577 uint32 width     # Width of ROI\n\
00578 \n\
00579 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00580 # ROI in this message. Typically this should be False if the full image\n\
00581 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00582 # used).\n\
00583 bool do_rectify\n\
00584 \n\
00585 ================================================================================\n\
00586 MSG: geometry_msgs/Vector3\n\
00587 # This represents a vector in free space. \n\
00588 \n\
00589 float64 x\n\
00590 float64 y\n\
00591 float64 z\n\
00592 ";
00593   }
00594 
00595   static const char* value(const  ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 
00596 };
00597 
00598 } // namespace message_traits
00599 } // namespace ros
00600 
00601 
00602 namespace ros
00603 {
00604 namespace message_traits
00605 {
00606 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > : public TrueType {};
00607 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator>  const> : public TrueType {};
00608 template<class ContainerAllocator>
00609 struct MD5Sum< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00610   static const char* value() 
00611   {
00612     return "0382b328d7a72bb56384d8d5a71b04a1";
00613   }
00614 
00615   static const char* value(const  ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 
00616   static const uint64_t static_value1 = 0x0382b328d7a72bb5ULL;
00617   static const uint64_t static_value2 = 0x6384d8d5a71b04a1ULL;
00618 };
00619 
00620 template<class ContainerAllocator>
00621 struct DataType< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00622   static const char* value() 
00623   {
00624     return "object_manipulation_msgs/PlacePlanningResponse";
00625   }
00626 
00627   static const char* value(const  ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 
00628 };
00629 
00630 template<class ContainerAllocator>
00631 struct Definition< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00632   static const char* value() 
00633   {
00634     return "\n\
00635 \n\
00636 geometry_msgs/PoseStamped[] place_locations\n\
00637 \n\
00638 \n\
00639 GraspPlanningErrorCode error_code\n\
00640 \n\
00641 \n\
00642 ================================================================================\n\
00643 MSG: geometry_msgs/PoseStamped\n\
00644 # A Pose with reference coordinate frame and timestamp\n\
00645 Header header\n\
00646 Pose pose\n\
00647 \n\
00648 ================================================================================\n\
00649 MSG: std_msgs/Header\n\
00650 # Standard metadata for higher-level stamped data types.\n\
00651 # This is generally used to communicate timestamped data \n\
00652 # in a particular coordinate frame.\n\
00653 # \n\
00654 # sequence ID: consecutively increasing ID \n\
00655 uint32 seq\n\
00656 #Two-integer timestamp that is expressed as:\n\
00657 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00658 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00659 # time-handling sugar is provided by the client library\n\
00660 time stamp\n\
00661 #Frame this data is associated with\n\
00662 # 0: no frame\n\
00663 # 1: global frame\n\
00664 string frame_id\n\
00665 \n\
00666 ================================================================================\n\
00667 MSG: geometry_msgs/Pose\n\
00668 # A representation of pose in free space, composed of postion and orientation. \n\
00669 Point position\n\
00670 Quaternion orientation\n\
00671 \n\
00672 ================================================================================\n\
00673 MSG: geometry_msgs/Point\n\
00674 # This contains the position of a point in free space\n\
00675 float64 x\n\
00676 float64 y\n\
00677 float64 z\n\
00678 \n\
00679 ================================================================================\n\
00680 MSG: geometry_msgs/Quaternion\n\
00681 # This represents an orientation in free space in quaternion form.\n\
00682 \n\
00683 float64 x\n\
00684 float64 y\n\
00685 float64 z\n\
00686 float64 w\n\
00687 \n\
00688 ================================================================================\n\
00689 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
00690 # Error codes for grasp and place planning\n\
00691 \n\
00692 # plan completed as expected\n\
00693 int32 SUCCESS = 0\n\
00694 \n\
00695 # tf error encountered while transforming\n\
00696 int32 TF_ERROR = 1 \n\
00697 \n\
00698 # some other error\n\
00699 int32 OTHER_ERROR = 2\n\
00700 \n\
00701 # the actual value of this error code\n\
00702 int32 value\n\
00703 ";
00704   }
00705 
00706   static const char* value(const  ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 
00707 };
00708 
00709 } // namespace message_traits
00710 } // namespace ros
00711 
00712 namespace ros
00713 {
00714 namespace serialization
00715 {
00716 
00717 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> >
00718 {
00719   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00720   {
00721     stream.next(m.arm_name);
00722     stream.next(m.target);
00723     stream.next(m.default_orientation);
00724     stream.next(m.grasp_pose);
00725     stream.next(m.collision_object_name);
00726     stream.next(m.collision_support_surface_name);
00727   }
00728 
00729   ROS_DECLARE_ALLINONE_SERIALIZER;
00730 }; // struct PlacePlanningRequest_
00731 } // namespace serialization
00732 } // namespace ros
00733 
00734 
00735 namespace ros
00736 {
00737 namespace serialization
00738 {
00739 
00740 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> >
00741 {
00742   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00743   {
00744     stream.next(m.place_locations);
00745     stream.next(m.error_code);
00746   }
00747 
00748   ROS_DECLARE_ALLINONE_SERIALIZER;
00749 }; // struct PlacePlanningResponse_
00750 } // namespace serialization
00751 } // namespace ros
00752 
00753 namespace ros
00754 {
00755 namespace service_traits
00756 {
00757 template<>
00758 struct MD5Sum<object_manipulation_msgs::PlacePlanning> {
00759   static const char* value() 
00760   {
00761     return "0a3a115eac63ffa84432505330a8211c";
00762   }
00763 
00764   static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); } 
00765 };
00766 
00767 template<>
00768 struct DataType<object_manipulation_msgs::PlacePlanning> {
00769   static const char* value() 
00770   {
00771     return "object_manipulation_msgs/PlacePlanning";
00772   }
00773 
00774   static const char* value(const object_manipulation_msgs::PlacePlanning&) { return value(); } 
00775 };
00776 
00777 template<class ContainerAllocator>
00778 struct MD5Sum<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00779   static const char* value() 
00780   {
00781     return "0a3a115eac63ffa84432505330a8211c";
00782   }
00783 
00784   static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 
00785 };
00786 
00787 template<class ContainerAllocator>
00788 struct DataType<object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> > {
00789   static const char* value() 
00790   {
00791     return "object_manipulation_msgs/PlacePlanning";
00792   }
00793 
00794   static const char* value(const object_manipulation_msgs::PlacePlanningRequest_<ContainerAllocator> &) { return value(); } 
00795 };
00796 
00797 template<class ContainerAllocator>
00798 struct MD5Sum<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00799   static const char* value() 
00800   {
00801     return "0a3a115eac63ffa84432505330a8211c";
00802   }
00803 
00804   static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 
00805 };
00806 
00807 template<class ContainerAllocator>
00808 struct DataType<object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> > {
00809   static const char* value() 
00810   {
00811     return "object_manipulation_msgs/PlacePlanning";
00812   }
00813 
00814   static const char* value(const object_manipulation_msgs::PlacePlanningResponse_<ContainerAllocator> &) { return value(); } 
00815 };
00816 
00817 } // namespace service_traits
00818 } // namespace ros
00819 
00820 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_PLACEPLANNING_H
00821 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12