tmta.cpp
Go to the documentation of this file.
00001 
00002 
00003 
00006 
00007 
00008 //#define WANT_STREAM
00009 
00010 
00011 #include "include.h"
00012 
00013 #include "newmatap.h"
00014 
00015 #include "tmt.h"
00016 
00017 #ifdef use_namespace
00018 using namespace NEWMAT;
00019 #endif
00020 
00021 
00022 /**************************** test program ******************************/
00023 
00024 
00025 static void process(const GeneralMatrix& A,
00026    const ColumnVector& X1, const ColumnVector& X2)
00027 {
00028       Matrix B = A;
00029       LinearEquationSolver L(A);
00030       Matrix Y(4,2);
00031       Y.Column(1) << L.i() * X1; Y.Column(2) << L.i() * X2;
00032       Matrix Z(4,2); Z.Column(1) << X1; Z.Column(2) << X2;
00033       Z = B * Y - Z; Clean(Z,0.00000001); Print(Z);
00034 }
00035 
00036 
00037 
00038 void trymata()
00039 {
00040 //   cout << "\nTenth test of Matrix package\n";
00041    Tracer et("Tenth test of Matrix package");
00042    Tracer::PrintTrace();
00043    int i; int j;
00044    UpperTriangularMatrix U(8);
00045    for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
00046    Matrix X(8,6);
00047    for (i=1;i<=8;i++) for (j=1;j<=6;j++) X(i,j)=i*j+1.0;
00048    Matrix Y = U.i()*X; Matrix MU=U;
00049    Y=Y-MU.i()*X; Clean(Y,0.00000001); Print(Y);
00050    Y = U.t().i()*X; Y=Y-MU.t().i()*X; Clean(Y,0.00000001); Print(Y);
00051    UpperTriangularMatrix UX(8);
00052    for (i=1;i<=8;i++) for (j=i;j<=8;j++) UX(i,j)=i+j+1;
00053    UX(4,4)=0; UX(4,5)=0;
00054    UpperTriangularMatrix UY = U.i() * UX;
00055    { X=UX; MU=U; Y=UY-MU.i()*X; Clean(Y,0.000000001); Print(Y); }
00056    LowerTriangularMatrix LY = U.t().i() * UX.t();
00057    { Y=LY-MU.i().t()*X.t(); Clean(Y,0.000000001); Print(Y); }
00058    DiagonalMatrix D(8); for (i=1;i<=8;i++) D(i,i)=i+1;
00059    { X=D.i()*MU; }
00060    { UY=U; UY=D.i()*UY; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
00061    { UY=D.i()*U; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
00062 //   X=MU.t();
00063 //   LY=D.i()*U.t(); Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
00064 //   LowerTriangularMatrix L=U.t();
00065 //   LY=D.i()*L; Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
00066    U.ReSize(8);
00067    for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
00068    MU = U;
00069    MU = U.i() - MU.i(); Clean(MU,0.00000001); Print(MU);
00070    MU = U.t().i() - U.i().t(); Clean(MU,0.00000001); Print(MU);
00071 
00072    // test LINEQ
00073    {
00074       ColumnVector X1(4), X2(4);
00075       X1(1)=1; X1(2)=2; X1(3)=3; X1(4)=4;
00076       X2(1)=1; X2(2)=10; X2(3)=100; X2(4)=1000;
00077 
00078 
00079       Matrix A(4,4);
00080       A(1,1)=1; A(1,2)=3; A(1,3)=0; A(1,4)=0;
00081       A(2,1)=3; A(2,2)=2; A(2,3)=5; A(2,4)=0;
00082       A(3,1)=0; A(3,2)=5; A(3,3)=4; A(3,4)=1;
00083       A(4,1)=0; A(4,2)=0; A(4,3)=1; A(4,4)=3;
00084       process(A,X1,X2);
00085 
00086       BandMatrix B(4,1,1);  B.Inject(A);
00087       process(B,X1,X2);
00088 
00089       UpperTriangularMatrix U(4);
00090       U(1,1)=1; U(1,2)=2; U(1,3)=3; U(1,4)=4;
00091                       U(2,2)=8; U(2,3)=7; U(2,4)=6;
00092                           U(3,3)=2; U(3,4)=7;
00093                                     U(4,4)=1;
00094       process(U,X1,X2);
00095 
00096       // check rowwise load
00097       UpperTriangularMatrix U1(4);
00098       U1.Row(1) << 1 << 2 << 3 << 4;
00099       U1.Row(2)      << 8 << 7 << 6;
00100       U1.Row(3)           << 2 << 7;
00101       U1.Row(4)                << 1;
00102 
00103       U1 -= U;
00104 
00105       Print(U1);
00106 
00107       LowerTriangularMatrix L = U.t();
00108       process(L,X1,X2);
00109    }
00110 
00111    // test inversion of poorly conditioned matrix
00112    // a user complained this didn't work under OS9
00113    {
00114       Matrix M(4,4);
00115 
00116       M <<  8.613057e+00 <<  8.693985e+00 << -2.322050e-01  << 0.000000e+00
00117         <<  8.693985e+00 <<  8.793868e+00 << -2.346310e-01  << 0.000000e+00
00118         << -2.322050e-01 << -2.346310e-01 <<  6.264000e-03  << 0.000000e+00
00119         <<  0.000000e+00 <<  0.000000e+00 <<  0.000000e+00  << 3.282806e+03 ;
00120       Matrix MI = M.i();
00121       DiagonalMatrix I(4); I = 1;
00122       Matrix Diff = MI *  M - I;
00123       Clean(Diff,0.00000001); Print(Diff);
00124       // Alternatively do Cholesky
00125       SymmetricMatrix SM; SM << M;
00126       LowerTriangularMatrix LT = Cholesky(SM).i();
00127       MI = LT.t() * LT; Diff = MI *  M - I;
00128       Clean(Diff,0.00000001); Print(Diff);
00129    }
00130 
00131 //   cout << "\nEnd of tenth test\n";
00132 }
00133 
00134 
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Defines


kni
Author(s): Neuronics AG (see AUTHORS.txt); ROS wrapper by Martin Günther
autogenerated on Tue May 28 2013 14:52:54