$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-tu-darmstadt-ros-pkg/doc_stacks/2013-03-05_12-22-58.304137/hector_worldmodel/worldmodel_msgs/msg/ImagePercept.msg */ 00002 #ifndef WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H 00003 #define WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "sensor_msgs/CameraInfo.h" 00019 #include "worldmodel_msgs/PerceptInfo.h" 00020 00021 namespace worldmodel_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct ImagePercept_ { 00025 typedef ImagePercept_<ContainerAllocator> Type; 00026 00027 ImagePercept_() 00028 : header() 00029 , camera_info() 00030 , x(0.0) 00031 , y(0.0) 00032 , width(0.0) 00033 , height(0.0) 00034 , distance(0.0) 00035 , info() 00036 { 00037 } 00038 00039 ImagePercept_(const ContainerAllocator& _alloc) 00040 : header(_alloc) 00041 , camera_info(_alloc) 00042 , x(0.0) 00043 , y(0.0) 00044 , width(0.0) 00045 , height(0.0) 00046 , distance(0.0) 00047 , info(_alloc) 00048 { 00049 } 00050 00051 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00052 ::std_msgs::Header_<ContainerAllocator> header; 00053 00054 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00055 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00056 00057 typedef float _x_type; 00058 float x; 00059 00060 typedef float _y_type; 00061 float y; 00062 00063 typedef float _width_type; 00064 float width; 00065 00066 typedef float _height_type; 00067 float height; 00068 00069 typedef float _distance_type; 00070 float distance; 00071 00072 typedef ::worldmodel_msgs::PerceptInfo_<ContainerAllocator> _info_type; 00073 ::worldmodel_msgs::PerceptInfo_<ContainerAllocator> info; 00074 00075 00076 private: 00077 static const char* __s_getDataType_() { return "worldmodel_msgs/ImagePercept"; } 00078 public: 00079 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00080 00081 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00082 00083 private: 00084 static const char* __s_getMD5Sum_() { return "cfe1ba9ccbb3e43950b420f7336a3c6c"; } 00085 public: 00086 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00087 00088 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00089 00090 private: 00091 static const char* __s_getMessageDefinition_() { return "# worldmodel_msgs/ImagePercept\n\ 00092 # This message represents an observation of an object in a single image.\n\ 00093 \n\ 00094 # The header should equal the header of the corresponding image.\n\ 00095 Header header\n\ 00096 \n\ 00097 # The camera info which is needed to project from image coordinates to world coordinates\n\ 00098 sensor_msgs/CameraInfo camera_info\n\ 00099 \n\ 00100 # Center coordinates of the percept in image coordinates\n\ 00101 # x: axis points to the right in the image\n\ 00102 # y: axis points downward in the image\n\ 00103 float32 x\n\ 00104 float32 y\n\ 00105 \n\ 00106 # Normalized size of the percept in image coordinates (or 0.0)\n\ 00107 float32 width\n\ 00108 float32 height\n\ 00109 \n\ 00110 # Distance estimate (slope distance) (or 0.0)\n\ 00111 float32 distance\n\ 00112 \n\ 00113 # Additional information about the percept\n\ 00114 worldmodel_msgs/PerceptInfo info\n\ 00115 \n\ 00116 ================================================================================\n\ 00117 MSG: std_msgs/Header\n\ 00118 # Standard metadata for higher-level stamped data types.\n\ 00119 # This is generally used to communicate timestamped data \n\ 00120 # in a particular coordinate frame.\n\ 00121 # \n\ 00122 # sequence ID: consecutively increasing ID \n\ 00123 uint32 seq\n\ 00124 #Two-integer timestamp that is expressed as:\n\ 00125 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00126 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00127 # time-handling sugar is provided by the client library\n\ 00128 time stamp\n\ 00129 #Frame this data is associated with\n\ 00130 # 0: no frame\n\ 00131 # 1: global frame\n\ 00132 string frame_id\n\ 00133 \n\ 00134 ================================================================================\n\ 00135 MSG: sensor_msgs/CameraInfo\n\ 00136 # This message defines meta information for a camera. It should be in a\n\ 00137 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00138 # image topics named:\n\ 00139 #\n\ 00140 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00141 # image - monochrome, distorted\n\ 00142 # image_color - color, distorted\n\ 00143 # image_rect - monochrome, rectified\n\ 00144 # image_rect_color - color, rectified\n\ 00145 #\n\ 00146 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00147 # for producing the four processed image topics from image_raw and\n\ 00148 # camera_info. The meaning of the camera parameters are described in\n\ 00149 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00150 #\n\ 00151 # The image_geometry package provides a user-friendly interface to\n\ 00152 # common operations using this meta information. If you want to, e.g.,\n\ 00153 # project a 3d point into image coordinates, we strongly recommend\n\ 00154 # using image_geometry.\n\ 00155 #\n\ 00156 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00157 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00158 # indicates an uncalibrated camera.\n\ 00159 \n\ 00160 #######################################################################\n\ 00161 # Image acquisition info #\n\ 00162 #######################################################################\n\ 00163 \n\ 00164 # Time of image acquisition, camera coordinate frame ID\n\ 00165 Header header # Header timestamp should be acquisition time of image\n\ 00166 # Header frame_id should be optical frame of camera\n\ 00167 # origin of frame should be optical center of camera\n\ 00168 # +x should point to the right in the image\n\ 00169 # +y should point down in the image\n\ 00170 # +z should point into the plane of the image\n\ 00171 \n\ 00172 \n\ 00173 #######################################################################\n\ 00174 # Calibration Parameters #\n\ 00175 #######################################################################\n\ 00176 # These are fixed during camera calibration. Their values will be the #\n\ 00177 # same in all messages until the camera is recalibrated. Note that #\n\ 00178 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00179 # #\n\ 00180 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00181 # to: #\n\ 00182 # 1. An undistorted image (requires D and K) #\n\ 00183 # 2. A rectified image (requires D, K, R) #\n\ 00184 # The projection matrix P projects 3D points into the rectified image.#\n\ 00185 #######################################################################\n\ 00186 \n\ 00187 # The image dimensions with which the camera was calibrated. Normally\n\ 00188 # this will be the full camera resolution in pixels.\n\ 00189 uint32 height\n\ 00190 uint32 width\n\ 00191 \n\ 00192 # The distortion model used. Supported models are listed in\n\ 00193 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00194 # simple model of radial and tangential distortion - is sufficent.\n\ 00195 string distortion_model\n\ 00196 \n\ 00197 # The distortion parameters, size depending on the distortion model.\n\ 00198 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00199 float64[] D\n\ 00200 \n\ 00201 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00202 # [fx 0 cx]\n\ 00203 # K = [ 0 fy cy]\n\ 00204 # [ 0 0 1]\n\ 00205 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00206 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00207 # (cx, cy).\n\ 00208 float64[9] K # 3x3 row-major matrix\n\ 00209 \n\ 00210 # Rectification matrix (stereo cameras only)\n\ 00211 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00212 # stereo image plane so that epipolar lines in both stereo images are\n\ 00213 # parallel.\n\ 00214 float64[9] R # 3x3 row-major matrix\n\ 00215 \n\ 00216 # Projection/camera matrix\n\ 00217 # [fx' 0 cx' Tx]\n\ 00218 # P = [ 0 fy' cy' Ty]\n\ 00219 # [ 0 0 1 0]\n\ 00220 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00221 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00222 # is the normal camera intrinsic matrix for the rectified image.\n\ 00223 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00224 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00225 # (cx', cy') - these may differ from the values in K.\n\ 00226 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00227 # also have R = the identity and P[1:3,1:3] = K.\n\ 00228 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00229 # position of the optical center of the second camera in the first\n\ 00230 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00231 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00232 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00233 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00234 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00235 # the rectified image is given by:\n\ 00236 # [u v w]' = P * [X Y Z 1]'\n\ 00237 # x = u / w\n\ 00238 # y = v / w\n\ 00239 # This holds for both images of a stereo pair.\n\ 00240 float64[12] P # 3x4 row-major matrix\n\ 00241 \n\ 00242 \n\ 00243 #######################################################################\n\ 00244 # Operational Parameters #\n\ 00245 #######################################################################\n\ 00246 # These define the image region actually captured by the camera #\n\ 00247 # driver. Although they affect the geometry of the output image, they #\n\ 00248 # may be changed freely without recalibrating the camera. #\n\ 00249 #######################################################################\n\ 00250 \n\ 00251 # Binning refers here to any camera setting which combines rectangular\n\ 00252 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00253 # resolution of the output image to\n\ 00254 # (width / binning_x) x (height / binning_y).\n\ 00255 # The default values binning_x = binning_y = 0 is considered the same\n\ 00256 # as binning_x = binning_y = 1 (no subsampling).\n\ 00257 uint32 binning_x\n\ 00258 uint32 binning_y\n\ 00259 \n\ 00260 # Region of interest (subwindow of full camera resolution), given in\n\ 00261 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00262 # always denotes the same window of pixels on the camera sensor,\n\ 00263 # regardless of binning settings.\n\ 00264 # The default setting of roi (all values 0) is considered the same as\n\ 00265 # full resolution (roi.width = width, roi.height = height).\n\ 00266 RegionOfInterest roi\n\ 00267 \n\ 00268 ================================================================================\n\ 00269 MSG: sensor_msgs/RegionOfInterest\n\ 00270 # This message is used to specify a region of interest within an image.\n\ 00271 #\n\ 00272 # When used to specify the ROI setting of the camera when the image was\n\ 00273 # taken, the height and width fields should either match the height and\n\ 00274 # width fields for the associated image; or height = width = 0\n\ 00275 # indicates that the full resolution image was captured.\n\ 00276 \n\ 00277 uint32 x_offset # Leftmost pixel of the ROI\n\ 00278 # (0 if the ROI includes the left edge of the image)\n\ 00279 uint32 y_offset # Topmost pixel of the ROI\n\ 00280 # (0 if the ROI includes the top edge of the image)\n\ 00281 uint32 height # Height of ROI\n\ 00282 uint32 width # Width of ROI\n\ 00283 \n\ 00284 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00285 # ROI in this message. Typically this should be False if the full image\n\ 00286 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00287 # used).\n\ 00288 bool do_rectify\n\ 00289 \n\ 00290 ================================================================================\n\ 00291 MSG: worldmodel_msgs/PerceptInfo\n\ 00292 # This message contains information about the estimated class and object identity \n\ 00293 \n\ 00294 # A string identifying the object's class (all objects of a class look the same)\n\ 00295 string class_id\n\ 00296 \n\ 00297 # The class association support of the observation\n\ 00298 # The support is the log odd likelihood ratio given by log(p(y/observation y belongs to object of class class_id) / p(y/observation y is a false positive))\n\ 00299 float32 class_support\n\ 00300 \n\ 00301 # A string identifying a specific object\n\ 00302 string object_id\n\ 00303 \n\ 00304 # The object association support of the observation\n\ 00305 # The support is the log odd likelihood ratio given by log(p(observation belongs to object object_id) / p(observation is false positive or belongs to another object))\n\ 00306 float32 object_support\n\ 00307 \n\ 00308 # A string that contains the name or a description of the specific object\n\ 00309 string name\n\ 00310 \n\ 00311 "; } 00312 public: 00313 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00314 00315 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00316 00317 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00318 { 00319 ros::serialization::OStream stream(write_ptr, 1000000000); 00320 ros::serialization::serialize(stream, header); 00321 ros::serialization::serialize(stream, camera_info); 00322 ros::serialization::serialize(stream, x); 00323 ros::serialization::serialize(stream, y); 00324 ros::serialization::serialize(stream, width); 00325 ros::serialization::serialize(stream, height); 00326 ros::serialization::serialize(stream, distance); 00327 ros::serialization::serialize(stream, info); 00328 return stream.getData(); 00329 } 00330 00331 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00332 { 00333 ros::serialization::IStream stream(read_ptr, 1000000000); 00334 ros::serialization::deserialize(stream, header); 00335 ros::serialization::deserialize(stream, camera_info); 00336 ros::serialization::deserialize(stream, x); 00337 ros::serialization::deserialize(stream, y); 00338 ros::serialization::deserialize(stream, width); 00339 ros::serialization::deserialize(stream, height); 00340 ros::serialization::deserialize(stream, distance); 00341 ros::serialization::deserialize(stream, info); 00342 return stream.getData(); 00343 } 00344 00345 ROS_DEPRECATED virtual uint32_t serializationLength() const 00346 { 00347 uint32_t size = 0; 00348 size += ros::serialization::serializationLength(header); 00349 size += ros::serialization::serializationLength(camera_info); 00350 size += ros::serialization::serializationLength(x); 00351 size += ros::serialization::serializationLength(y); 00352 size += ros::serialization::serializationLength(width); 00353 size += ros::serialization::serializationLength(height); 00354 size += ros::serialization::serializationLength(distance); 00355 size += ros::serialization::serializationLength(info); 00356 return size; 00357 } 00358 00359 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > Ptr; 00360 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> const> ConstPtr; 00361 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00362 }; // struct ImagePercept 00363 typedef ::worldmodel_msgs::ImagePercept_<std::allocator<void> > ImagePercept; 00364 00365 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept> ImagePerceptPtr; 00366 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept const> ImagePerceptConstPtr; 00367 00368 00369 template<typename ContainerAllocator> 00370 std::ostream& operator<<(std::ostream& s, const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> & v) 00371 { 00372 ros::message_operations::Printer< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> >::stream(s, "", v); 00373 return s;} 00374 00375 } // namespace worldmodel_msgs 00376 00377 namespace ros 00378 { 00379 namespace message_traits 00380 { 00381 template<class ContainerAllocator> struct IsMessage< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {}; 00382 template<class ContainerAllocator> struct IsMessage< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> const> : public TrueType {}; 00383 template<class ContainerAllocator> 00384 struct MD5Sum< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > { 00385 static const char* value() 00386 { 00387 return "cfe1ba9ccbb3e43950b420f7336a3c6c"; 00388 } 00389 00390 static const char* value(const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); } 00391 static const uint64_t static_value1 = 0xcfe1ba9ccbb3e439ULL; 00392 static const uint64_t static_value2 = 0x50b420f7336a3c6cULL; 00393 }; 00394 00395 template<class ContainerAllocator> 00396 struct DataType< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > { 00397 static const char* value() 00398 { 00399 return "worldmodel_msgs/ImagePercept"; 00400 } 00401 00402 static const char* value(const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); } 00403 }; 00404 00405 template<class ContainerAllocator> 00406 struct Definition< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > { 00407 static const char* value() 00408 { 00409 return "# worldmodel_msgs/ImagePercept\n\ 00410 # This message represents an observation of an object in a single image.\n\ 00411 \n\ 00412 # The header should equal the header of the corresponding image.\n\ 00413 Header header\n\ 00414 \n\ 00415 # The camera info which is needed to project from image coordinates to world coordinates\n\ 00416 sensor_msgs/CameraInfo camera_info\n\ 00417 \n\ 00418 # Center coordinates of the percept in image coordinates\n\ 00419 # x: axis points to the right in the image\n\ 00420 # y: axis points downward in the image\n\ 00421 float32 x\n\ 00422 float32 y\n\ 00423 \n\ 00424 # Normalized size of the percept in image coordinates (or 0.0)\n\ 00425 float32 width\n\ 00426 float32 height\n\ 00427 \n\ 00428 # Distance estimate (slope distance) (or 0.0)\n\ 00429 float32 distance\n\ 00430 \n\ 00431 # Additional information about the percept\n\ 00432 worldmodel_msgs/PerceptInfo info\n\ 00433 \n\ 00434 ================================================================================\n\ 00435 MSG: std_msgs/Header\n\ 00436 # Standard metadata for higher-level stamped data types.\n\ 00437 # This is generally used to communicate timestamped data \n\ 00438 # in a particular coordinate frame.\n\ 00439 # \n\ 00440 # sequence ID: consecutively increasing ID \n\ 00441 uint32 seq\n\ 00442 #Two-integer timestamp that is expressed as:\n\ 00443 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00444 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00445 # time-handling sugar is provided by the client library\n\ 00446 time stamp\n\ 00447 #Frame this data is associated with\n\ 00448 # 0: no frame\n\ 00449 # 1: global frame\n\ 00450 string frame_id\n\ 00451 \n\ 00452 ================================================================================\n\ 00453 MSG: sensor_msgs/CameraInfo\n\ 00454 # This message defines meta information for a camera. It should be in a\n\ 00455 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00456 # image topics named:\n\ 00457 #\n\ 00458 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00459 # image - monochrome, distorted\n\ 00460 # image_color - color, distorted\n\ 00461 # image_rect - monochrome, rectified\n\ 00462 # image_rect_color - color, rectified\n\ 00463 #\n\ 00464 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00465 # for producing the four processed image topics from image_raw and\n\ 00466 # camera_info. The meaning of the camera parameters are described in\n\ 00467 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00468 #\n\ 00469 # The image_geometry package provides a user-friendly interface to\n\ 00470 # common operations using this meta information. If you want to, e.g.,\n\ 00471 # project a 3d point into image coordinates, we strongly recommend\n\ 00472 # using image_geometry.\n\ 00473 #\n\ 00474 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00475 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00476 # indicates an uncalibrated camera.\n\ 00477 \n\ 00478 #######################################################################\n\ 00479 # Image acquisition info #\n\ 00480 #######################################################################\n\ 00481 \n\ 00482 # Time of image acquisition, camera coordinate frame ID\n\ 00483 Header header # Header timestamp should be acquisition time of image\n\ 00484 # Header frame_id should be optical frame of camera\n\ 00485 # origin of frame should be optical center of camera\n\ 00486 # +x should point to the right in the image\n\ 00487 # +y should point down in the image\n\ 00488 # +z should point into the plane of the image\n\ 00489 \n\ 00490 \n\ 00491 #######################################################################\n\ 00492 # Calibration Parameters #\n\ 00493 #######################################################################\n\ 00494 # These are fixed during camera calibration. Their values will be the #\n\ 00495 # same in all messages until the camera is recalibrated. Note that #\n\ 00496 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00497 # #\n\ 00498 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00499 # to: #\n\ 00500 # 1. An undistorted image (requires D and K) #\n\ 00501 # 2. A rectified image (requires D, K, R) #\n\ 00502 # The projection matrix P projects 3D points into the rectified image.#\n\ 00503 #######################################################################\n\ 00504 \n\ 00505 # The image dimensions with which the camera was calibrated. Normally\n\ 00506 # this will be the full camera resolution in pixels.\n\ 00507 uint32 height\n\ 00508 uint32 width\n\ 00509 \n\ 00510 # The distortion model used. Supported models are listed in\n\ 00511 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00512 # simple model of radial and tangential distortion - is sufficent.\n\ 00513 string distortion_model\n\ 00514 \n\ 00515 # The distortion parameters, size depending on the distortion model.\n\ 00516 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00517 float64[] D\n\ 00518 \n\ 00519 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00520 # [fx 0 cx]\n\ 00521 # K = [ 0 fy cy]\n\ 00522 # [ 0 0 1]\n\ 00523 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00524 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00525 # (cx, cy).\n\ 00526 float64[9] K # 3x3 row-major matrix\n\ 00527 \n\ 00528 # Rectification matrix (stereo cameras only)\n\ 00529 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00530 # stereo image plane so that epipolar lines in both stereo images are\n\ 00531 # parallel.\n\ 00532 float64[9] R # 3x3 row-major matrix\n\ 00533 \n\ 00534 # Projection/camera matrix\n\ 00535 # [fx' 0 cx' Tx]\n\ 00536 # P = [ 0 fy' cy' Ty]\n\ 00537 # [ 0 0 1 0]\n\ 00538 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00539 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00540 # is the normal camera intrinsic matrix for the rectified image.\n\ 00541 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00542 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00543 # (cx', cy') - these may differ from the values in K.\n\ 00544 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00545 # also have R = the identity and P[1:3,1:3] = K.\n\ 00546 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00547 # position of the optical center of the second camera in the first\n\ 00548 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00549 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00550 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00551 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00552 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00553 # the rectified image is given by:\n\ 00554 # [u v w]' = P * [X Y Z 1]'\n\ 00555 # x = u / w\n\ 00556 # y = v / w\n\ 00557 # This holds for both images of a stereo pair.\n\ 00558 float64[12] P # 3x4 row-major matrix\n\ 00559 \n\ 00560 \n\ 00561 #######################################################################\n\ 00562 # Operational Parameters #\n\ 00563 #######################################################################\n\ 00564 # These define the image region actually captured by the camera #\n\ 00565 # driver. Although they affect the geometry of the output image, they #\n\ 00566 # may be changed freely without recalibrating the camera. #\n\ 00567 #######################################################################\n\ 00568 \n\ 00569 # Binning refers here to any camera setting which combines rectangular\n\ 00570 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00571 # resolution of the output image to\n\ 00572 # (width / binning_x) x (height / binning_y).\n\ 00573 # The default values binning_x = binning_y = 0 is considered the same\n\ 00574 # as binning_x = binning_y = 1 (no subsampling).\n\ 00575 uint32 binning_x\n\ 00576 uint32 binning_y\n\ 00577 \n\ 00578 # Region of interest (subwindow of full camera resolution), given in\n\ 00579 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00580 # always denotes the same window of pixels on the camera sensor,\n\ 00581 # regardless of binning settings.\n\ 00582 # The default setting of roi (all values 0) is considered the same as\n\ 00583 # full resolution (roi.width = width, roi.height = height).\n\ 00584 RegionOfInterest roi\n\ 00585 \n\ 00586 ================================================================================\n\ 00587 MSG: sensor_msgs/RegionOfInterest\n\ 00588 # This message is used to specify a region of interest within an image.\n\ 00589 #\n\ 00590 # When used to specify the ROI setting of the camera when the image was\n\ 00591 # taken, the height and width fields should either match the height and\n\ 00592 # width fields for the associated image; or height = width = 0\n\ 00593 # indicates that the full resolution image was captured.\n\ 00594 \n\ 00595 uint32 x_offset # Leftmost pixel of the ROI\n\ 00596 # (0 if the ROI includes the left edge of the image)\n\ 00597 uint32 y_offset # Topmost pixel of the ROI\n\ 00598 # (0 if the ROI includes the top edge of the image)\n\ 00599 uint32 height # Height of ROI\n\ 00600 uint32 width # Width of ROI\n\ 00601 \n\ 00602 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00603 # ROI in this message. Typically this should be False if the full image\n\ 00604 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00605 # used).\n\ 00606 bool do_rectify\n\ 00607 \n\ 00608 ================================================================================\n\ 00609 MSG: worldmodel_msgs/PerceptInfo\n\ 00610 # This message contains information about the estimated class and object identity \n\ 00611 \n\ 00612 # A string identifying the object's class (all objects of a class look the same)\n\ 00613 string class_id\n\ 00614 \n\ 00615 # The class association support of the observation\n\ 00616 # The support is the log odd likelihood ratio given by log(p(y/observation y belongs to object of class class_id) / p(y/observation y is a false positive))\n\ 00617 float32 class_support\n\ 00618 \n\ 00619 # A string identifying a specific object\n\ 00620 string object_id\n\ 00621 \n\ 00622 # The object association support of the observation\n\ 00623 # The support is the log odd likelihood ratio given by log(p(observation belongs to object object_id) / p(observation is false positive or belongs to another object))\n\ 00624 float32 object_support\n\ 00625 \n\ 00626 # A string that contains the name or a description of the specific object\n\ 00627 string name\n\ 00628 \n\ 00629 "; 00630 } 00631 00632 static const char* value(const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); } 00633 }; 00634 00635 template<class ContainerAllocator> struct HasHeader< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {}; 00636 template<class ContainerAllocator> struct HasHeader< const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {}; 00637 } // namespace message_traits 00638 } // namespace ros 00639 00640 namespace ros 00641 { 00642 namespace serialization 00643 { 00644 00645 template<class ContainerAllocator> struct Serializer< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > 00646 { 00647 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00648 { 00649 stream.next(m.header); 00650 stream.next(m.camera_info); 00651 stream.next(m.x); 00652 stream.next(m.y); 00653 stream.next(m.width); 00654 stream.next(m.height); 00655 stream.next(m.distance); 00656 stream.next(m.info); 00657 } 00658 00659 ROS_DECLARE_ALLINONE_SERIALIZER; 00660 }; // struct ImagePercept_ 00661 } // namespace serialization 00662 } // namespace ros 00663 00664 namespace ros 00665 { 00666 namespace message_operations 00667 { 00668 00669 template<class ContainerAllocator> 00670 struct Printer< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > 00671 { 00672 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> & v) 00673 { 00674 s << indent << "header: "; 00675 s << std::endl; 00676 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00677 s << indent << "camera_info: "; 00678 s << std::endl; 00679 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info); 00680 s << indent << "x: "; 00681 Printer<float>::stream(s, indent + " ", v.x); 00682 s << indent << "y: "; 00683 Printer<float>::stream(s, indent + " ", v.y); 00684 s << indent << "width: "; 00685 Printer<float>::stream(s, indent + " ", v.width); 00686 s << indent << "height: "; 00687 Printer<float>::stream(s, indent + " ", v.height); 00688 s << indent << "distance: "; 00689 Printer<float>::stream(s, indent + " ", v.distance); 00690 s << indent << "info: "; 00691 s << std::endl; 00692 Printer< ::worldmodel_msgs::PerceptInfo_<ContainerAllocator> >::stream(s, indent + " ", v.info); 00693 } 00694 }; 00695 00696 00697 } // namespace message_operations 00698 } // namespace ros 00699 00700 #endif // WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H 00701