$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/pr2_grasp_adjust/msg/GraspAdjustAction.msg */ 00002 #ifndef PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTACTION_H 00003 #define PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "pr2_grasp_adjust/GraspAdjustActionGoal.h" 00018 #include "pr2_grasp_adjust/GraspAdjustActionResult.h" 00019 #include "pr2_grasp_adjust/GraspAdjustActionFeedback.h" 00020 00021 namespace pr2_grasp_adjust 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspAdjustAction_ { 00025 typedef GraspAdjustAction_<ContainerAllocator> Type; 00026 00027 GraspAdjustAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 GraspAdjustAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::pr2_grasp_adjust::GraspAdjustActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::pr2_grasp_adjust::GraspAdjustActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> _action_result_type; 00045 ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::pr2_grasp_adjust::GraspAdjustActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::pr2_grasp_adjust::GraspAdjustActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "pr2_grasp_adjust/GraspAdjustAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "f0e5bb32c517b402aa57198a61487538"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 GraspAdjustActionGoal action_goal\n\ 00069 GraspAdjustActionResult action_result\n\ 00070 GraspAdjustActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: pr2_grasp_adjust/GraspAdjustActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 GraspAdjustGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: pr2_grasp_adjust/GraspAdjustGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 #goal definition\n\ 00115 \n\ 00116 sensor_msgs/PointCloud2 cloud\n\ 00117 geometry_msgs/PoseStamped pose_stamped\n\ 00118 bool use_orientation\n\ 00119 int32 seed_index\n\ 00120 uint8 search_mode\n\ 00121 \n\ 00122 int32 GLOBAL_SEARCH = 0\n\ 00123 int32 LOCAL_SEARCH = 1\n\ 00124 int32 SINGLE_POSE = 2\n\ 00125 \n\ 00126 \n\ 00127 ================================================================================\n\ 00128 MSG: sensor_msgs/PointCloud2\n\ 00129 # This message holds a collection of N-dimensional points, which may\n\ 00130 # contain additional information such as normals, intensity, etc. The\n\ 00131 # point data is stored as a binary blob, its layout described by the\n\ 00132 # contents of the \"fields\" array.\n\ 00133 \n\ 00134 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00135 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00136 # camera depth sensors such as stereo or time-of-flight.\n\ 00137 \n\ 00138 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00139 # points).\n\ 00140 Header header\n\ 00141 \n\ 00142 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00143 # 1 and width is the length of the point cloud.\n\ 00144 uint32 height\n\ 00145 uint32 width\n\ 00146 \n\ 00147 # Describes the channels and their layout in the binary data blob.\n\ 00148 PointField[] fields\n\ 00149 \n\ 00150 bool is_bigendian # Is this data bigendian?\n\ 00151 uint32 point_step # Length of a point in bytes\n\ 00152 uint32 row_step # Length of a row in bytes\n\ 00153 uint8[] data # Actual point data, size is (row_step*height)\n\ 00154 \n\ 00155 bool is_dense # True if there are no invalid points\n\ 00156 \n\ 00157 ================================================================================\n\ 00158 MSG: sensor_msgs/PointField\n\ 00159 # This message holds the description of one point entry in the\n\ 00160 # PointCloud2 message format.\n\ 00161 uint8 INT8 = 1\n\ 00162 uint8 UINT8 = 2\n\ 00163 uint8 INT16 = 3\n\ 00164 uint8 UINT16 = 4\n\ 00165 uint8 INT32 = 5\n\ 00166 uint8 UINT32 = 6\n\ 00167 uint8 FLOAT32 = 7\n\ 00168 uint8 FLOAT64 = 8\n\ 00169 \n\ 00170 string name # Name of field\n\ 00171 uint32 offset # Offset from start of point struct\n\ 00172 uint8 datatype # Datatype enumeration, see above\n\ 00173 uint32 count # How many elements in the field\n\ 00174 \n\ 00175 ================================================================================\n\ 00176 MSG: geometry_msgs/PoseStamped\n\ 00177 # A Pose with reference coordinate frame and timestamp\n\ 00178 Header header\n\ 00179 Pose pose\n\ 00180 \n\ 00181 ================================================================================\n\ 00182 MSG: geometry_msgs/Pose\n\ 00183 # A representation of pose in free space, composed of postion and orientation. \n\ 00184 Point position\n\ 00185 Quaternion orientation\n\ 00186 \n\ 00187 ================================================================================\n\ 00188 MSG: geometry_msgs/Point\n\ 00189 # This contains the position of a point in free space\n\ 00190 float64 x\n\ 00191 float64 y\n\ 00192 float64 z\n\ 00193 \n\ 00194 ================================================================================\n\ 00195 MSG: geometry_msgs/Quaternion\n\ 00196 # This represents an orientation in free space in quaternion form.\n\ 00197 \n\ 00198 float64 x\n\ 00199 float64 y\n\ 00200 float64 z\n\ 00201 float64 w\n\ 00202 \n\ 00203 ================================================================================\n\ 00204 MSG: pr2_grasp_adjust/GraspAdjustActionResult\n\ 00205 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00206 \n\ 00207 Header header\n\ 00208 actionlib_msgs/GoalStatus status\n\ 00209 GraspAdjustResult result\n\ 00210 \n\ 00211 ================================================================================\n\ 00212 MSG: actionlib_msgs/GoalStatus\n\ 00213 GoalID goal_id\n\ 00214 uint8 status\n\ 00215 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00216 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00217 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00218 # and has since completed its execution (Terminal State)\n\ 00219 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00220 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00221 # to some failure (Terminal State)\n\ 00222 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00223 # because the goal was unattainable or invalid (Terminal State)\n\ 00224 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00225 # and has not yet completed execution\n\ 00226 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00227 # but the action server has not yet confirmed that the goal is canceled\n\ 00228 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00229 # and was successfully cancelled (Terminal State)\n\ 00230 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00231 # sent over the wire by an action server\n\ 00232 \n\ 00233 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00234 string text\n\ 00235 \n\ 00236 \n\ 00237 ================================================================================\n\ 00238 MSG: pr2_grasp_adjust/GraspAdjustResult\n\ 00239 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00240 #result definition\n\ 00241 \n\ 00242 object_manipulation_msgs/Grasp[] grasps\n\ 00243 object_manipulation_msgs/GraspPlanningErrorCode result\n\ 00244 \n\ 00245 \n\ 00246 ================================================================================\n\ 00247 MSG: object_manipulation_msgs/Grasp\n\ 00248 \n\ 00249 # The internal posture of the hand for the pre-grasp\n\ 00250 # only positions are used\n\ 00251 sensor_msgs/JointState pre_grasp_posture\n\ 00252 \n\ 00253 # The internal posture of the hand for the grasp\n\ 00254 # positions and efforts are used\n\ 00255 sensor_msgs/JointState grasp_posture\n\ 00256 \n\ 00257 # The position of the end-effector for the grasp relative to a reference frame \n\ 00258 # (that is always specified elsewhere, not in this message)\n\ 00259 geometry_msgs/Pose grasp_pose\n\ 00260 \n\ 00261 # The estimated probability of success for this grasp\n\ 00262 float64 success_probability\n\ 00263 \n\ 00264 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00265 bool cluster_rep\n\ 00266 \n\ 00267 # how far the pre-grasp should ideally be away from the grasp\n\ 00268 float32 desired_approach_distance\n\ 00269 \n\ 00270 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00271 # for the grasp not to be rejected\n\ 00272 float32 min_approach_distance\n\ 00273 \n\ 00274 # an optional list of obstacles that we have semantic information about\n\ 00275 # and that we expect might move in the course of executing this grasp\n\ 00276 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00277 # execution, grasp executors will not check for collisions against these objects\n\ 00278 GraspableObject[] moved_obstacles\n\ 00279 \n\ 00280 ================================================================================\n\ 00281 MSG: sensor_msgs/JointState\n\ 00282 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00283 #\n\ 00284 # The state of each joint (revolute or prismatic) is defined by:\n\ 00285 # * the position of the joint (rad or m),\n\ 00286 # * the velocity of the joint (rad/s or m/s) and \n\ 00287 # * the effort that is applied in the joint (Nm or N).\n\ 00288 #\n\ 00289 # Each joint is uniquely identified by its name\n\ 00290 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00291 # in one message have to be recorded at the same time.\n\ 00292 #\n\ 00293 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00294 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00295 # effort associated with them, you can leave the effort array empty. \n\ 00296 #\n\ 00297 # All arrays in this message should have the same size, or be empty.\n\ 00298 # This is the only way to uniquely associate the joint name with the correct\n\ 00299 # states.\n\ 00300 \n\ 00301 \n\ 00302 Header header\n\ 00303 \n\ 00304 string[] name\n\ 00305 float64[] position\n\ 00306 float64[] velocity\n\ 00307 float64[] effort\n\ 00308 \n\ 00309 ================================================================================\n\ 00310 MSG: object_manipulation_msgs/GraspableObject\n\ 00311 # an object that the object_manipulator can work on\n\ 00312 \n\ 00313 # a graspable object can be represented in multiple ways. This message\n\ 00314 # can contain all of them. Which one is actually used is up to the receiver\n\ 00315 # of this message. When adding new representations, one must be careful that\n\ 00316 # they have reasonable lightweight defaults indicating that that particular\n\ 00317 # representation is not available.\n\ 00318 \n\ 00319 # the tf frame to be used as a reference frame when combining information from\n\ 00320 # the different representations below\n\ 00321 string reference_frame_id\n\ 00322 \n\ 00323 # potential recognition results from a database of models\n\ 00324 # all poses are relative to the object reference pose\n\ 00325 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00326 \n\ 00327 # the point cloud itself\n\ 00328 sensor_msgs/PointCloud cluster\n\ 00329 \n\ 00330 # a region of a PointCloud2 of interest\n\ 00331 object_manipulation_msgs/SceneRegion region\n\ 00332 \n\ 00333 # the name that this object has in the collision environment\n\ 00334 string collision_name\n\ 00335 ================================================================================\n\ 00336 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00337 # Informs that a specific model from the Model Database has been \n\ 00338 # identified at a certain location\n\ 00339 \n\ 00340 # the database id of the model\n\ 00341 int32 model_id\n\ 00342 \n\ 00343 # the pose that it can be found in\n\ 00344 geometry_msgs/PoseStamped pose\n\ 00345 \n\ 00346 # a measure of the confidence level in this detection result\n\ 00347 float32 confidence\n\ 00348 \n\ 00349 # the name of the object detector that generated this detection result\n\ 00350 string detector_name\n\ 00351 \n\ 00352 ================================================================================\n\ 00353 MSG: sensor_msgs/PointCloud\n\ 00354 # This message holds a collection of 3d points, plus optional additional\n\ 00355 # information about each point.\n\ 00356 \n\ 00357 # Time of sensor data acquisition, coordinate frame ID.\n\ 00358 Header header\n\ 00359 \n\ 00360 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00361 # in the frame given in the header.\n\ 00362 geometry_msgs/Point32[] points\n\ 00363 \n\ 00364 # Each channel should have the same number of elements as points array,\n\ 00365 # and the data in each channel should correspond 1:1 with each point.\n\ 00366 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00367 ChannelFloat32[] channels\n\ 00368 \n\ 00369 ================================================================================\n\ 00370 MSG: geometry_msgs/Point32\n\ 00371 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00372 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00373 # \n\ 00374 # This recommendation is to promote interoperability. \n\ 00375 #\n\ 00376 # This message is designed to take up less space when sending\n\ 00377 # lots of points at once, as in the case of a PointCloud. \n\ 00378 \n\ 00379 float32 x\n\ 00380 float32 y\n\ 00381 float32 z\n\ 00382 ================================================================================\n\ 00383 MSG: sensor_msgs/ChannelFloat32\n\ 00384 # This message is used by the PointCloud message to hold optional data\n\ 00385 # associated with each point in the cloud. The length of the values\n\ 00386 # array should be the same as the length of the points array in the\n\ 00387 # PointCloud, and each value should be associated with the corresponding\n\ 00388 # point.\n\ 00389 \n\ 00390 # Channel names in existing practice include:\n\ 00391 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00392 # This is opposite to usual conventions but remains for\n\ 00393 # historical reasons. The newer PointCloud2 message has no\n\ 00394 # such problem.\n\ 00395 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00396 # (R,G,B) values packed into the least significant 24 bits,\n\ 00397 # in order.\n\ 00398 # \"intensity\" - laser or pixel intensity.\n\ 00399 # \"distance\"\n\ 00400 \n\ 00401 # The channel name should give semantics of the channel (e.g.\n\ 00402 # \"intensity\" instead of \"value\").\n\ 00403 string name\n\ 00404 \n\ 00405 # The values array should be 1-1 with the elements of the associated\n\ 00406 # PointCloud.\n\ 00407 float32[] values\n\ 00408 \n\ 00409 ================================================================================\n\ 00410 MSG: object_manipulation_msgs/SceneRegion\n\ 00411 # Point cloud\n\ 00412 sensor_msgs/PointCloud2 cloud\n\ 00413 \n\ 00414 # Indices for the region of interest\n\ 00415 int32[] mask\n\ 00416 \n\ 00417 # One of the corresponding 2D images, if applicable\n\ 00418 sensor_msgs/Image image\n\ 00419 \n\ 00420 # The disparity image, if applicable\n\ 00421 sensor_msgs/Image disparity_image\n\ 00422 \n\ 00423 # Camera info for the camera that took the image\n\ 00424 sensor_msgs/CameraInfo cam_info\n\ 00425 \n\ 00426 # a 3D region of interest for grasp planning\n\ 00427 geometry_msgs/PoseStamped roi_box_pose\n\ 00428 geometry_msgs/Vector3 roi_box_dims\n\ 00429 \n\ 00430 ================================================================================\n\ 00431 MSG: sensor_msgs/Image\n\ 00432 # This message contains an uncompressed image\n\ 00433 # (0, 0) is at top-left corner of image\n\ 00434 #\n\ 00435 \n\ 00436 Header header # Header timestamp should be acquisition time of image\n\ 00437 # Header frame_id should be optical frame of camera\n\ 00438 # origin of frame should be optical center of cameara\n\ 00439 # +x should point to the right in the image\n\ 00440 # +y should point down in the image\n\ 00441 # +z should point into to plane of the image\n\ 00442 # If the frame_id here and the frame_id of the CameraInfo\n\ 00443 # message associated with the image conflict\n\ 00444 # the behavior is undefined\n\ 00445 \n\ 00446 uint32 height # image height, that is, number of rows\n\ 00447 uint32 width # image width, that is, number of columns\n\ 00448 \n\ 00449 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00450 # If you want to standardize a new string format, join\n\ 00451 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00452 \n\ 00453 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00454 # taken from the list of strings in src/image_encodings.cpp\n\ 00455 \n\ 00456 uint8 is_bigendian # is this data bigendian?\n\ 00457 uint32 step # Full row length in bytes\n\ 00458 uint8[] data # actual matrix data, size is (step * rows)\n\ 00459 \n\ 00460 ================================================================================\n\ 00461 MSG: sensor_msgs/CameraInfo\n\ 00462 # This message defines meta information for a camera. It should be in a\n\ 00463 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00464 # image topics named:\n\ 00465 #\n\ 00466 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00467 # image - monochrome, distorted\n\ 00468 # image_color - color, distorted\n\ 00469 # image_rect - monochrome, rectified\n\ 00470 # image_rect_color - color, rectified\n\ 00471 #\n\ 00472 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00473 # for producing the four processed image topics from image_raw and\n\ 00474 # camera_info. The meaning of the camera parameters are described in\n\ 00475 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00476 #\n\ 00477 # The image_geometry package provides a user-friendly interface to\n\ 00478 # common operations using this meta information. If you want to, e.g.,\n\ 00479 # project a 3d point into image coordinates, we strongly recommend\n\ 00480 # using image_geometry.\n\ 00481 #\n\ 00482 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00483 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00484 # indicates an uncalibrated camera.\n\ 00485 \n\ 00486 #######################################################################\n\ 00487 # Image acquisition info #\n\ 00488 #######################################################################\n\ 00489 \n\ 00490 # Time of image acquisition, camera coordinate frame ID\n\ 00491 Header header # Header timestamp should be acquisition time of image\n\ 00492 # Header frame_id should be optical frame of camera\n\ 00493 # origin of frame should be optical center of camera\n\ 00494 # +x should point to the right in the image\n\ 00495 # +y should point down in the image\n\ 00496 # +z should point into the plane of the image\n\ 00497 \n\ 00498 \n\ 00499 #######################################################################\n\ 00500 # Calibration Parameters #\n\ 00501 #######################################################################\n\ 00502 # These are fixed during camera calibration. Their values will be the #\n\ 00503 # same in all messages until the camera is recalibrated. Note that #\n\ 00504 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00505 # #\n\ 00506 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00507 # to: #\n\ 00508 # 1. An undistorted image (requires D and K) #\n\ 00509 # 2. A rectified image (requires D, K, R) #\n\ 00510 # The projection matrix P projects 3D points into the rectified image.#\n\ 00511 #######################################################################\n\ 00512 \n\ 00513 # The image dimensions with which the camera was calibrated. Normally\n\ 00514 # this will be the full camera resolution in pixels.\n\ 00515 uint32 height\n\ 00516 uint32 width\n\ 00517 \n\ 00518 # The distortion model used. Supported models are listed in\n\ 00519 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00520 # simple model of radial and tangential distortion - is sufficent.\n\ 00521 string distortion_model\n\ 00522 \n\ 00523 # The distortion parameters, size depending on the distortion model.\n\ 00524 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00525 float64[] D\n\ 00526 \n\ 00527 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00528 # [fx 0 cx]\n\ 00529 # K = [ 0 fy cy]\n\ 00530 # [ 0 0 1]\n\ 00531 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00532 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00533 # (cx, cy).\n\ 00534 float64[9] K # 3x3 row-major matrix\n\ 00535 \n\ 00536 # Rectification matrix (stereo cameras only)\n\ 00537 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00538 # stereo image plane so that epipolar lines in both stereo images are\n\ 00539 # parallel.\n\ 00540 float64[9] R # 3x3 row-major matrix\n\ 00541 \n\ 00542 # Projection/camera matrix\n\ 00543 # [fx' 0 cx' Tx]\n\ 00544 # P = [ 0 fy' cy' Ty]\n\ 00545 # [ 0 0 1 0]\n\ 00546 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00547 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00548 # is the normal camera intrinsic matrix for the rectified image.\n\ 00549 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00550 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00551 # (cx', cy') - these may differ from the values in K.\n\ 00552 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00553 # also have R = the identity and P[1:3,1:3] = K.\n\ 00554 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00555 # position of the optical center of the second camera in the first\n\ 00556 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00557 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00558 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00559 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00560 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00561 # the rectified image is given by:\n\ 00562 # [u v w]' = P * [X Y Z 1]'\n\ 00563 # x = u / w\n\ 00564 # y = v / w\n\ 00565 # This holds for both images of a stereo pair.\n\ 00566 float64[12] P # 3x4 row-major matrix\n\ 00567 \n\ 00568 \n\ 00569 #######################################################################\n\ 00570 # Operational Parameters #\n\ 00571 #######################################################################\n\ 00572 # These define the image region actually captured by the camera #\n\ 00573 # driver. Although they affect the geometry of the output image, they #\n\ 00574 # may be changed freely without recalibrating the camera. #\n\ 00575 #######################################################################\n\ 00576 \n\ 00577 # Binning refers here to any camera setting which combines rectangular\n\ 00578 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00579 # resolution of the output image to\n\ 00580 # (width / binning_x) x (height / binning_y).\n\ 00581 # The default values binning_x = binning_y = 0 is considered the same\n\ 00582 # as binning_x = binning_y = 1 (no subsampling).\n\ 00583 uint32 binning_x\n\ 00584 uint32 binning_y\n\ 00585 \n\ 00586 # Region of interest (subwindow of full camera resolution), given in\n\ 00587 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00588 # always denotes the same window of pixels on the camera sensor,\n\ 00589 # regardless of binning settings.\n\ 00590 # The default setting of roi (all values 0) is considered the same as\n\ 00591 # full resolution (roi.width = width, roi.height = height).\n\ 00592 RegionOfInterest roi\n\ 00593 \n\ 00594 ================================================================================\n\ 00595 MSG: sensor_msgs/RegionOfInterest\n\ 00596 # This message is used to specify a region of interest within an image.\n\ 00597 #\n\ 00598 # When used to specify the ROI setting of the camera when the image was\n\ 00599 # taken, the height and width fields should either match the height and\n\ 00600 # width fields for the associated image; or height = width = 0\n\ 00601 # indicates that the full resolution image was captured.\n\ 00602 \n\ 00603 uint32 x_offset # Leftmost pixel of the ROI\n\ 00604 # (0 if the ROI includes the left edge of the image)\n\ 00605 uint32 y_offset # Topmost pixel of the ROI\n\ 00606 # (0 if the ROI includes the top edge of the image)\n\ 00607 uint32 height # Height of ROI\n\ 00608 uint32 width # Width of ROI\n\ 00609 \n\ 00610 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00611 # ROI in this message. Typically this should be False if the full image\n\ 00612 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00613 # used).\n\ 00614 bool do_rectify\n\ 00615 \n\ 00616 ================================================================================\n\ 00617 MSG: geometry_msgs/Vector3\n\ 00618 # This represents a vector in free space. \n\ 00619 \n\ 00620 float64 x\n\ 00621 float64 y\n\ 00622 float64 z\n\ 00623 ================================================================================\n\ 00624 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00625 # Error codes for grasp and place planning\n\ 00626 \n\ 00627 # plan completed as expected\n\ 00628 int32 SUCCESS = 0\n\ 00629 \n\ 00630 # tf error encountered while transforming\n\ 00631 int32 TF_ERROR = 1 \n\ 00632 \n\ 00633 # some other error\n\ 00634 int32 OTHER_ERROR = 2\n\ 00635 \n\ 00636 # the actual value of this error code\n\ 00637 int32 value\n\ 00638 ================================================================================\n\ 00639 MSG: pr2_grasp_adjust/GraspAdjustActionFeedback\n\ 00640 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00641 \n\ 00642 Header header\n\ 00643 actionlib_msgs/GoalStatus status\n\ 00644 GraspAdjustFeedback feedback\n\ 00645 \n\ 00646 ================================================================================\n\ 00647 MSG: pr2_grasp_adjust/GraspAdjustFeedback\n\ 00648 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00649 #feedback\n\ 00650 \n\ 00651 \n\ 00652 \n\ 00653 "; } 00654 public: 00655 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00656 00657 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00658 00659 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00660 { 00661 ros::serialization::OStream stream(write_ptr, 1000000000); 00662 ros::serialization::serialize(stream, action_goal); 00663 ros::serialization::serialize(stream, action_result); 00664 ros::serialization::serialize(stream, action_feedback); 00665 return stream.getData(); 00666 } 00667 00668 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00669 { 00670 ros::serialization::IStream stream(read_ptr, 1000000000); 00671 ros::serialization::deserialize(stream, action_goal); 00672 ros::serialization::deserialize(stream, action_result); 00673 ros::serialization::deserialize(stream, action_feedback); 00674 return stream.getData(); 00675 } 00676 00677 ROS_DEPRECATED virtual uint32_t serializationLength() const 00678 { 00679 uint32_t size = 0; 00680 size += ros::serialization::serializationLength(action_goal); 00681 size += ros::serialization::serializationLength(action_result); 00682 size += ros::serialization::serializationLength(action_feedback); 00683 return size; 00684 } 00685 00686 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > Ptr; 00687 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> const> ConstPtr; 00688 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00689 }; // struct GraspAdjustAction 00690 typedef ::pr2_grasp_adjust::GraspAdjustAction_<std::allocator<void> > GraspAdjustAction; 00691 00692 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustAction> GraspAdjustActionPtr; 00693 typedef boost::shared_ptr< ::pr2_grasp_adjust::GraspAdjustAction const> GraspAdjustActionConstPtr; 00694 00695 00696 template<typename ContainerAllocator> 00697 std::ostream& operator<<(std::ostream& s, const ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> & v) 00698 { 00699 ros::message_operations::Printer< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> >::stream(s, "", v); 00700 return s;} 00701 00702 } // namespace pr2_grasp_adjust 00703 00704 namespace ros 00705 { 00706 namespace message_traits 00707 { 00708 template<class ContainerAllocator> struct IsMessage< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > : public TrueType {}; 00709 template<class ContainerAllocator> struct IsMessage< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> const> : public TrueType {}; 00710 template<class ContainerAllocator> 00711 struct MD5Sum< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > { 00712 static const char* value() 00713 { 00714 return "f0e5bb32c517b402aa57198a61487538"; 00715 } 00716 00717 static const char* value(const ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> &) { return value(); } 00718 static const uint64_t static_value1 = 0xf0e5bb32c517b402ULL; 00719 static const uint64_t static_value2 = 0xaa57198a61487538ULL; 00720 }; 00721 00722 template<class ContainerAllocator> 00723 struct DataType< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > { 00724 static const char* value() 00725 { 00726 return "pr2_grasp_adjust/GraspAdjustAction"; 00727 } 00728 00729 static const char* value(const ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> &) { return value(); } 00730 }; 00731 00732 template<class ContainerAllocator> 00733 struct Definition< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > { 00734 static const char* value() 00735 { 00736 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00737 \n\ 00738 GraspAdjustActionGoal action_goal\n\ 00739 GraspAdjustActionResult action_result\n\ 00740 GraspAdjustActionFeedback action_feedback\n\ 00741 \n\ 00742 ================================================================================\n\ 00743 MSG: pr2_grasp_adjust/GraspAdjustActionGoal\n\ 00744 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00745 \n\ 00746 Header header\n\ 00747 actionlib_msgs/GoalID goal_id\n\ 00748 GraspAdjustGoal goal\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: std_msgs/Header\n\ 00752 # Standard metadata for higher-level stamped data types.\n\ 00753 # This is generally used to communicate timestamped data \n\ 00754 # in a particular coordinate frame.\n\ 00755 # \n\ 00756 # sequence ID: consecutively increasing ID \n\ 00757 uint32 seq\n\ 00758 #Two-integer timestamp that is expressed as:\n\ 00759 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00760 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00761 # time-handling sugar is provided by the client library\n\ 00762 time stamp\n\ 00763 #Frame this data is associated with\n\ 00764 # 0: no frame\n\ 00765 # 1: global frame\n\ 00766 string frame_id\n\ 00767 \n\ 00768 ================================================================================\n\ 00769 MSG: actionlib_msgs/GoalID\n\ 00770 # The stamp should store the time at which this goal was requested.\n\ 00771 # It is used by an action server when it tries to preempt all\n\ 00772 # goals that were requested before a certain time\n\ 00773 time stamp\n\ 00774 \n\ 00775 # The id provides a way to associate feedback and\n\ 00776 # result message with specific goal requests. The id\n\ 00777 # specified must be unique.\n\ 00778 string id\n\ 00779 \n\ 00780 \n\ 00781 ================================================================================\n\ 00782 MSG: pr2_grasp_adjust/GraspAdjustGoal\n\ 00783 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00784 #goal definition\n\ 00785 \n\ 00786 sensor_msgs/PointCloud2 cloud\n\ 00787 geometry_msgs/PoseStamped pose_stamped\n\ 00788 bool use_orientation\n\ 00789 int32 seed_index\n\ 00790 uint8 search_mode\n\ 00791 \n\ 00792 int32 GLOBAL_SEARCH = 0\n\ 00793 int32 LOCAL_SEARCH = 1\n\ 00794 int32 SINGLE_POSE = 2\n\ 00795 \n\ 00796 \n\ 00797 ================================================================================\n\ 00798 MSG: sensor_msgs/PointCloud2\n\ 00799 # This message holds a collection of N-dimensional points, which may\n\ 00800 # contain additional information such as normals, intensity, etc. The\n\ 00801 # point data is stored as a binary blob, its layout described by the\n\ 00802 # contents of the \"fields\" array.\n\ 00803 \n\ 00804 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00805 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00806 # camera depth sensors such as stereo or time-of-flight.\n\ 00807 \n\ 00808 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00809 # points).\n\ 00810 Header header\n\ 00811 \n\ 00812 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00813 # 1 and width is the length of the point cloud.\n\ 00814 uint32 height\n\ 00815 uint32 width\n\ 00816 \n\ 00817 # Describes the channels and their layout in the binary data blob.\n\ 00818 PointField[] fields\n\ 00819 \n\ 00820 bool is_bigendian # Is this data bigendian?\n\ 00821 uint32 point_step # Length of a point in bytes\n\ 00822 uint32 row_step # Length of a row in bytes\n\ 00823 uint8[] data # Actual point data, size is (row_step*height)\n\ 00824 \n\ 00825 bool is_dense # True if there are no invalid points\n\ 00826 \n\ 00827 ================================================================================\n\ 00828 MSG: sensor_msgs/PointField\n\ 00829 # This message holds the description of one point entry in the\n\ 00830 # PointCloud2 message format.\n\ 00831 uint8 INT8 = 1\n\ 00832 uint8 UINT8 = 2\n\ 00833 uint8 INT16 = 3\n\ 00834 uint8 UINT16 = 4\n\ 00835 uint8 INT32 = 5\n\ 00836 uint8 UINT32 = 6\n\ 00837 uint8 FLOAT32 = 7\n\ 00838 uint8 FLOAT64 = 8\n\ 00839 \n\ 00840 string name # Name of field\n\ 00841 uint32 offset # Offset from start of point struct\n\ 00842 uint8 datatype # Datatype enumeration, see above\n\ 00843 uint32 count # How many elements in the field\n\ 00844 \n\ 00845 ================================================================================\n\ 00846 MSG: geometry_msgs/PoseStamped\n\ 00847 # A Pose with reference coordinate frame and timestamp\n\ 00848 Header header\n\ 00849 Pose pose\n\ 00850 \n\ 00851 ================================================================================\n\ 00852 MSG: geometry_msgs/Pose\n\ 00853 # A representation of pose in free space, composed of postion and orientation. \n\ 00854 Point position\n\ 00855 Quaternion orientation\n\ 00856 \n\ 00857 ================================================================================\n\ 00858 MSG: geometry_msgs/Point\n\ 00859 # This contains the position of a point in free space\n\ 00860 float64 x\n\ 00861 float64 y\n\ 00862 float64 z\n\ 00863 \n\ 00864 ================================================================================\n\ 00865 MSG: geometry_msgs/Quaternion\n\ 00866 # This represents an orientation in free space in quaternion form.\n\ 00867 \n\ 00868 float64 x\n\ 00869 float64 y\n\ 00870 float64 z\n\ 00871 float64 w\n\ 00872 \n\ 00873 ================================================================================\n\ 00874 MSG: pr2_grasp_adjust/GraspAdjustActionResult\n\ 00875 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00876 \n\ 00877 Header header\n\ 00878 actionlib_msgs/GoalStatus status\n\ 00879 GraspAdjustResult result\n\ 00880 \n\ 00881 ================================================================================\n\ 00882 MSG: actionlib_msgs/GoalStatus\n\ 00883 GoalID goal_id\n\ 00884 uint8 status\n\ 00885 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00886 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00887 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00888 # and has since completed its execution (Terminal State)\n\ 00889 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00890 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00891 # to some failure (Terminal State)\n\ 00892 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00893 # because the goal was unattainable or invalid (Terminal State)\n\ 00894 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00895 # and has not yet completed execution\n\ 00896 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00897 # but the action server has not yet confirmed that the goal is canceled\n\ 00898 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00899 # and was successfully cancelled (Terminal State)\n\ 00900 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00901 # sent over the wire by an action server\n\ 00902 \n\ 00903 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00904 string text\n\ 00905 \n\ 00906 \n\ 00907 ================================================================================\n\ 00908 MSG: pr2_grasp_adjust/GraspAdjustResult\n\ 00909 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00910 #result definition\n\ 00911 \n\ 00912 object_manipulation_msgs/Grasp[] grasps\n\ 00913 object_manipulation_msgs/GraspPlanningErrorCode result\n\ 00914 \n\ 00915 \n\ 00916 ================================================================================\n\ 00917 MSG: object_manipulation_msgs/Grasp\n\ 00918 \n\ 00919 # The internal posture of the hand for the pre-grasp\n\ 00920 # only positions are used\n\ 00921 sensor_msgs/JointState pre_grasp_posture\n\ 00922 \n\ 00923 # The internal posture of the hand for the grasp\n\ 00924 # positions and efforts are used\n\ 00925 sensor_msgs/JointState grasp_posture\n\ 00926 \n\ 00927 # The position of the end-effector for the grasp relative to a reference frame \n\ 00928 # (that is always specified elsewhere, not in this message)\n\ 00929 geometry_msgs/Pose grasp_pose\n\ 00930 \n\ 00931 # The estimated probability of success for this grasp\n\ 00932 float64 success_probability\n\ 00933 \n\ 00934 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00935 bool cluster_rep\n\ 00936 \n\ 00937 # how far the pre-grasp should ideally be away from the grasp\n\ 00938 float32 desired_approach_distance\n\ 00939 \n\ 00940 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00941 # for the grasp not to be rejected\n\ 00942 float32 min_approach_distance\n\ 00943 \n\ 00944 # an optional list of obstacles that we have semantic information about\n\ 00945 # and that we expect might move in the course of executing this grasp\n\ 00946 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00947 # execution, grasp executors will not check for collisions against these objects\n\ 00948 GraspableObject[] moved_obstacles\n\ 00949 \n\ 00950 ================================================================================\n\ 00951 MSG: sensor_msgs/JointState\n\ 00952 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00953 #\n\ 00954 # The state of each joint (revolute or prismatic) is defined by:\n\ 00955 # * the position of the joint (rad or m),\n\ 00956 # * the velocity of the joint (rad/s or m/s) and \n\ 00957 # * the effort that is applied in the joint (Nm or N).\n\ 00958 #\n\ 00959 # Each joint is uniquely identified by its name\n\ 00960 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00961 # in one message have to be recorded at the same time.\n\ 00962 #\n\ 00963 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00964 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00965 # effort associated with them, you can leave the effort array empty. \n\ 00966 #\n\ 00967 # All arrays in this message should have the same size, or be empty.\n\ 00968 # This is the only way to uniquely associate the joint name with the correct\n\ 00969 # states.\n\ 00970 \n\ 00971 \n\ 00972 Header header\n\ 00973 \n\ 00974 string[] name\n\ 00975 float64[] position\n\ 00976 float64[] velocity\n\ 00977 float64[] effort\n\ 00978 \n\ 00979 ================================================================================\n\ 00980 MSG: object_manipulation_msgs/GraspableObject\n\ 00981 # an object that the object_manipulator can work on\n\ 00982 \n\ 00983 # a graspable object can be represented in multiple ways. This message\n\ 00984 # can contain all of them. Which one is actually used is up to the receiver\n\ 00985 # of this message. When adding new representations, one must be careful that\n\ 00986 # they have reasonable lightweight defaults indicating that that particular\n\ 00987 # representation is not available.\n\ 00988 \n\ 00989 # the tf frame to be used as a reference frame when combining information from\n\ 00990 # the different representations below\n\ 00991 string reference_frame_id\n\ 00992 \n\ 00993 # potential recognition results from a database of models\n\ 00994 # all poses are relative to the object reference pose\n\ 00995 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00996 \n\ 00997 # the point cloud itself\n\ 00998 sensor_msgs/PointCloud cluster\n\ 00999 \n\ 01000 # a region of a PointCloud2 of interest\n\ 01001 object_manipulation_msgs/SceneRegion region\n\ 01002 \n\ 01003 # the name that this object has in the collision environment\n\ 01004 string collision_name\n\ 01005 ================================================================================\n\ 01006 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01007 # Informs that a specific model from the Model Database has been \n\ 01008 # identified at a certain location\n\ 01009 \n\ 01010 # the database id of the model\n\ 01011 int32 model_id\n\ 01012 \n\ 01013 # the pose that it can be found in\n\ 01014 geometry_msgs/PoseStamped pose\n\ 01015 \n\ 01016 # a measure of the confidence level in this detection result\n\ 01017 float32 confidence\n\ 01018 \n\ 01019 # the name of the object detector that generated this detection result\n\ 01020 string detector_name\n\ 01021 \n\ 01022 ================================================================================\n\ 01023 MSG: sensor_msgs/PointCloud\n\ 01024 # This message holds a collection of 3d points, plus optional additional\n\ 01025 # information about each point.\n\ 01026 \n\ 01027 # Time of sensor data acquisition, coordinate frame ID.\n\ 01028 Header header\n\ 01029 \n\ 01030 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01031 # in the frame given in the header.\n\ 01032 geometry_msgs/Point32[] points\n\ 01033 \n\ 01034 # Each channel should have the same number of elements as points array,\n\ 01035 # and the data in each channel should correspond 1:1 with each point.\n\ 01036 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01037 ChannelFloat32[] channels\n\ 01038 \n\ 01039 ================================================================================\n\ 01040 MSG: geometry_msgs/Point32\n\ 01041 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01042 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01043 # \n\ 01044 # This recommendation is to promote interoperability. \n\ 01045 #\n\ 01046 # This message is designed to take up less space when sending\n\ 01047 # lots of points at once, as in the case of a PointCloud. \n\ 01048 \n\ 01049 float32 x\n\ 01050 float32 y\n\ 01051 float32 z\n\ 01052 ================================================================================\n\ 01053 MSG: sensor_msgs/ChannelFloat32\n\ 01054 # This message is used by the PointCloud message to hold optional data\n\ 01055 # associated with each point in the cloud. The length of the values\n\ 01056 # array should be the same as the length of the points array in the\n\ 01057 # PointCloud, and each value should be associated with the corresponding\n\ 01058 # point.\n\ 01059 \n\ 01060 # Channel names in existing practice include:\n\ 01061 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01062 # This is opposite to usual conventions but remains for\n\ 01063 # historical reasons. The newer PointCloud2 message has no\n\ 01064 # such problem.\n\ 01065 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01066 # (R,G,B) values packed into the least significant 24 bits,\n\ 01067 # in order.\n\ 01068 # \"intensity\" - laser or pixel intensity.\n\ 01069 # \"distance\"\n\ 01070 \n\ 01071 # The channel name should give semantics of the channel (e.g.\n\ 01072 # \"intensity\" instead of \"value\").\n\ 01073 string name\n\ 01074 \n\ 01075 # The values array should be 1-1 with the elements of the associated\n\ 01076 # PointCloud.\n\ 01077 float32[] values\n\ 01078 \n\ 01079 ================================================================================\n\ 01080 MSG: object_manipulation_msgs/SceneRegion\n\ 01081 # Point cloud\n\ 01082 sensor_msgs/PointCloud2 cloud\n\ 01083 \n\ 01084 # Indices for the region of interest\n\ 01085 int32[] mask\n\ 01086 \n\ 01087 # One of the corresponding 2D images, if applicable\n\ 01088 sensor_msgs/Image image\n\ 01089 \n\ 01090 # The disparity image, if applicable\n\ 01091 sensor_msgs/Image disparity_image\n\ 01092 \n\ 01093 # Camera info for the camera that took the image\n\ 01094 sensor_msgs/CameraInfo cam_info\n\ 01095 \n\ 01096 # a 3D region of interest for grasp planning\n\ 01097 geometry_msgs/PoseStamped roi_box_pose\n\ 01098 geometry_msgs/Vector3 roi_box_dims\n\ 01099 \n\ 01100 ================================================================================\n\ 01101 MSG: sensor_msgs/Image\n\ 01102 # This message contains an uncompressed image\n\ 01103 # (0, 0) is at top-left corner of image\n\ 01104 #\n\ 01105 \n\ 01106 Header header # Header timestamp should be acquisition time of image\n\ 01107 # Header frame_id should be optical frame of camera\n\ 01108 # origin of frame should be optical center of cameara\n\ 01109 # +x should point to the right in the image\n\ 01110 # +y should point down in the image\n\ 01111 # +z should point into to plane of the image\n\ 01112 # If the frame_id here and the frame_id of the CameraInfo\n\ 01113 # message associated with the image conflict\n\ 01114 # the behavior is undefined\n\ 01115 \n\ 01116 uint32 height # image height, that is, number of rows\n\ 01117 uint32 width # image width, that is, number of columns\n\ 01118 \n\ 01119 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01120 # If you want to standardize a new string format, join\n\ 01121 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01122 \n\ 01123 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01124 # taken from the list of strings in src/image_encodings.cpp\n\ 01125 \n\ 01126 uint8 is_bigendian # is this data bigendian?\n\ 01127 uint32 step # Full row length in bytes\n\ 01128 uint8[] data # actual matrix data, size is (step * rows)\n\ 01129 \n\ 01130 ================================================================================\n\ 01131 MSG: sensor_msgs/CameraInfo\n\ 01132 # This message defines meta information for a camera. It should be in a\n\ 01133 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01134 # image topics named:\n\ 01135 #\n\ 01136 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01137 # image - monochrome, distorted\n\ 01138 # image_color - color, distorted\n\ 01139 # image_rect - monochrome, rectified\n\ 01140 # image_rect_color - color, rectified\n\ 01141 #\n\ 01142 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01143 # for producing the four processed image topics from image_raw and\n\ 01144 # camera_info. The meaning of the camera parameters are described in\n\ 01145 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01146 #\n\ 01147 # The image_geometry package provides a user-friendly interface to\n\ 01148 # common operations using this meta information. If you want to, e.g.,\n\ 01149 # project a 3d point into image coordinates, we strongly recommend\n\ 01150 # using image_geometry.\n\ 01151 #\n\ 01152 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01153 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01154 # indicates an uncalibrated camera.\n\ 01155 \n\ 01156 #######################################################################\n\ 01157 # Image acquisition info #\n\ 01158 #######################################################################\n\ 01159 \n\ 01160 # Time of image acquisition, camera coordinate frame ID\n\ 01161 Header header # Header timestamp should be acquisition time of image\n\ 01162 # Header frame_id should be optical frame of camera\n\ 01163 # origin of frame should be optical center of camera\n\ 01164 # +x should point to the right in the image\n\ 01165 # +y should point down in the image\n\ 01166 # +z should point into the plane of the image\n\ 01167 \n\ 01168 \n\ 01169 #######################################################################\n\ 01170 # Calibration Parameters #\n\ 01171 #######################################################################\n\ 01172 # These are fixed during camera calibration. Their values will be the #\n\ 01173 # same in all messages until the camera is recalibrated. Note that #\n\ 01174 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01175 # #\n\ 01176 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01177 # to: #\n\ 01178 # 1. An undistorted image (requires D and K) #\n\ 01179 # 2. A rectified image (requires D, K, R) #\n\ 01180 # The projection matrix P projects 3D points into the rectified image.#\n\ 01181 #######################################################################\n\ 01182 \n\ 01183 # The image dimensions with which the camera was calibrated. Normally\n\ 01184 # this will be the full camera resolution in pixels.\n\ 01185 uint32 height\n\ 01186 uint32 width\n\ 01187 \n\ 01188 # The distortion model used. Supported models are listed in\n\ 01189 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01190 # simple model of radial and tangential distortion - is sufficent.\n\ 01191 string distortion_model\n\ 01192 \n\ 01193 # The distortion parameters, size depending on the distortion model.\n\ 01194 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01195 float64[] D\n\ 01196 \n\ 01197 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01198 # [fx 0 cx]\n\ 01199 # K = [ 0 fy cy]\n\ 01200 # [ 0 0 1]\n\ 01201 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01202 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01203 # (cx, cy).\n\ 01204 float64[9] K # 3x3 row-major matrix\n\ 01205 \n\ 01206 # Rectification matrix (stereo cameras only)\n\ 01207 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01208 # stereo image plane so that epipolar lines in both stereo images are\n\ 01209 # parallel.\n\ 01210 float64[9] R # 3x3 row-major matrix\n\ 01211 \n\ 01212 # Projection/camera matrix\n\ 01213 # [fx' 0 cx' Tx]\n\ 01214 # P = [ 0 fy' cy' Ty]\n\ 01215 # [ 0 0 1 0]\n\ 01216 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01217 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01218 # is the normal camera intrinsic matrix for the rectified image.\n\ 01219 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01220 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01221 # (cx', cy') - these may differ from the values in K.\n\ 01222 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01223 # also have R = the identity and P[1:3,1:3] = K.\n\ 01224 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01225 # position of the optical center of the second camera in the first\n\ 01226 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01227 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01228 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01229 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01230 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01231 # the rectified image is given by:\n\ 01232 # [u v w]' = P * [X Y Z 1]'\n\ 01233 # x = u / w\n\ 01234 # y = v / w\n\ 01235 # This holds for both images of a stereo pair.\n\ 01236 float64[12] P # 3x4 row-major matrix\n\ 01237 \n\ 01238 \n\ 01239 #######################################################################\n\ 01240 # Operational Parameters #\n\ 01241 #######################################################################\n\ 01242 # These define the image region actually captured by the camera #\n\ 01243 # driver. Although they affect the geometry of the output image, they #\n\ 01244 # may be changed freely without recalibrating the camera. #\n\ 01245 #######################################################################\n\ 01246 \n\ 01247 # Binning refers here to any camera setting which combines rectangular\n\ 01248 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01249 # resolution of the output image to\n\ 01250 # (width / binning_x) x (height / binning_y).\n\ 01251 # The default values binning_x = binning_y = 0 is considered the same\n\ 01252 # as binning_x = binning_y = 1 (no subsampling).\n\ 01253 uint32 binning_x\n\ 01254 uint32 binning_y\n\ 01255 \n\ 01256 # Region of interest (subwindow of full camera resolution), given in\n\ 01257 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01258 # always denotes the same window of pixels on the camera sensor,\n\ 01259 # regardless of binning settings.\n\ 01260 # The default setting of roi (all values 0) is considered the same as\n\ 01261 # full resolution (roi.width = width, roi.height = height).\n\ 01262 RegionOfInterest roi\n\ 01263 \n\ 01264 ================================================================================\n\ 01265 MSG: sensor_msgs/RegionOfInterest\n\ 01266 # This message is used to specify a region of interest within an image.\n\ 01267 #\n\ 01268 # When used to specify the ROI setting of the camera when the image was\n\ 01269 # taken, the height and width fields should either match the height and\n\ 01270 # width fields for the associated image; or height = width = 0\n\ 01271 # indicates that the full resolution image was captured.\n\ 01272 \n\ 01273 uint32 x_offset # Leftmost pixel of the ROI\n\ 01274 # (0 if the ROI includes the left edge of the image)\n\ 01275 uint32 y_offset # Topmost pixel of the ROI\n\ 01276 # (0 if the ROI includes the top edge of the image)\n\ 01277 uint32 height # Height of ROI\n\ 01278 uint32 width # Width of ROI\n\ 01279 \n\ 01280 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01281 # ROI in this message. Typically this should be False if the full image\n\ 01282 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01283 # used).\n\ 01284 bool do_rectify\n\ 01285 \n\ 01286 ================================================================================\n\ 01287 MSG: geometry_msgs/Vector3\n\ 01288 # This represents a vector in free space. \n\ 01289 \n\ 01290 float64 x\n\ 01291 float64 y\n\ 01292 float64 z\n\ 01293 ================================================================================\n\ 01294 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01295 # Error codes for grasp and place planning\n\ 01296 \n\ 01297 # plan completed as expected\n\ 01298 int32 SUCCESS = 0\n\ 01299 \n\ 01300 # tf error encountered while transforming\n\ 01301 int32 TF_ERROR = 1 \n\ 01302 \n\ 01303 # some other error\n\ 01304 int32 OTHER_ERROR = 2\n\ 01305 \n\ 01306 # the actual value of this error code\n\ 01307 int32 value\n\ 01308 ================================================================================\n\ 01309 MSG: pr2_grasp_adjust/GraspAdjustActionFeedback\n\ 01310 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01311 \n\ 01312 Header header\n\ 01313 actionlib_msgs/GoalStatus status\n\ 01314 GraspAdjustFeedback feedback\n\ 01315 \n\ 01316 ================================================================================\n\ 01317 MSG: pr2_grasp_adjust/GraspAdjustFeedback\n\ 01318 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01319 #feedback\n\ 01320 \n\ 01321 \n\ 01322 \n\ 01323 "; 01324 } 01325 01326 static const char* value(const ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> &) { return value(); } 01327 }; 01328 01329 } // namespace message_traits 01330 } // namespace ros 01331 01332 namespace ros 01333 { 01334 namespace serialization 01335 { 01336 01337 template<class ContainerAllocator> struct Serializer< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > 01338 { 01339 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01340 { 01341 stream.next(m.action_goal); 01342 stream.next(m.action_result); 01343 stream.next(m.action_feedback); 01344 } 01345 01346 ROS_DECLARE_ALLINONE_SERIALIZER; 01347 }; // struct GraspAdjustAction_ 01348 } // namespace serialization 01349 } // namespace ros 01350 01351 namespace ros 01352 { 01353 namespace message_operations 01354 { 01355 01356 template<class ContainerAllocator> 01357 struct Printer< ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> > 01358 { 01359 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_grasp_adjust::GraspAdjustAction_<ContainerAllocator> & v) 01360 { 01361 s << indent << "action_goal: "; 01362 s << std::endl; 01363 Printer< ::pr2_grasp_adjust::GraspAdjustActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01364 s << indent << "action_result: "; 01365 s << std::endl; 01366 Printer< ::pr2_grasp_adjust::GraspAdjustActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01367 s << indent << "action_feedback: "; 01368 s << std::endl; 01369 Printer< ::pr2_grasp_adjust::GraspAdjustActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01370 } 01371 }; 01372 01373 01374 } // namespace message_operations 01375 } // namespace ros 01376 01377 #endif // PR2_GRASP_ADJUST_MESSAGE_GRASPADJUSTACTION_H 01378