$search
00001 /********************************************************************* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2009, Willow Garage 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of the Willow Garage nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 *********************************************************************/ 00034 00035 #include <ias_descriptors_3d/shape_spectral.h> 00036 00037 using namespace std; 00038 00039 // -------------------------------------------------------------- 00040 /* See function definition */ 00041 // -------------------------------------------------------------- 00042 ShapeSpectral::ShapeSpectral(SpectralAnalysis& spectral_information) 00043 { 00044 result_size_ = 3; 00045 result_size_defined_ = true; 00046 00047 spectral_information_ = &spectral_information; 00048 eig_vals_ = NULL; 00049 } 00050 00051 // -------------------------------------------------------------- 00052 /* See function definition */ 00053 // -------------------------------------------------------------- 00054 void ShapeSpectral::clearShared() 00055 { 00056 spectral_information_->clearSpectral(); 00057 } 00058 00059 std::string ShapeSpectral::getName() const 00060 { 00061 ostringstream oss; 00062 oss << "ShapeSpectral_radius" << spectral_information_->getRadius(); 00063 00064 return oss.str(); 00065 } 00066 00067 00068 // -------------------------------------------------------------- 00069 /* See function definition */ 00070 // -------------------------------------------------------------- 00071 int ShapeSpectral::precompute(const sensor_msgs::PointCloud& data, 00072 cloud_kdtree::KdTree& data_kdtree, 00073 const std::vector<const geometry_msgs::Point32*>& interest_pts) 00074 { 00075 // Compute spectral information if not already done 00076 if (spectral_information_->isSpectralComputed() == false) 00077 { 00078 if (spectral_information_->analyzeInterestPoints(data, data_kdtree, interest_pts) < 0) 00079 { 00080 return -1; 00081 } 00082 } 00083 00084 // Retrieve necessary spectral information this class needs to compute features 00085 eig_vals_ = &(spectral_information_->getEigenValues()); 00086 00087 // verify the eigenvectors are for the interest points 00088 if (eig_vals_->size() != interest_pts.size()) 00089 { 00090 ROS_ERROR("ShapeSpectral::precompute() inconsistent number of points and spectral info"); 00091 eig_vals_ = NULL; 00092 return -1; 00093 } 00094 00095 return 0; 00096 } 00097 00098 // -------------------------------------------------------------- 00099 /* See function definition */ 00100 // -------------------------------------------------------------- 00101 int ShapeSpectral::precompute(const sensor_msgs::PointCloud& data, 00102 cloud_kdtree::KdTree& data_kdtree, 00103 const std::vector<const std::vector<int>*>& interest_region_indices) 00104 { 00105 // Compute spectral information if not already done 00106 if (spectral_information_->isSpectralComputed() == false) 00107 { 00108 if (spectral_information_->analyzeInterestRegions(data, data_kdtree, interest_region_indices) < 0) 00109 { 00110 return -1; 00111 } 00112 } 00113 00114 // Retrieve necessary spectral information this class needs to compute features 00115 eig_vals_ = &(spectral_information_->getEigenValues()); 00116 00117 // verify the eigenvectors are for the interest regions 00118 if (eig_vals_->size() != interest_region_indices.size()) 00119 { 00120 ROS_ERROR("ShapeSpectral::precompute() inconsistent number of regions and spectral info"); 00121 eig_vals_ = NULL; 00122 return -1; 00123 } 00124 00125 return 0; 00126 } 00127 00128 // -------------------------------------------------------------- 00129 /* See function definition */ 00130 // -------------------------------------------------------------- 00131 void ShapeSpectral::doComputation(const sensor_msgs::PointCloud& data, 00132 cloud_kdtree::KdTree& data_kdtree, 00133 const std::vector<const geometry_msgs::Point32*>& interest_pts, 00134 std::vector<std::vector<float> >& results) 00135 { 00136 // ---------------------------------------- 00137 // Compute the shape features for each interest point 00138 int nbr_interest_pts = interest_pts.size(); 00139 #pragma omp parallel for 00140 for (int i = 0 ; i < nbr_interest_pts ; i++) 00141 { 00142 computeShapeFeatures(i, results[static_cast<size_t> (i)]); 00143 } 00144 } 00145 00146 // -------------------------------------------------------------- 00147 /* See function definition */ 00148 // -------------------------------------------------------------- 00149 void ShapeSpectral::doComputation(const sensor_msgs::PointCloud& data, 00150 cloud_kdtree::KdTree& data_kdtree, 00151 const std::vector<const std::vector<int>*>& interest_region_indices, 00152 std::vector<std::vector<float> >& results) 00153 { 00154 // ---------------------------------------- 00155 // Compute the shape features for each interest region 00156 int nbr_interest_regions = interest_region_indices.size(); 00157 #pragma omp parallel for 00158 for (int i = 0 ; i < nbr_interest_regions ; i++) 00159 { 00160 computeShapeFeatures(i, results[static_cast<size_t> (i)]); 00161 } 00162 } 00163 00164 // -------------------------------------------------------------- 00165 /* See function definition 00166 * Invariant: interest_sample_idx is within bounds */ 00167 // -------------------------------------------------------------- 00168 void ShapeSpectral::computeShapeFeatures(const unsigned int interest_sample_idx, std::vector<float>& result) const 00169 { 00170 // Retrieve the eigenvalues for current interest point/region 00171 const Eigen3::Vector3d* curr_eigen_vals = (*eig_vals_)[interest_sample_idx]; 00172 00173 // NULL indicates couldnt compute spectral information for interest sample 00174 if (curr_eigen_vals != NULL) 00175 { 00176 result.resize(result_size_); 00177 00178 result[0] = static_cast<float> ((*curr_eigen_vals)[0]); // scatter 00179 result[1] = static_cast<float> ((*curr_eigen_vals)[2] - (*curr_eigen_vals)[1]); // linear 00180 result[2] = static_cast<float> ((*curr_eigen_vals)[1] - (*curr_eigen_vals)[0]); // surface 00181 } 00182 } 00183