$search

Descriptor3D Class Reference

Descriptor3D is the abstract base class for all descriptors that operate on 3-D data. All inheriting classes define all necessary parameters in their constructor. Hence, after instantiation, all descriptors can compute feature values through the compute() method. The number of feature values the descriptor generates on success is given by getResultSize(). More...

#include <descriptor_3d.h>

Inheritance diagram for Descriptor3D:
Inheritance graph
[legend]

List of all members.

Public Member Functions

virtual void clearShared ()=0
 Clears the shared information this Descriptor3D is using so the information is computed from scratch on the next compute() call.
void compute (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const std::vector< int > * > &interest_region_indices, std::vector< std::vector< float > > &results)
 Computes feature values for each interest region of points.
void compute (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const geometry_msgs::Point32 * > &interest_pts, std::vector< std::vector< float > > &results)
 Computes feature values for each specified interest point.
 Descriptor3D ()
 Abstract constructor.
virtual std::string getName () const =0
 Returns a string that is unique for the current param settings.
unsigned int getResultSize () const
 Returns the number of feature values this descriptor computes on success.
virtual ~Descriptor3D ()=0

Static Public Member Functions

Utility methods

static unsigned int computeAndConcatFeatures (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const std::vector< int > * > &interest_region_indices, std::vector< Descriptor3D * > &descriptors_3d, std::vector< boost::shared_array< const float > > &concatenated_features)
 Utility function to compute multiple descriptor feature around interest regions and concatenate the results into a single vector.
static unsigned int computeAndConcatFeatures (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const geometry_msgs::Point32 * > &interest_pts, std::vector< Descriptor3D * > &descriptors_3d, std::vector< boost::shared_array< const float > > &concatenated_features)
 Utility function to compute multiple descriptor feature around interest points and concatenate the results into a single vector.

Public Attributes

bool debug_
 Whether to display the features as they are computed.

Protected Member Functions

virtual void doComputation (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const std::vector< int > * > &interest_region_indices, std::vector< std::vector< float > > &results)=0
 Does the actual computation after any pre-computations.
virtual void doComputation (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const geometry_msgs::Point32 * > &interest_pts, std::vector< std::vector< float > > &results)=0
 Does the actual computation after any pre-computations.
virtual int precompute (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const std::vector< int > * > &interest_region_indices)=0
 Method to do any setup pre-computation necessary for the inheriting descriptor.
virtual int precompute (const sensor_msgs::PointCloud &data, cloud_kdtree::KdTree &data_kdtree, const std::vector< const geometry_msgs::Point32 * > &interest_pts)=0
 Method to do any setup pre-computation necessary for the inheriting descriptor.

Protected Attributes

unsigned int result_size_
 The number of feature values the inheriting descriptor computes on success.
bool result_size_defined_
 Flag if the inheriting descriptor has defined the result size.

Static Private Member Functions

static void concatenateFeatures (const std::vector< std::vector< std::vector< float > > > &all_descriptor_results, const unsigned int nbr_samples, const unsigned int nbr_concatenated_vals, std::vector< boost::shared_array< const float > > &concatenated_features)
 Concatenates the resulting feature descriptor values.

Detailed Description

Descriptor3D is the abstract base class for all descriptors that operate on 3-D data. All inheriting classes define all necessary parameters in their constructor. Hence, after instantiation, all descriptors can compute feature values through the compute() method. The number of feature values the descriptor generates on success is given by getResultSize().

Definition at line 72 of file descriptor_3d.h.


Constructor & Destructor Documentation

Descriptor3D::Descriptor3D (  ) 

Abstract constructor.

Definition at line 42 of file descriptor_3d.cpp.

Descriptor3D::~Descriptor3D (  )  [pure virtual]

Definition at line 52 of file descriptor_3d.cpp.


Member Function Documentation

virtual void Descriptor3D::clearShared (  )  [pure virtual]

Clears the shared information this Descriptor3D is using so the information is computed from scratch on the next compute() call.

Implemented in BoundingBoxRaw, BoundingBoxSpectral, Channel, Curvature, OrientationNormal, OrientationTangent, Position, ShapeSpectral, SpinImageCustom, SpinImageNormal, and SpinImageTangent.

void Descriptor3D::compute ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const std::vector< int > * > &  interest_region_indices,
std::vector< std::vector< float > > &  results 
)

Computes feature values for each interest region of points.

See the inherited class constructor for the type of features computed and necessary parameters

Parameters:
data Point cloud of the data
data_kdtree K-D tree representation of data
interest_region_indices List of groups of indices into data that represent an interest region
results Vector to hold computed vector of features for each interest region. If the features could not be computed for an interest region i, then results[i].size() == 0
void Descriptor3D::compute ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const geometry_msgs::Point32 * > &  interest_pts,
std::vector< std::vector< float > > &  results 
)

Computes feature values for each specified interest point.

See the inherited class constructor for the type of features computed and necessary parameters

Parameters:
data Point cloud of the data
data_kdtree K-D tree representation of data
interest_pts List of interest points to compute features for
results Vector to hold computed vector of features for each interest point. If the features could not be computed for an interest point i, then results[i].size() == 0

Definition at line 60 of file descriptor_3d.cpp.

static unsigned int Descriptor3D::computeAndConcatFeatures ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const std::vector< int > * > &  interest_region_indices,
std::vector< Descriptor3D * > &  descriptors_3d,
std::vector< boost::shared_array< const float > > &  concatenated_features 
) [static]

Utility function to compute multiple descriptor feature around interest regions and concatenate the results into a single vector.

This method clears out any pre-computed shared information among the descriptors before calculating the new features.

Parameters:
data See Descriptor3D::compute
data_kdtree See Descriptor3D::compute
interest_region_indices See Descriptor3D::compute
descriptors_3d List of various feature descriptors to compute on each interest point
concatenated_features List containing the concatenated features from the descriptors if they were ALL successful for the interest region. If one descriptor failed for interest region i, then concatenated_features[i].get() == NULL
Returns:
The total number of concatenated feature values
static unsigned int Descriptor3D::computeAndConcatFeatures ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const geometry_msgs::Point32 * > &  interest_pts,
std::vector< Descriptor3D * > &  descriptors_3d,
std::vector< boost::shared_array< const float > > &  concatenated_features 
) [static]

Utility function to compute multiple descriptor feature around interest points and concatenate the results into a single vector.

This method clears out any pre-computed shared information among the descriptors before calculating the new features.

Parameters:
data See Descriptor3D::compute
data_kdtree See Descriptor3D::compute
interest_pts See Descriptor3D::compute
descriptors_3d List of various feature descriptors to compute on each interest point
concatenated_features List containing the concatenated features from the descriptors if they were ALL successful for the interest point. If one descriptor failed for interest point i, then concatenated_features[i].get() == NULL
Returns:
The total number of concatenated feature values
static void Descriptor3D::concatenateFeatures ( const std::vector< std::vector< std::vector< float > > > &  all_descriptor_results,
const unsigned int  nbr_samples,
const unsigned int  nbr_concatenated_vals,
std::vector< boost::shared_array< const float > > &  concatenated_features 
) [static, private]

Concatenates the resulting feature descriptor values.

Parameters:
all_descriptor_results The results for each descriptor
nbr_samples The number of interest points/regions
nbr_concatenated_vals The total length of all concatenated features from each descriptor
concatenated_features The concatenated features. NULL indicates could not successfully compute descriptor for sample
virtual void Descriptor3D::doComputation ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const std::vector< int > * > &  interest_region_indices,
std::vector< std::vector< float > > &  results 
) [protected, pure virtual]

Does the actual computation after any pre-computations.

See also:
Descriptor3D::compute()

Implemented in Channel, Curvature, NeighborhoodFeature, OrientationGeneric, Position, and ShapeSpectral.

virtual void Descriptor3D::doComputation ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const geometry_msgs::Point32 * > &  interest_pts,
std::vector< std::vector< float > > &  results 
) [protected, pure virtual]

Does the actual computation after any pre-computations.

See also:
Descriptor3D::compute()

Implemented in Channel, Curvature, NeighborhoodFeature, OrientationGeneric, Position, and ShapeSpectral.

virtual std::string Descriptor3D::getName (  )  const [pure virtual]

Returns a string that is unique for the current param settings.

Returns:
the name of this feature.

Implemented in BoundingBoxRaw, BoundingBoxSpectral, Channel, Curvature, OrientationNormal, OrientationTangent, Position, ShapeSpectral, SpinImageCustom, SpinImageNormal, and SpinImageTangent.

unsigned int Descriptor3D::getResultSize (  )  const [inline]

Returns the number of feature values this descriptor computes on success.

Returns:
the number of feature values this descriptor computes on success

Definition at line 140 of file descriptor_3d.h.

virtual int Descriptor3D::precompute ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const std::vector< int > * > &  interest_region_indices 
) [protected, pure virtual]

Method to do any setup pre-computation necessary for the inheriting descriptor.

Example: estimating normals for each interest point.

Parameters:
data Point cloud of the data
data_kdtree K-D tree representation of data
interest_region_indices List of groups of indices into data that represent an interest region for feature computation

Implemented in BoundingBoxRaw, BoundingBoxSpectral, Channel, Curvature, OrientationNormal, OrientationTangent, Position, ShapeSpectral, SpinImageCustom, SpinImageNormal, and SpinImageTangent.

virtual int Descriptor3D::precompute ( const sensor_msgs::PointCloud data,
cloud_kdtree::KdTree &  data_kdtree,
const std::vector< const geometry_msgs::Point32 * > &  interest_pts 
) [protected, pure virtual]

Method to do any setup pre-computation necessary for the inheriting descriptor.

Example: estimating normals for each interest point.

Parameters:
data Point cloud of the data
data_kdtree K-D tree representation of data
interest_pts List of interest points for feature computation

Implemented in BoundingBoxRaw, BoundingBoxSpectral, Channel, Curvature, OrientationNormal, OrientationTangent, Position, ShapeSpectral, SpinImageCustom, SpinImageNormal, and SpinImageTangent.


Member Data Documentation

Whether to display the features as they are computed.

Definition at line 211 of file descriptor_3d.h.

unsigned int Descriptor3D::result_size_ [protected]

The number of feature values the inheriting descriptor computes on success.

Definition at line 272 of file descriptor_3d.h.

Flag if the inheriting descriptor has defined the result size.

Definition at line 275 of file descriptor_3d.h.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Properties Friends


ias_descriptors_3d
Author(s): Daniel Munoz/ dmunoz@willowgarage.com, Dejan Pangercic (patched version)
autogenerated on Tue Dec 4 03:48:22 2012