00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_MATRIX_FUNCTION_ATOMIC
00026 #define EIGEN_MATRIX_FUNCTION_ATOMIC
00027
00036 template <typename MatrixType>
00037 class MatrixFunctionAtomic
00038 {
00039 public:
00040
00041 typedef typename MatrixType::Scalar Scalar;
00042 typedef typename MatrixType::Index Index;
00043 typedef typename NumTraits<Scalar>::Real RealScalar;
00044 typedef typename internal::stem_function<Scalar>::type StemFunction;
00045 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
00046
00050 MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
00051
00056 MatrixType compute(const MatrixType& A);
00057
00058 private:
00059
00060
00061 MatrixFunctionAtomic(const MatrixFunctionAtomic&);
00062 MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&);
00063
00064 void computeMu();
00065 bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P);
00066
00068 StemFunction* m_f;
00069
00071 Index m_Arows;
00072
00074 Scalar m_avgEival;
00075
00077 MatrixType m_Ashifted;
00078
00080 RealScalar m_mu;
00081 };
00082
00083 template <typename MatrixType>
00084 MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
00085 {
00086
00087 m_Arows = A.rows();
00088 m_avgEival = A.trace() / Scalar(RealScalar(m_Arows));
00089 m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows);
00090 computeMu();
00091 MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows);
00092 MatrixType P = m_Ashifted;
00093 MatrixType Fincr;
00094 for (Index s = 1; s < 1.1 * m_Arows + 10; s++) {
00095 Fincr = m_f(m_avgEival, static_cast<int>(s)) * P;
00096 F += Fincr;
00097 P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted;
00098 if (taylorConverged(s, F, Fincr, P)) {
00099 return F;
00100 }
00101 }
00102 eigen_assert("Taylor series does not converge" && 0);
00103 return F;
00104 }
00105
00107 template <typename MatrixType>
00108 void MatrixFunctionAtomic<MatrixType>::computeMu()
00109 {
00110 const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted;
00111 VectorType e = VectorType::Ones(m_Arows);
00112 N.template triangularView<Upper>().solveInPlace(e);
00113 m_mu = e.cwiseAbs().maxCoeff();
00114 }
00115
00117 template <typename MatrixType>
00118 bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F,
00119 const MatrixType& Fincr, const MatrixType& P)
00120 {
00121 const Index n = F.rows();
00122 const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
00123 const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
00124 if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
00125 RealScalar delta = 0;
00126 RealScalar rfactorial = 1;
00127 for (Index r = 0; r < n; r++) {
00128 RealScalar mx = 0;
00129 for (Index i = 0; i < n; i++)
00130 mx = std::max(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r))));
00131 if (r != 0)
00132 rfactorial *= RealScalar(r);
00133 delta = std::max(delta, mx / rfactorial);
00134 }
00135 const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
00136 if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm)
00137 return true;
00138 }
00139 return false;
00140 }
00141
00142 #endif // EIGEN_MATRIX_FUNCTION_ATOMIC