GPReg< TInput > Class Template Reference
#include <gpRegression.hpp>
List of all members.
Public Member Functions |
void | buildGP (bool useTargets=true) |
void | buildTargets () |
void | evalGP (const TInput &x, double &mean) |
void | evalGP (const TInput &x, double &mean, double &var) |
double | getAvgVariance () |
double | getComplexity () |
double | getDataFit () |
double | getDataLikelihood () |
void | getDerivative (std::vector< double > *r) |
double | getMarginalDataLikelihood () |
void | getParameters (std::vector< double > *r) |
| GPReg (GPReg< TInput > *copyFromGP) |
| GPReg (CovFunc< TInput > *covFunc, double *sigmaNoise, GPReg< TInput > *noiseGP=NULL) |
| GPReg (CovFunc< TInput > *covFunc, double sigmaNoise, GPReg< TInput > *noiseGP=NULL) |
bool | minimizeGSL (unsigned maxIt) |
void | setDataPoints (TVector< TInput > &dataPoints, TVector< double > &dataTargets) |
void | setParameters (std::vector< double > *r) |
void | setSigmaNoise (double sigma) |
| ~GPReg () |
Static Public Member Functions |
static void | gsl_my_df (const gsl_vector *v, void *params, gsl_vector *df) |
static double | gsl_my_f (const gsl_vector *v, void *params) |
static void | gsl_my_fdf (const gsl_vector *v, void *params, double *f, gsl_vector *df) |
Public Attributes |
TMatrix< double > * | m_C |
GPReg< TInput > * | m_copyFromGP |
CovFunc< TInput > * | m_covFunc |
TVector< TInput > * | m_dataPoints |
TMatrix< double > * | m_iC |
TVector< double > * | m_iCt |
GPReg< TInput > * | m_noiseGP |
int | m_numDataPoints |
double | m_ownSigmaNoise |
double * | m_sigmaNoise |
TVector< double > * | m_t |
Detailed Description
template<class TInput>
class GPReg< TInput >
Definition at line 18 of file gpRegression.hpp.
Constructor & Destructor Documentation
Member Function Documentation
template<class TInput>
void GPReg< TInput >::buildGP |
( |
bool |
useTargets = true |
) |
|
template<class TInput>
void GPReg< TInput >::buildTargets |
( |
|
) |
|
template<class TInput>
void GPReg< TInput >::evalGP |
( |
const TInput & |
x, |
|
|
double & |
mean | |
|
) |
| | |
template<class TInput>
void GPReg< TInput >::evalGP |
( |
const TInput & |
x, |
|
|
double & |
mean, |
|
|
double & |
var | |
|
) |
| | |
template<class TInput>
double GPReg< TInput >::getAvgVariance |
( |
|
) |
|
template<class TInput>
double GPReg< TInput >::getComplexity |
( |
|
) |
|
template<class TInput>
double GPReg< TInput >::getDataFit |
( |
|
) |
|
template<class TInput>
double GPReg< TInput >::getDataLikelihood |
( |
|
) |
|
template<class TInput>
void GPReg< TInput >::getDerivative |
( |
std::vector< double > * |
r |
) |
|
template<class TInput>
double GPReg< TInput >::getMarginalDataLikelihood |
( |
|
) |
|
template<class TInput>
void GPReg< TInput >::getParameters |
( |
std::vector< double > * |
r |
) |
|
template<class TInput>
static void GPReg< TInput >::gsl_my_df |
( |
const gsl_vector * |
v, |
|
|
void * |
params, |
|
|
gsl_vector * |
df | |
|
) |
| | [static] |
template<class TInput>
static double GPReg< TInput >::gsl_my_f |
( |
const gsl_vector * |
v, |
|
|
void * |
params | |
|
) |
| | [static] |
template<class TInput>
static void GPReg< TInput >::gsl_my_fdf |
( |
const gsl_vector * |
v, |
|
|
void * |
params, |
|
|
double * |
f, |
|
|
gsl_vector * |
df | |
|
) |
| | [static] |
template<class TInput>
bool GPReg< TInput >::minimizeGSL |
( |
unsigned |
maxIt |
) |
|
template<class TInput>
void GPReg< TInput >::setDataPoints |
( |
TVector< TInput > & |
dataPoints, |
|
|
TVector< double > & |
dataTargets | |
|
) |
| | |
template<class TInput>
void GPReg< TInput >::setParameters |
( |
std::vector< double > * |
r |
) |
|
template<class TInput>
void GPReg< TInput >::setSigmaNoise |
( |
double |
sigma |
) |
|
Member Data Documentation
The documentation for this class was generated from the following file:
- /opt/ros/diamondback/stacks/freiburg_tools/gaussian_process/include/gaussian_process/gpRegression.hpp