00001
00002
00003
00004
00005
00006
00007
00008
00009 #include "gaussian_process/SingleGP.h"
00010
00011 namespace gaussian_process {
00012
00013 #define sqr(a) ((a)*(a))
00014
00015 SingleGP::SingleGP(CovFuncND initialCovFunc,double initialSigmaNoise)
00016 :
00017 initialCovFunc(initialCovFunc), initialSigmaNoise(initialSigmaNoise),
00018 covFunc(initialCovFunc), sigmaNoise(initialSigmaNoise),
00019 GP(&covFunc, &sigmaNoise)
00020 {
00021 GP.m_dataPoints = &dataPoints;
00022 GP.m_t = &targetPoints;
00023 GP.m_numDataPoints = 0;
00024
00025 }
00026
00027 SingleGP::~SingleGP() {
00028 GP.m_dataPoints = NULL;
00029 GP.m_t = NULL;
00030 }
00031
00032 void SingleGP::Reset() {
00033 dataPoints.clear();
00034 targetPoints.clear();
00035 covFunc = initialCovFunc;
00036 sigmaNoise = initialSigmaNoise;
00037 GP.m_numDataPoints = 0;
00038 }
00039
00040 void SingleGP::SetData(TVector<TDoubleVector> &dataPoints,TVector<double> &targetPoints) {
00041 this->dataPoints = dataPoints;
00042 this->targetPoints = targetPoints;
00043 GP.m_numDataPoints = dataPoints.size();
00044 GP.m_dataPoints = &this->dataPoints;
00045 GP.m_t = &this->targetPoints;
00046 BuildGP();
00047 }
00048
00049 void SingleGP::BuildGP() {
00050 if(GP.m_numDataPoints ==0) {
00051 return;
00052 }
00053
00054 if(dataPoints[0].size() == 0) {
00055 double sum = 0;
00056 for(unsigned int i=0;i<dataPoints.size();i++) {
00057 sum += targetPoints[i];
00058 }
00059 mean = sum/dataPoints.size();
00060
00061 sum = 0;
00062 for(unsigned int i=0;i<dataPoints.size();i++) {
00063 sum += sqr(targetPoints[i]-mean);
00064 }
00065 var = sum/dataPoints.size();
00066 sum = 0;
00067 return;
00068 } else {
00069 GP.buildGP(true);
00070 }
00071 }
00072
00073 void SingleGP::OptimizeGP() {
00074 if(GP.m_numDataPoints ==0) return;
00075
00076 if(dataPoints[0].size() != 0) {
00077
00078 if(!GP.minimizeGSL(100)) {
00079 covFunc = initialCovFunc;
00080 sigmaNoise = initialSigmaNoise;
00081
00082 } else {
00083 return;
00084 }
00085
00086 }
00087 BuildGP();
00088 }
00089
00090 void SingleGP::Evaluate(TDoubleVector data, double &targetMean, double &targetVar) {
00091 targetMean = NAN;
00092 targetVar = NAN;
00093 if(GP.m_numDataPoints ==0) return;
00094
00095 if(dataPoints[0].size() == 0) {
00096 targetMean = mean;
00097 targetVar = var;
00098 } else {
00099
00100 GP.evalGP(data, targetMean, targetVar);
00101 }
00102 }
00103
00104 double SingleGP::GetDataLikelihood() {
00105 if(GP.m_numDataPoints ==0) return(NAN);
00106
00107 if(dataPoints[0].size() == 0) {
00108 return(NAN);
00109 }
00110
00111 return(GP.getDataLikelihood());
00112 }
00113
00114 }
00115
00116 #include "gaussian_process/gpRegression.hxx"