00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00037 #ifndef MULTIVARIATE_GAUSSIAN_H_
00038 #define MULTIVARIATE_GAUSSIAN_H_
00039
00040 #include <Eigen/Core>
00041 #include <Eigen/Cholesky>
00042 #include <boost/random/variate_generator.hpp>
00043 #include <boost/random/normal_distribution.hpp>
00044 #include <boost/random/mersenne_twister.hpp>
00045 #include <cstdlib>
00046
00047 namespace chomp
00048 {
00049
00053 class MultivariateGaussian
00054 {
00055 public:
00056 template <typename Derived1, typename Derived2>
00057 MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance);
00058
00059 template <typename Derived>
00060 void sample(Eigen::MatrixBase<Derived>& output);
00061
00062 private:
00063 Eigen::VectorXd mean_;
00064 Eigen::MatrixXd covariance_;
00065 Eigen::MatrixXd covariance_cholesky_;
00067 int size_;
00068 boost::mt19937 rng_;
00069 boost::normal_distribution<> normal_dist_;
00070 boost::variate_generator<boost::mt19937, boost::normal_distribution<> > gaussian_;
00071 };
00072
00074
00075 template <typename Derived1, typename Derived2>
00076 MultivariateGaussian::MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance):
00077 mean_(mean),
00078 covariance_(covariance),
00079 covariance_cholesky_(covariance_.llt().matrixL()),
00080 normal_dist_(0.0,1.0),
00081 gaussian_(rng_, normal_dist_)
00082 {
00083 rng_.seed(rand());
00084 size_ = mean.rows();
00085 }
00086
00087 template <typename Derived>
00088 void MultivariateGaussian::sample(Eigen::MatrixBase<Derived>& output)
00089 {
00090 for (int i=0; i<size_; ++i)
00091 output(i) = gaussian_();
00092 output = mean_ + covariance_cholesky_*output;
00093 }
00094
00095 }
00096
00097 #endif